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Diffuse Idiopathic Skeletal Hyperostosis (DISH) and Ossification of the Posterior

Longitudinal Ligament (OPLL) are common disorders characterized by the

ossification of spinal ligaments. The cause for this ossification is currently

unknown but a genetic contribution has been hypothesized. Over the last

decade, many studies on the genetics of ectopic calcification disorders have

been performed, mainly on OPLL. Most of these studies were based on linkage

analysis and case control association studies. Animal models have provided

some clues but so far, the involvement of the identified genes has not been

confirmed in human cases. In the last few years, many common variants in

several genes have been associated with OPLL. However, these associations

have not been at definitive levels of significance and evidence of functional

significance is generally modest. The current evidence suggests a multifactorial

aetiopathogenesis for DISH andOPLL with a subset of cases showing a stronger

genetic component.
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1 Introduction

The spine is a columnar structure composed of bony

vertebrae interconnected by intervertebral discs and supported

by ligaments, such as the anterior and posterior longitudinal

ligaments, ligament nuchae and ligamentum flavum. The spinal

canal, enclosed within the foramen of the vertebrae, contains the

spinal cord. In the intervertebral spaces, the canal is protected by

the ligament flavum posteriorly and the posterior longitudinal

ligament anteriorly. Spinal stenosis consists in the reduction of

the area of the spinal canal, leading to motor neuron deficits and

related neurological symptoms, depending on the location of the

stenosis (Bai et al., 2022). In the elderly population, the most

common cause of spinal cord impairment is the degenerative

cervical myelopathy (DCM). DCM can be secondary to

osteoarthritic degeneration or to ligamentous ossifications

such as the Ossification of the Posterior Longitudinal

Ligament (OPLL) or the ossification of the Ligament Flavum

(OLF) (Nouri et al., 2015). OPLL, frequently in association with

DISH, can result in various degrees of neurological complications

that can range from a slowly progressive painless myelopathy to a

rapid progression of a neurological deficit even after minor injury

(Takayuki et al., 2021; Prabhu et al., 2022). The physical and

socioeconomic burden of disability associated with DCM is

expected to grow evenly, due to the ageing population

(Badhiwala et al., 2020). It is thus crucial to improve the

diagnosis and assessment of disorders involved in DCM for

early detection and swift intervention.

This review will focus on genetic studies of the ossification

of the anterior and posterior longitudinal ligaments, the

Diffuse Idiopathic Skeletal Hyperostosis (DISH) [MIM:

106400] and the Ossification of the Posterior Longitudinal

Ligament (OPLL) [MIM: 602475], respectively. A short

outline of DISH, OPLL and OLF can be seen in Table 1.

These conditions may co-occur in some patients suggesting

possible common etiopathogenic factors (Nouri et al., 2015;

Takayuki et al., 2021). The objective was to collect and present

evidences that supports a genetic foundation, based on the

following observations: 1) familial aggregation reports, 2)

animal models, 3) associated genetic variants and 4)

genetics of associated disorders.

2 Familial aggregation reports

2.1 DISH

Reports of familial DISH are scarce. Beardwell, A. in 1969

(Beardwell, 1969), describes a family with Ankylosing

Vertebral Hyperostosis (AVH), by the third decade, with

many family members also presenting tylosis (punctuate

hyperkeratosis). As demonstrated by the author, the X-ray

of the affected family members showed ossification of

paraspinal distribution, mainly in the lower thoracic region

and also some osteophytosis and marginal sclerosis of the

sacroiliac joints.

TABLE 1 Brief characterization, main symptoms and epidemiology of DISH, OPLL and OLF.

Disorder Characterized by Main symptom Epidemiology

DISH Calcification and ossification of the anterior
longitudinal ligament affecting, in particular, the
right side of the spine with preservation of the
intervertebral disc space. Peripheral joints, such as
elbow, shoulder, hip, knee and heel are commonly
affected (Okazaki et al., 1976; Gorman et al., 2005;
Bruges-Armas et al., 2006; Couto et al., 2017;
Parreira et al., 2020)

Dysphagia (Beardwell, 1969). Axial pain, elbow,
knee and metacarpophalangeal pain, swelling and
deformity (Okazaki et al., 1976)

Elderly males are mostly affected. DISH
prevalence is 17.6% using x-ray and ranges from
17.4% to 27,2% using computed tomography [33,
(Ikuma et al., 2022)

OPLL Ectopic hyperostosis and calcification of the
posterior longitudinal ligament at the cervical,
thoracic and lumbar spine (Fornaciari et al., 2009)

Myelopathy and/or radiculopathy (Fornaciari and
Giuffra, 2013)

More common inmales of asian populations, with
a prevalence of 2–4% in japan as compared with
0.01–2% in non-Asian populations (Matsunaga
et al., 2006)

OLF Calcification of the ligamentum flavum (LF) not
extending to the closed spinal bony arch
(Yamagami et al., 2000). Calcium pyrophosphate
dehydrate (CPPD) and hidroxyapatite are thought
to be main players in this calcification (Ellman
et al., 1978; Brown et al., 1991)

Thoracic myelopathy and spinal stenosis (Miyasaka
et al., 1982)

Higher prevalence in males of Asian populations,
especially the Japanese, with the incidence of 12%
in thoracic OLF (Caswell et al., 1987)
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Another report of familial DISH, described 2 families; one

had 4 siblings showing AVH by the fourth decade and two other

family members had probably AVH. The second family was

dentified after hip surgery of two sisters aged 71 and 82 years.

The proband had five daughters, two of them affected by AVH

and other two with a mild phenotype, classified as possible AVH

(Abiteboul et al., 1985). An unusual DISH-like phenotype was

described in a family with severe cervical disease lacking the

extensive dorsal involvement (Gorman et al., 2005).

In Azores region, twelve families were identified presenting early

onset (third decade) of DISH and/or Chondrocalcinosis (CC). The

affected members had a pyrophosphate arthropathy showing

exuberant axial and peripheral enthesopathic calcifications, meaning

calcification of the connective tissues in the attachments of tendons or

ligaments to the bones, in joints other than the spine (Bruges-Armas

et al., 2006).Genetic studies in these families suggest that the phenotype

DISH/CC is polygenic and influenced by the interaction of several,

small-effect gene variants and possibly by unidentified environmental

factors (Couto et al., 2017; Parreira et al., 2020). Similar cases, of

patients with CPPD and/or CC and DISH, were mentioned in other

studies (Okazaki et al., 1976), also showing familial aggregation (van

der Korst et al., 1974; Bruges-Armas et al., 2006).

A postmortem examination of a skeleton allowed the diagnosis

of DISH and ankylosing spondylitis in the same patient (Jordana

et al., 2009). An extensive radiographic survey on several members

of the Medici family (15th–17th century), demonstrated that DISH,

rheumatoid arthritis and uric acid gout affected several family

members (Fornaciari et al., 2009; Fornaciari and Giuffra, 2013).

A study of 13 royal Egyptian mummies detected ossifications at the

anterior aspects of the spines in five male mummies but only four

fulfilled the criteria for DISH (Saleem and Hawass, 2014).

2.2 OPLL

The cause of OPLL is unclear but people of Asian heritage, have a

higher likelihood of developing this condition (Choi et al., 2011).

Familial aggregation of cervical OPLL was first demonstrated in a

study assessing 347 families (Terayama, 1989); the relative risk of first

degreerelativescametohaveOPLLwasfivetimesgreaterthanexpected

inthegeneralpopulation.Anotherstudyshowsaprevalenceof27%with

arelativeriskseventimesthatofthegeneralpopulation(Tanikawaetal.,

1986).OtherOPLLfamilialcasesincludedthereportoffamilialthoracic

OPLL in Caucasian siblings (Tanabe et al., 2002) (Terayama, 1989).

The mode of inheritance for OPLL is still poorly defined due to

the absence of large families, late onset of the disorder, environmental

effects and sex differences (Koga et al., 1998). However, segregation

studies shows that OPLL have both autosomal dominant (Tanikawa

et al., 1986) and autosomal recessive (Hamanishi et al., 1995) patterns

of inheritance. As discussed later, ectopic ossification resembling

OPLL, as seen in the tiptoe walking mouse (ttw) or also called tiptoe

walking of Yoshimura (twy), is inherited as an autosomal recessive

disease with complete penetrance (Ikegawa et al., 2007).

3 Animal models for Ossification of
Spinal Ligaments

The study of mouse strain models and the progress of strategies

to find genetic mutations, affecting the mineralization pattern, have

permitted the discovery of many genes and proteins to be evaluated.

3.1 DISH

Natural cases—unknown gene

Some natural cases of DISH have been observed in dogs (Kranenburg et al., 2010; Kranenburg et al., 2014; Togni et al., 2014; Bossens et al., 2016) and, as in humans, the disease is
more common in older male animals and is more frequent in the boxer breed (Kranenburg et al., 2010). The high occurrence of DISH in one dog breed and the low or absence
occurrence in the other breeds is suggestive of a genetic mechanism (Ostrander et al., 2000). In 2016 Bossens et al. (2016), reported the presence of DISH, in a nine year old
female cat. According to the authors the phenotype was very similar to canine DISH displayed contiguous ossification ventral and lateral to the vertebra prolonging from
thoracic area to the lumbosacral junction. As far as we know, there are no reports of OPLL in dogs or other types of companion animals

Gene involved in humans—ENT1

ENT1 (6p21.1) in humans is known as solute carrier family 29 member 1 (SLC29A1). The gene encodes one of the four equilibrative nucleoside transporters which transfers hydrophilic
nucleosides across the plasmamembrane (Bicket et al., 2016). The protein is ubiquitously expressed and is involved in purinemetabolism being responsible for transporting themajority of
adenosine. It is known that adenosine signaling regulate bone formation (Carroll et al., 2012). Currently no human phenotype or disease has been directly linked with this gene

ENT1−/− mice

Mice lacking ENT1 (ENT1−/−) exhibit progressive ectopic calcification of the paraspinal tissues in the cervical and thoracic area homologous to human DISH. In intervertebral
discs, these mice also present a significant downregulation of Enpp1, Ank and Alpl genes (Warraich et al., 2013). Another study, showed that ENT1−/−mice presented low bone
density in the midshaft of the femur and in the lower half of the spinal column. Additionally, the authors confirmed that ENT1−/− mice presented osteoid formations in the
thoracic and cervical portions of the spinal column (Hinton et al., 2014)
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3.2 OPLL

4 Genetic variants associated with
OSL in humans

4.1 Genetic studies of DISH

Some of the earliest genetic studies were performed on genes

belonging to Major Histocompatibility complex, specifically

Human Leucocyte Antigens (HLA) (Brewerton et al., 1973;

Schlosstein et al., 1973), but this association was never confirmed.

In a small study, polymorphisms of the Collagen Type I

Iα1 (COL1A1), and Vitamin D Receptor (VDR) were

investigated, but the authors concluded that these genes do

not seem to be related to DISH etiology (Havelka et al., 2002).

One more study, investigated polymorphisms of the collagen

6A1 gene (COL6A1) in Czech and Japanese DISH patients and

the polymorphism, in intron 32, was associated with the

disorder in Japanese patients but failed the association test

with DISH Czech patients (Table 2). However, the authors

suggested that COL6A1 could be related to ectopic bone

formation in spinal ligaments (Tsukahara et al., 2005). Due

to the possible common aetiopathogenesis of OPLL and

DISH, a genotyping study (intron 6; −4) on the COL11A2

gene was performed, and no significant difference was

observed between both cohorts (Havelka et al., 2001). Jun

et al (Jun and Kim, 2012) described that two polymorphisms

in the FGF2 gene were associated with DISH (Table 2).

Another study identified a genetic variant in the PPP2R2D

gene significantly associated with a phenotype characterized

by DISH and CC. It was proposed that PPP2R2D may

contribute to the development of this disorder (Parreira

et al., 2020). Although these variants are significantly

associated with DISH, the direct evidence for pathogenicity

is lacking.

4.2 Genetic studies in OPLL

Many genetic studies of OPLL have been performed and it is

now well established that genetic factors are implicated in its

etiology (Terayama, 1989) (Table 3). In the same way as DISH,

the initial genetic studies of OPLL were performed on HLA and

the possible association is much discussed in the literature (Sakou

et al., 1991; Yamaguchi, 1991; Matsunaga et al., 1999). Very close

to the HLA region on the chromosome 6 is COL11A2 and

common variants of this gene have been associated with

OPLL (Koga et al., 1998; Maeda et al., 2001a). The

Gene involved—ENPP1

In humans, ENPP1 (6q23.2) encodes one of the seven members of the ectonucleotide pyrophosphate phosphodiesterase family (Buckley et al., 1990). ENPP1 is a membrane
glycoprotein responsible to hydrolysing extracellular nucleotide triphosphates (ATP) to generate pyrophosphate, thereby working as a physiological inhibitor of calcification
(Stefan et al., 2005) (Kato et al., 2012). The protein is expressed in various tissues, including bone and cartilage (Caswell et al., 1987; Caswell and Russell, 1988). Some human
diseases are linked to this gene. It is known that mutations in ENPP1 gene are the cause of Generalized arterial Calcification of Infancy (GACI) (Rutsch et al., 2003),
Hypophosphatemic rickets (Levy-Litan et al., 2010), Cole disease (Eytan et al., 2013) and Pseudoxanthoma elasticum, since in some GACI cases, mutations in ENPP1 also caused
a characteristic pseudoxanthoma skin lesions and angioid streaks of the retina (Nitschke and Rutsch, 2012)

Twy walking Yoshimura mouse

The spinal hyperostotic mouse twy develop spontaneous ossification of the spinal ligaments very similar to human OPLL. The ossification also occurs in joint capsules, chondral
tissues, tendon entheses and peripheral ligaments (Yamazaki et al., 1991) (Okawa et al., 1998). The twy phenotype is caused by a nonsense mutation in NPPS also called ENPP1
gene, resulting in a minor expression and consequently less protein activity (Okawa et al., 1998). According to Hajjawi et al. (2014), ENPP1−/− knock-out mice also shown a lower
bone density and calcification of joints, vertebrae and soft tissues including trachea, ear pinna and whisker follicles.This mouse model has also been used for studies on the
contribution of Fas-mediated cell death and inflammation to the pathobiology of cervical spondylotic myelopathy (Yu et al., 2011)

Gene involved - LEP/LEPR

In humans, LEP (7q32.1) encodes a protein responsible to regulate energy homeostasis. The protein is related to bone metabolism since is a potent inhibitor of bone in vivo
(Elefteriou et al., 2004). In female mice, the protein promotes the transdifferentiation of vascular smooth muscle cells to osteoblasts by increasing RANKL expression (Liu et al.,
2014) In humans, mutations in LEP gene cause morbid obesity (Montague et al., 1997)

ZFR rat

The Zucker fatty rat (ZFR) was originally used to study obesity, hyperinsulinemia, hypercholesterolemia and hyperlipidemia. This murine model also displays ossification of the
spinal ligaments, histopathologically similar to human OPLL (Okano et al., 1997). The ZFR phenotype is caused by a mutation in the leptin receptor gene (LEPR) (Phillips et al.,
1996)
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polymorphism in intron 6 (-4A) seems to confer protection to

OPLL furthermore, it was proven that this polymorphism of

COL11A2 affects the splicing of exon 6 in cells obtained from

spinal ligaments from OPLL patients (Maeda et al., 2001b).

According to Nakamura et al. (1999) the deletion of T,

11 nucleotides upstream of the splice acceptor site of intron

20 (IVS20-11delT) of ENPP1 is associated with OPLL. However,

He et al. (2013) described that the polymorphism TT genotype of

C973T and IVS15-14T as well as the wild type IVS20 (lack of

deletion) were related with disease severity. Another study found

a polymorphism (IVS15-14T-- > C) in ENPP1 gene associated

with OPLL susceptibility and severity (Koshizuka et al., 2002).

Interestingly, in one study the authors found that the

ENPP1 variant (IVS20-11delT) and the SNP (A861G) in the

leptin receptor gene (LEPR) were more frequent in OPLL

patients affected in the thoracic spine compared to patients

whose OPLL was restricted to cervical spine. The authors

suggested that the two variants (IVS20-11delT and A861G)

are associated with more extensive OPLL, but not with

frequency of its occurrence (Tahara et al., 2005).

The COL6A1 gene is intensely associated to OPLL and

polymorphisms in this gene are considered useful markers of

OPLL (Tanaka et al., 2003; Kong et al., 2007; Wang et al., 2018a).

However this association is not always confirmed in all the

studies performed (Furushima et al., 2002; Liu et al., 2010).

Polymorphisms in COL6A1 gene were associated with DISH

in the Japanese population (Tsukahara et al., 2005) suggesting

that COL6A1may contribute in pathological ectopic ossification.

Positive associations of BMP2, an important regulator of bone

metabolism, with OPLL were found with the SNPs rs3178250

(Wang et al., 2008), rs2273073 (Chen et al., 2008; Yan et al., 2013)

and rs1949007 (Chen et al., 2008) (Table 3). Yan et al. (2013),

confirmed that the SNP rs227373 in the BMP2 gene is associated

with the higher level of Smad4 protein expression and with activity

of alkaline phosphatase. On the other hand, according to Kim et al.

(2014a) the SNPs rs2273073 and rs1949007, in Korean patients, are

not associated with OPLL. Other study (Liu et al., 2010), performed in

ChineseHan population, also failed to show association betweenBMP2

gene and OPLL. A genome-wide linkage study performed with

214 OPLL affected sib-pairs identified a chromosome region

(20p12), linked with OPLL (Karasugi et al., 2013). This region

contains 25 genes, of which two are good candidates: Jagged 1

(JAG1), which is involved in endochondral bone formation (Nobta

et al., 2005) and BMP2. Furthermore, deleterious coding variants of

BMP2 in peripheral blood samples was recently demonstrated (Chen

et al., 2016). Three other polymorphisms (rs996544, rs965291 and

rs1116867) were screened in Han Chinese subjects and the authors

found that rs1116867 and rs965291were related with themanifestation

and extend of OPLL (Yan et al., 2010).

Other bone morphogenetic protein genes have been

associated with OPLL; two SNPs in BMP-9 were found to

be associated with OPLL: rs75024165 and rs34379100 (Ikuma

et al., 2022). BMP-4 SNPs rs17563 (Mader et al., 2013; Cudrici

et al., 2021), rs76335800 and a specific haplotype, TGGGCTT

(Mader et al., 2013), were identified as risk factors for

developing OPLL in the Chinese population. Furushima

et al. (Ramos et al., 2015) also confirmed the association of

BMP-4 with OPLL, in a large scale screening study, in which

only BMP-4 reached criteria of suggestive evidence of linkage.

In a recent study, BMP-4 has even been proposed as a new

therapeutic option for treating bone diseases due to its role on

a RUNX2/CHRDLI/BMP4 pathway. Several SNPs in gene

TABLE 2 Genes and genetic variants associated with DISH. The protein physiological function is also mentioned. Gene function was obtained from
GeneCards database.

Gene Chr Gene function Type of
study

SNVs Molecular
mechanism

Ref

COL6A1 21 Collagen VI is a main structural component of
microfibrils. Mutations in this gene may result in
Bethlem Myopathy

Case control association study in
Japanese individuals (97 DISH
patients and 298 controls)

rs2236486 (p =
0.0022)

Frequent polymorphism
(MAF 0.39)

Tsukahara
et al. (2005)

Unclear association

FGF2 4 FGF2 protein has been involved in diverse
biological processes, such as limb and nervous
system development, tumour growing and
wound healing

Case control association study
(154 OPLL patients -3 patients
with DISH)

rs1476217 (p =
0.003)

3 prime UTR variant
(MAF 0.48)

Jun and Kim,
(2012)

rs3747676 (p =
0.002)

3 prime UTR variant
(MAF 0.35)Unclear
association

PPP2R2D 10 PPP2R2D protein is a crucial serine/threonine
protein phosphatase that controls basal cellular
activities by dephosphorylating substrates. Its is
known that phosphatases

Whole exome sequencing
(4 patients) and case control study
(n = 65)

rs34473884
(p = 0.028)

Missense variant
(MAF 0.18)

Parreira et al.
(2020)

influence the transforming growth factor beta
(TGF-beta) superfamily signalling, which
regulates numerous cellular responses

Unclear association
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TABLE 3 Genes and genetic variants associated with OPLL predisposition. The protein physiological function is also mentioned. Protein function was
obtained from GeneCards database.

Gene Chr Physiological
function

Study type SNP ID -
significantly
associated

Association
explained?

References

IL-1β 2 Stimulates thymocyte
proliferation by promoting the
IL-2 release, B-cell maturation
and proliferation and fibroblast
growth factor activity

Case-control association study
with 120 OPLL (43 Female)
patients and 306 controls
(140 Female) (unrelated
Japanese)

IL1B AbaI variant (gender
specific—female) (p = 0.001)

Intronic polymorphism Ogata et al.
(2002)

Assessed 5 candidate gene
polymorphisms

Unclear association

AHSG 3 Promotes endocytosis,
possesses opsonic properties
and influences the mineral
phase of bone. AHSG protein
have affinity for barium ions
and calcium

Large Scale Case-control study
in Japanese individuals.
711 OPLL patients and
896 controls

rs2077119 (p = 0.0011) SNP in Promoter region Horikoshi et al.
(2006)

Assessed 35 candidate genes;
109 SNPs

MAF 0.36 Unclear association

ACE 17 Angiotensin converting
enzyme-2 is important in the
renin-angiotensin system

Case control association study
in Korean individuals. 95 OPLL
patients and 274 controls

rs4646994 (genotype DD p <
0.001; D allele p = 0.009)

SNP in intronic region Kim et al. (2014b)

Assessed I/D polymorphism
in ACE

Unclear association

BMP2 20 Induces bone and cartilage
formation; member of TGFβ
superfamily

Case control study with
192 OPLL patients and
304 controls

rs3178250 (p = 0.003 gender
specific—males)

3 prime UTR variant Wang et al.
(2008)

Assessed 2 SNPs in Exon 3 of
BMP2

MAF 0.27 Unclear association

Case control study with
57 OPLL patients and
135 controls

rs2273073 (p <0.001)
susceptibility to OPLL

Missense variant Chen et al. (2008)

Assessed 2 SNPs in exon 2 of
BMP2 gene

rs1049007 (p=<0.001) severity
of OPLL

MAF 0.03 Synonymous variant MAF
0.25 Unclear association

Case control study with
420 OPLL patients and
506 controls

rs2273073 (p < 0.001) Missense mutation (MAF 0.03) Yan et al. (2013)

Assessed all coding sequencing
of BMP2 gene

rs235768 (p = 0.005) Missense—Deleterious (MAF 0.23)
This study provides evidence that the
mutation (rs2273073) is associated
with level of Smad4 protein
expression and activity of ALP.

BMP4 14 BMP4 protein promotes bone
and cartilage formation

Nonparametric linkage study
with 126 affected sib-pairs

Only BMP4 gene reached
criteria of suggestive evidence
of linkage (NPL = 2.23; p =
0.035)

Molecular variants not identified Furushima et al.
(2002)

Used microsatellite markers in
88 candidate genes

Unclear association

Case control association study
in Chinese individuals.
179 OPLL patients and
298 controls

rs17563 (genotype: p = 0.039;
Allele: p = 0.014)

Missense variant Meng et al. (2010)

Assessed 2 polymorphisms in
BMP4 gene

MAF 0.33Unclear Association

Association study in Chinese
individuals. 450 OPLL patients
and 550 matched controls

rs17563 Missense variant Ren et al. (2012a)

rs76335800 MAF 0.33 (benign)

3 prime UTR variant MAF 0.30
(Benign)

Complete genomic BMP4
coding

Unclear association

(Continued on following page)
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TABLE 3 (Continued) Genes and genetic variants associated with OPLL predisposition. The protein physiological function is also mentioned. Protein
function was obtained from GeneCards database.

Gene Chr Physiological
function

Study type SNP ID -
significantly
associated

Association
explained?

References

BMP9 10 BMP9 has been called as a
osteogenic, and chondrogenic
factor and it could be involved
in bone formation

Association study in Chinese
individuals. 450 OPLL patients
and 550 matched controls

rs75024165 (p < 0.001) Missense variant Ren et al. (2012b)

Complete genomic BMP9
coding

rs34379100 (p < 0.001) MAF <0.01 (Benign)

3 prime UTR variant MAF 0.17 (3′
Region) Unclear association

COL11A2 6 COL11A2 proteinmay promote
ectopic bone formation by
enhancing endochondral
ossification. In addition
COL11A2 also play a role in
fibrillogenesis

Genetic linkage, association
and haplotype analysis study in
53 Japanese families containing
91 OPLL affected sib pairs

Promoter (−182) (p = 0.02) Linkage, association and haplotype
analysis suggestive of a genetic locus
for OPLL susceptibility in
chromosome 6p, within or near
COL11A2

Koga et al. (1998)

rs1799907 (p = 0.0004)

rs1799910 (p = 0.02)

rs1799911 (p = 0.03)

Haplotypes

Association study (Haplotype
association) in 161 OPLL
patients and 163 controls

rs1799907 (p = 0.0003) This study provides evidence of the
functional impact of rs1799907 as a
splice site mutation (MAF 0.32)
which confers protection against
ossification

Maeda et al.
(2001a)Haplotype with 4 SNPs, male

association

COL17A1 10 COL17A1 is involved in the
integrity of the
hemidesmosome and the
attachment of basal
keratinocytes to the underlying
basement membrane

WES and association studies in
Chinese individuals.
28 unrelated OPLL patients
and 100 healthy controls

rs805698 (p = 0.00023) Missense variant (MAF 0.18)
Tolerated effect

Wei et al. (2014)

rs4918079 (p = 0.003) Synonymous variant (MAF 0.33)
Unclear association

COL6A1 21 COL6A1 is a cell binding
protein involved in the increase
of bone mass

Genomewide linkage study
followed by fine mapping and
haplotype analysis of
142 affected sib pairs.
280 OPLL patients and
210 controls

intron 32 (−29) (p = 0.000003) Identified COL6A1 as strongly
associated with OPLL but did not find
any functional impact of the
identified polymorphisms

(Tanaka et al.,
2003; Kong et al.,
2007)

rs2236485 (p = 0.0002)
(MAF 0.13)

rs2236486 (p = 0.00005)
(MAF 0.39)

rs2236487 (p = 0.00006)
(MAF 0.37)

Case control association study
with 90 OPLL patients and
155 controls

Promoter (−572) (p =
0.000215)

Promoter variant Kong et al. (2007)

Intron 32 (−29) rs2236486
(p = 0.00483)

Frequent Intronic variant - MAF
0.39 Unclear association

Association study with
100 OPLL patients and
100 controls (Han Chinese).
Assessed 3 SNPs, previous
identified by whole genome
sequencing, in 30 OPLL
patients (Wang et al., 2018b)

rs201153092 (p = 0.000114) Missense, MAF<0.01 Wang et al.
(2018a)rs13051496 (p = 0.01116) Missense, MAF 0.11

ENPP1 6 ENPP1 play a key role in bone
mineralization and soft tissue
calcification by controling
pyrophosphate levels

ttw mouse studies Gly568stop Mouse Model for OPLL with
nonsense mutation originating a
truncated protein with loss of
enzymatic activity

Okawa et al.
(1998)

Association study using
323 OPLL patients and
332 controls

IVS20-11delT (p = 0.0029) Frequent polymorphism Nakamura et al.
(1999)

Assessed all coding sequencing
of ENPP1 gene

Unknow pathological mechanism of
association with disease

Case-control association study
with 180 OPLL patients and
265 controls

IVS15-14T-- > C (p < 0.0001) Highly Significate in Young female
and severe OPLL patients. Unknown

Koshizuka et al.
(2002)

(Continued on following page)
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TABLE 3 (Continued) Genes and genetic variants associated with OPLL predisposition. The protein physiological function is also mentioned. Protein
function was obtained from GeneCards database.

Gene Chr Physiological
function

Study type SNP ID -
significantly
associated

Association
explained?

References

pathological mechanism of
association with disease

Association study with
95 OPLL Chinese patients and
90 controls. Assessed 4 SNPs in
ENPP1

C973T (p < 0.001) Unclear association He et al. (2013)
IVS15-14T-C (p = 0.026)

ESR1 6 ESR1 protein play a role in bone
tissues and is essential for sexual
development and reproductive
function

Case-control association study
with 120 OPLL patients
(43Female) and 306 controls
(140Female)—unrelated
Japanese

ER (XbaI) female gender
specific

Intronic polymorphism Ogata et al.
(2002)

Assessed 5 genes; 5 SNPs (p = 0.007) Unclear association

Large Scale Case-control study
of 711 Japanese OPLL patients
and 896 controls

rs9340799 (p = 0.017), no
correction

Frequent Intronic polymorphism Horikoshi et al.
(2006)

Assessed 35 candidate genes;
109 SNPs

rs2228480 (p = 0.034, no
correction

Unclear association

HLA 6 HLA is closely related in the
presentation of foreign antigens
to the immune system

Family based association study
in 33 families of patients with
OPLL.

Unclear Association Sakou et al.
(1991)

Family based association study
in 24 families of patients with
OPLL.

Unclear Association Matsunaga et al.
(1999)

IL-15RA 10 Increase cell proliferation and
expression of an apoptosis
inhibitor

A case control study in Chinese
individuals. 235 OPLL patients
and 250 controls

rs2228059 Tolerated missense variant MAF 0.45 Guo et al. (2014)

Unclear association

Association study in Korean
individuals. 166 OPLL patients
and 230 controls

rs2228059 Tolerated missense variant MAF 0.45 Kim et al. (2011)

Unclear association

IL-17RC 3 IL-17RC is involved in
regulation of bone metabolism
by accelerating osteoblast
differentiation

Association study in Han
Chinese individuals. 100 OPLL
patients and 100 controls

rs199772854 (p = 0.006515)
rs76999397 (p = 0.003234)
rs189013166 (p = 0.01827)

Missense variant
MAF<0.01 Synonymous variant
MAF 0.03 Synonymous variant
MAF 0.02

Wang et al.
(2018a)

Assessed 3 SNPs, previously
identified by whole genome
sequencing, in 30 OPLL
patients (Wang et al., 2018b)

RUNX2 6 RUNX2 play a role in
osteoblastic differentiation and
skeletal morphogenesis

Case control study (Sequenom
system) in Chinese individuals.
82 OPLL patients and
118 controls

rs1321075 (p = 0.043) Intron Variant Liu et al. (2010)

Assessed 19 SNPs in
4 candidate genes

rs12333172 (p = 0.034) MAF 0.18 Intronic variant MAF
0.13 Unclear association

Association study with
80 OPLL patients and
80 controls

rs1321075 Intron variant, MAF 0.18 Intron
variant, MAF 0.13 Intron variant,
MAF 0.47

Chang et al.
(2017)

Assessed 3 SNPs rs12333172 rs1406846

RXRB 6 RXRB protein is a member of
retinoid receptor family,
involved in regulation of a wide
variety of biological processes

Association study and
haplotype analysis in Japanese
individuals. 134 OPLL patients
and 158 controls

3′UTR (+140) (p = 0.0028) Unclear association Numasawa et al.
(1999)3′UTR (+561) (p = 0.034)

(Continued on following page)
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TABLE 3 (Continued) Genes and genetic variants associated with OPLL predisposition. The protein physiological function is also mentioned. Protein
function was obtained from GeneCards database.

Gene Chr Physiological
function

Study type SNP ID -
significantly
associated

Association
explained?

References

including development,
differentiation, and cellular
metabolism

TGFB1 19 TGFB1 mediates bone
development and metabolism

A case control with 46 OPLL
patients and 273 controls

rs1982073 (p =) Frequent Polymorphism Kamiya et al.
(2001)MAF 0.45

Unclear association

TGFB3 14 Involved in embryogenesis and
cell differentiation

Large Scale Case-control study
in Japanese individuals.
711 OPLL patients and
896 controls

rs2268624 (p = 0.00040/p =
0.044 after Bonferoni
Correction)

Intronic polymorphisms with high
MAFs

Horikoshi et al.
(2006)

Assessed 35 candidate genes;
109 SNPs

rs2284792 (p = 0.037) no
correction

Unclear association

VDR 12 Plays a central role in calcium
homeostasis

Case-control study with
63 OPLL patients and
126 controls

VDR FF genotype Unclear association Kobashi et al.
(2008)

RSPH9 6 Plays a role in membranous
ossification

Genome Wide association
study in Japanese individuals.
1130 OPLL patients and
7135 controls followed by an
association study (for
replication) in 548 OPLL
Japanese patients and
6469 controls

rs927485 (p = 9.4 × 10–9) Trough Gene expression analysis in
and around OPLL associated loci
authors suggest that RSPH9 and
STK38L genes might be linked in
OPLL aetiology through the
membranous ossification process.
Furthermore, HAO1, RSPO2 and
CCDC91 genes might be involved
through the endochondral
ossification process

(Nakajima et al.,
2014; Nakajima
et al., 2016)STK38L 12 Plays a role in the membranous

ossification process
rs11045000 (p = 2.95 × 10–11)

RSPO2 8 Implicated in the endochondral
ossification process

rs374810 (p = 1.88 × 10–13)

rs13279799 (p = 1.28 × 10–10)

CCDC91 12 rs1979679 (p = 4.34 × 10–12)

HAO1 20 Implicated in the endochondral
ossification process

rs2423294 (p = 1.10 × 10–13)

FGFR1 8 Plays an essential role in the
regulation of embryonic
development, cell proliferation,
differentiation and migration

Association study with
157 OPLL patients and
222 controls

rs13317 (p = 0.02) 3 prime UTR variant Jun and Kim,
(2012)

Assessed 9 SNPs in 3 genes MAF 0.23 Unclear Association

BID 22 Has a role in apoptosis signaling Association study with
157 Korean OPLL patients and
209 controls

rs8190315 (p = 0.0052) Tolerated Missense Variant MAF
0.05 Synonymous variant

Chon et al. (2014)

Assessed 2 coding SNPs in BID rs2072392 (p = 0.0052) MAF 0.05 Unclear association

TGFBR2 3 TGFBR2 protein is a regulator
of transcription of several genes
related to cell proliferation

Association study with
21 OPLL patients and
42 controls

rs11466512 (p = 0.007) Splice region variant MAF 0.27 Rare
Benign Missense Variant
MAF <0.01 Unclear Association

Jekarl et al. (2013)

rs56105708 (p = 0.024)

VKORC1 16 Involved in vitamin K
metabolism

Association study with
98 Korean OPLL patients and
200 controls

rs9923231 (p = 0.004)
(female)

Uppstream gene variant MAF 0.36 Chin et al. (2013)

Unclear Association

IFNG 12 IFNG is a protein that activates
the macrophages

Association study with
135 OPLL patients and
222 controls

rs2430561 Intronic Variant MAF 0.28 Tandem
repeat Unclear association

Kim et al. (2012)

rs3138557

BMPR-IA 10 Bone morphogenetic protein
receptor responsible for the
initiation of osteogenic
differentiation

Association study with
356 OPLL patients and
617 controls. (Han Chinese)

rs11528010 (4A < C) (p <
0.001)

Missense variant MAF 0.50 5′UTR
MAF 0.35

Wang et al.
(2018c)

(Continued on following page)
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RUNX2 have also been associated with OPLL (Liu et al., 2010;

Chang et al., 2017).

Another important gene with contradictory results is

TGFβ1, that according to Kamiya et al. (2001), is

genetically associated to OPLL (869T > C; rs1982073).

However, Han et al. (2013) showed that the SNP previously

associated with OPLL (rs1982073) and the SNP located in the

promoter region (rs1800469) are not associated with OPLL in

TABLE 3 (Continued) Genes and genetic variants associated with OPLL predisposition. The protein physiological function is also mentioned. Protein
function was obtained from GeneCards database.

Gene Chr Physiological
function

Study type SNP ID -
significantly
associated

Association
explained?

References

Assessed all exon regions of
BMPR-IA gene

rs34755052 (-349C > T) (p <
0.001)

MiR-199 19 Involved in regulation of
inflammation and
chondrogenic differentiation

Association study in Korean
individuals. 207 OPLL patients
and 200 controls

rs3746444 (p = 0.039) Non-coding transcript exon variant Lim et al. (2016)

Assessed 4 genes/SNPs MAF 0.18

Abbreviations: IL-1β: Interleukin 1 Beta, AHSG: Alpha 2-Heremans-Schmid glycoprotein, ACE: Angiotensin I Converting Enzyme, BMP2: Bone Morphogenetic Protein 2, BMP4: Bone

Morphogenetic Protein 4, BMP9: Bone Morphogenetic Protein 9, COL11A2: Collagen Type XI, Alpha 2, COL17A1: Collagen Type XVII, Alpha 1, COL6A1: Collagen Type VI, Alpha 1,

ENPP1: Ectonucleotide pyrophosphatase/phosphodiesterase 1, ESR1: Estrogen Receptor 1,HLA: Human Leukocyte antigen, IL-15RA: Interleukin 15 Receptor Alpha, IL-17RC: Interleukin-

17, receptor C, RUNX2: Run-Related Transcription Factor 2, RXRB: Retinoid X Receptor Beta, TGFβ1: Transforming Growth factor Beta 1, TGFβ3: Transforming Growth factor Beta 3,

VDR: Vitamin D Receptor, RSPH9: radial spoke head 9 homolog, STK38L: serine/threonine kinase 38 like, RSPO2: R-spontin 2, CCDC91: Coiled-coil domain containing 91, HOA1:

Hydroxyacid oxidase 1, FGFR1: Fibroblast Growth Factor Receptor 1, BID: BH3 Interacting Domain Death Agonist, TGFBR2: Transforming Growth Factor Beta Receptor II, VKORC1:

Vitamin K epoxide reductase complex subunit 1, IFNG: Interferon Gamma, BMPR-IA: Bone morphogenetic protein receptor type IA. NA: Not applicable. * This polymorphisms was found

in all OPLL, patients and according to the authors is a novel nucleotide variation.

FIGURE 1
Disorders associated with a higher prevalence of OSL. GH: growth hormone, PTH: parathormone, IGF-A: insulin growth factor 1, HGA:
homogentisic acid.
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Korean populations. Interestingly, in the chondrocytes of

adjacent cartilaginous areas and in the ossified matrix of

OPLL the TGF-β1 gene is overexpressed. The same authors

tested the association between rs1982073 and the radiological

appearance of OPLL, and they verified that SNP rs1982073 is

associated to the specific area of the ossified lesion, and not to

the onset of OPLL. The “C” allele could be a risk factor for

patients with OPLL in cervical, thoracic, and/or lumbar spine

(Kawaguchi et al., 2003).

In relation to ossification of the ligamentum flavum several

genes and loci have been associated with thoracic Ossification of

Ligamentum Flavum (OLF) (Kong et al., 2007; Liu et al., 2010;

Qu et al., 2017; Qu et al., 2021).

5 Associated disorders

The presence of OSL has been described in association with

numerous diseases of diverse etiologies. The type of disorders, the

main pathways affected and the consequences, including the main

anomalies identified in laboratory analysis, are outlined in Figure 1.

The OSL associated disorders can be of endocrine, nutritional

or metabolic nature. The main endocrine associated

disorders—diabetes mellitus, acromegaly and

hypoparathyroidism—are characterized by disturbances in the

metabolism of glucose, growth hormone (GH), and parathyroid

hormone (PTH), leading to hypocalcemia, hyperphosphatemia,

hyperglycemia and hyperinsulinemia. These endocrine

anomalies are often linked to obesity, which can also have a

strong genetic basis. The excessive intake of fluoride and vitamin

A leads to OSL resembling DISH. Disturbances in mineral

metabolism namely phosphorus phosphatase and calcium can

also originate disorders that have been reported in association

with OSL: familial hypocalciuric hypercalcemia,

hypophosphatemic rickets and hypophosphatasia.

5.1 Monogenic disorders

Table 4 lists a subset of DISH and OPLL cases originated by

monogenic disorders. With the exception of alkaptonuria,

characterized by the levels of Homogentisic acid, all of the

other disorders are directly involved in calcium and phosphate

homeostasis. As expected, genes related in hypophosphatemic

rickets and hypophosphatasia are directly involved in phosphate

homeostasis. However, the reports of OSL are not related to all

TABLE 4 Monogenic disorders previously associated with OSL. Lack of inheritance means that it is still unconfirmed.

Disorder Inheritance OMIM Gene/Locus involved

Hypophosphatemic rickets/osteomalacia AD 193100 FGF23

AR 241520 DMP1

AR 613312 ENPP1

AR 241530 SLC34A3

XLD 307800 PHEX

XLR 300554 CLCN5

Hypophosphatasia AR 241500 ALPL

AR 241510

AR, AD 146300

Pseudohypoparathyroidism AD 103580 GNAS1

Hypoparathyroidism AD 146200 GCM2

AD/AR 146200 PTH

Alkaptonuria AR 203500 HGD

Acromegaly Somatic/AD 102200 AIP

102200 GNAS1

X linked 300943 GPR101

AD 610755 CDKN1B

AD 131100 MEN1

Somatic 174800 GNAS

AD 160980 PRKAR1A

Familial Hypocalciuric Hypercalcemia AD 145980 CASR

AD 145981 GNA11

AD 600740 AP2S1

AbbreviationsAD -Autosomal Dominant, AR- Autosomal Recessive, XLD, and XLR - X-linked Dominant and Recessive.
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types of hypophosphatasia disorders. Saito et al. (2011), reported

a case of OPLL with hypophosphatemic rickets/osteomalacia

caused by a splice donor site mutation in the ENPP1 gene.

Cases of hypoparathyroidism associated with changes similar

to DISH are also reported in the literature (Lambert and Becker,

1989; Unverdi et al., 2009; John and Suthar, 2016). The genes

GNAS, GCM2 and PTH, closely related to hypoparathryroidism,

play a role in both calcium and phosphorus metabolism.

According to what we know, there is only one case described

of a patient with DISH and familial hypocalciuric hypercalcemia

(FHH). The patient, a 45-year-old diabetic woman, have

hypercalcemia secondary to FHH and developed dysphagia

because of external esophageal compression from DISH.

According to the authors, the relationship between FHH and

DISH remains unproven (Rivas and Lado-Abeal, 2013).

Acromegaly is a rare condition of high elevated somatic

growth and distorted proportions arising from hypersecretion

of growth hormone (GH) and insulin-like growth factor 1 (IGF-

1) due to adenomas and pathogenic pituitary secretion (Ben-

Shlomo and Melmed, 2008). According to Altomonte et al.

(1992), GH levels may act as bone promoting factors in DISH.

5.2 “Risk-factor” complex disorders

The etiology of “risk-factor” OSL disorders is complex, and

determined by the interaction of inherited and environmental

factors, such as age, smoking, alcohol consumption, diet and

physical inactivity. These factors, as already know, effect type

2 diabetes mellitus (T2D) and obesity, two of the known risk

factor for developing DISH. Even though heterogeneous, there

are some monogenic forms of these OSL disorders; see Table 5

for more details. Diabetes mellitus is considered to be a

heterogeneous group of disorders having as a main

characteristic persistent hyperglycemia (Pillai and Littlejohn,

2014). Obesity is considered a complex and a multifactorial

disease, however there are monogenic cases reported that are

related to mutations in genes of the leptin/melanocortin system

involved in food intake regulation (Huvenne et al., 2016). It is

interesting to see that genetic variants in LEPR gene, as occurs in

the ZFR murine model, can cause obesity, hypercholesterolemia,

hyperinsulinemia, hyperlipidemia and also ossification of spinal

ligaments, similar to human OPLL (Okano et al., 1997).

Furthermore, there are studies reporting increased levels of

serum leptin in female patients with OPLL (Ikeda et al., 2011)

(Feng et al., 2018) as well as in DISH patients (Tenti et al., 2017).

The osteogenic effects of leptin/leptin receptor (LepR) in

conjunction with mechanical stress, on the ossification of the

posterior ligament, through its interaction with osteogenic

markers such as osteopontin, osteocalcin and RUNX2, were

also recently shown (Chen et al., 2018). It is also pertinent to

mention that ENPP1 is a predisposition gene for both obesity and

type 2 diabetes. The importance of leptin/LEPR in disorders such

as DISH, with an important metabolic association, remain to be

revealed.

5.3 Other rheumatic disorders coexisting
with Ossification of Spinal Ligaments

The co-existence of DISHwith other rheumatic disorders was

first reported in 1950 by Forestier and Rotes Querol (Forrestier,

1950). Subsequent studies indicate, in some cases that up to 50%of

DISHpatients also haveOPLLproposing that they share common

etiopathogenic factors. SimultaneousOPLL andOLF are also very

common in the literature (Li et al., 2012; Onishi et al., 2016). In

addition, the co-existence of the three OSL disorders—DISH;

OPLL and OLF has also been described in the literature (Guo

et al., 2011). The association ofDISHwith psoriatic arthritis in the

literature (Ben-ShlomoandMelmed, 2008) is commonbut studies

TABLE 5 Complex disorders previously associated with OSL. AD stands for Autosomal Dominant, AR for Autosomal Recessive. Lack of inheritance
means that it is not confirmed.

Disorder Type Inheritance OMIM Gene/Locus involved

Non-insulin-dependent Type 2 Diabetes
mellitus

Monogenic - MODY AD 606391 Genetically Heterogeneous—associated with mutations in 13 genes

Polygenic 125853 Many susceptibility locus identified, including in ENPP1

Abdominal Obesity - Metabolic Syndrome Monogenic AR 615812 DYRK1B

200100 MTP

Polygenic 605552 AOMS1

AOMS2

Obesity Monogenic AR 614962 LEP

AR 614963 LEPR

AR 600955 PCSK1

AR 609734 POMC

Polygenic 601665 Genetically heterogeneous but including ENPP1 as susceptibility
gene
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concluded that is a side effect of retinoids treatment (Bologna et al.,

1991). Other rheumatic diseases co-existing with DISH include:

hyperostosis frontalis interna (Arlet et al., 1978; Mazières et al.,

1978; Ciocci et al., 1985; Fukunishi et al., 1987; Fukunishi and

Hosokawa, 1988), CPPDand/orCC (Resnick et al., 1978a; Bruges-

Armas et al., 2006), gout (Resnick et al., 1978a; Littlejohn andHall,

1982; Constantz, 1983; Fornaciari et al., 2009), rheumatoid

arthritis (Resnick et al., 1978a; Resnick et al., 1978b; Forster

et al., 1981; Mata et al., 1995), osteoarthritis (Resnick et al.,

1978a), Heberden and Bouchard nodes (Schlapbach et al., 1992)

and Paget’s disease (Mazières et al., 1978; Morales et al., 1993).

DISH and Ankylosing Spondylitis (AS) generally have a

distinct radiographic appearance but sometimes, possibly in

the early disease stages, they are difficult to distinguish

radiologically (Williamson and Reginato, 1984; Olivieri et al.,

1987; Olivieri et al., 1989; Rillo et al., 1989; Troise Rioda and

Ferraccioli, 1990; Olivieri, 1991; Passiu et al., 1991; Maertens

et al., 1992; Tishler and Yaron, 1992; Jattiot et al., 1995; Moreno

et al., 1996; Kozanoglu et al., 2002; Jordana et al., 2009; Wooten,

2009; Macia-Villa et al., 2016; Kuperus et al., 2018). OPLL has

also been observed in patients with AS but this coexistence is

probably coincidental (Kim et al., 2007). Chondrocalcinosis, is

characterized by the deposition of calcium containing crystals in

synovial membranes, articular cartilage and, sometimes it can

also affect periarticular soft tissues. Curiously, in some patients,

the deposition of calcium crystals—hydroxyapatite or

CPPD—can also occur in the spinal ligaments (Resnick and

Pineda, 1984; Muthukumar et al., 2000) but this is usually

difficult to differentiate from ossification (Ehara et al., 1998).

ANKH is the only monogenic cause identified for CC (Table 6); a

recent study described a gain-of-function mutation in the gene

TNFRSF11B, which resulted in early-onset osteoarthritis and CC

(Ramos et al., 2015). A recently described hereditary autosomal

recessive ectopic mineralization syndrome in patients with

arterial Calcification due to deficiency of CD73 (ACDC), was

the result of a loss of functionmutations in the 5′-nucleoside Ecto
(NT5E) gene. These patients had erosive peripheral arthropathy

and axial enthesopathic calcifications, resembling DISH although

with decreased disc space height and the presence of large

intervertebral disk calcifications (Cudrici et al., 2021). The

similarities to both DISH and AS of the outcome of spine

imaging of ACDC patients are noteworthy.

6 Discussion

6.1 Familial aggregation reports

The existence of a small number of family reports, with early-

onset and exuberant phenotypes, in which the genetic cause was not

identified andmost of the times was not even investigated, raises the

possibility that there are some cases of monogenic DISH and OPLL.

There are possibly three main types of OSL: A sporadic form, a type

that is secondary to associated metabolic disorders and a hereditary

type. It is now clear that most OSL cases do not follow a simple,

single gene Mendelian inheritance pattern, but instead are

multifactorial disorders developing in individuals with a genetic

predisposition from a variety of genetic variants in different genes.

6.2 Animal models

The existence of spontaneous and manipulated animal models

for bothDISH andOPLL could facilitate the identification of causal

humangenetic factors. It seemsprobable that thehumanphenotype

ofOPLLandDISHare likely tobe causedbymutations ingenes that

underlie the animal models for these disorders. As far as we know,

there are no reports of SLC29A1 (ENT1 mice model for DISH)

humangenemutations in associationwithDISH.Theassociationof

ENPP1withOPLL susceptibility (31, 47–49) is still unsubstantiated

(50). Interestingly, in one study the authors found that the

combination of variants in ENPP1 and LEPR genes was

associated with the location and extension of OPLL (51). An

interesting report about hypophosphatemic rickets in an OPLL

patient due to a homozygous mutation in the ENPP1 gene (53),

substantiates the likely importanceof this gene in the etiopathogenic

mechanism of OSL.

The case of the ankmouse has been quite different. In humans,

analysis in the ANKH gene has identified several mutations that

segregate with CC phenotype but only in a very limited subset of

TABLE 6 Rheumatic disorders previously seen coexisting with OSL. AD stands for Autosomal Dominant, AR for Autosomal Recessive. Lack of
inheritance means that it is not confirmed.

Disorder Inheritance OMIM Gene/Locus involved Mechanism

ACDC AR 211800 NT5E Pyrophosphate metabolism

Ankylosing Spondylitis Multifactorial 106300 HLA-B MHC Peptide presentation

AD 183840 SPDA2 locus

613238 SPDA3 locus

Chondrocalcinosis AD 118600 ANKH Pyrophosphate metabolism

AD 600668 CCAL1 locus

AR 602643 TNFRSB1
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pedigrees. The co-coexistence of spinal ossification with CC is well

supported in the literature (10, 12, 13), indicating a strong genetic

link between these disorders. The genetic confirmation between

spinal ossification and CC comes from two animal models—twy

and ankh mice—the mouse models for OPLL and CC, develop

spinal ossification and hydroxyapatite arthropathy. Both genes,

ENPP1 andANKH, regulate PPi levels thus having an essential role

in bonemineralization and soft tissue calcification. The association

of ENPP1 variants with Chondrocalcinosis, is considered a minor

determinant of the disease (58, 59).

6.3 Genetic variants association

Three different genetic variants inCOL6A1 have been associated

with both DISH and OPLL. Results from these studies are

inconsistent due to the type of variant associated, the lack of

explanation of the pathogenic mechanism and the low numbers

of individuals studied. Further progress in investigation of DISH

requires a concerted approach, similar to the ones used to target the

genetic basis of OPLL. In the latter case linkage studies, candidate

gene association studies and even genome wide association

studies were performed and revealed that OPLL is genetically

heterogenous. Despite all the studies, and the large number of

genes that have been associated with OSL, most of the

associations are still inconsistent because genetic variants

were localized in non-coding regions. Several genes involved

many potential low risk effects in OSL inheritance, so there is

insufficient power and analysis for their detection.

6.4 Genetics of associated disorders

The higher prevalence of OSL in patients with endocrine,

nutritional and metabolic disorders made us wonder if the known

genetic cause for these associated disorders could help to clarify the

putative genetic pathways involved in the etiology of OSL. The

ectopic calcification occurring is most probably predisposed by the

balance between the expression of specific genes that act directly or

indirectly on the phosphorus to calcium ratio. The crucial role of

angiogenesis in DISH etiology has also been suggested, as it might

be the common pathogenic background of some conditions

included in metabolic syndrome. Nonetheless, there are several

case reports of patients with monogenic metabolic disorders with

the occurrence of DISH and OPLL.

7 Conclusion

A validated set of classification criteria for diseases characterized

by ectopicmineralizationof spinal tissues is of utmost importance for

genetic studies sohomogeneousphenotype groups canbe established

for investigation. This is particularly important in DISH because this

disease is characterized by the ossification of the anterior spinal

ligaments and generalized symmetrical enthesopathic calcifications,

whichmaywell be among thefirstmanifestationsof thediseaseor the

mainevidenceof thedisease ina subsetof patients.At this time,DISH

disease is requiring a validated set of criteria to robustly describe and

establish homogeneous cohorts of patients. A more comprehensive

designation of DISH, including patients with early phase disease, are

clearly indispensable for genetic studies (Mader et al., 2013). On the

other hand, great advances have been made in understanding the

presentation of different types of OPLL.

Taken together the collected evidence suggests OSL has a

heterogeneous genetic basis. The rapid advance in methods for

genetic studies has brought new and interesting insights into

ectopic calcification, and is providing confirmation about the

importance of genes for the regulation of Pi/PPi levels, which

control mineralization. Future genome-scale approaches will

contribute to pinpoint susceptibility genes. However, to provide

sufficient analytical power, the number of patients needs to be

enlarged and the clinical/radiological disease classification,

especially in DISH patients, needs substantial improvement.

International collaborations are essential to increase sample size

and overcome analytical challenges caused by the genetic

heterogeneity of these complex diseases of calcification.
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