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Background: Pulmonary Sclerosing Pneumocytoma (PSP) is a rare tumor of the

lung with a low malignant potential that primarily affects females. Initial studies

of PSP focused primarily on analyzing features uncovered using conventional

X-ray or CT imaging. In recent years, because of the widespread use of next-

generation sequencing (NGS), the study of PSP at the molecular-level has

emerged.

Methods: Analytical approaches involving genomics, radiomics, and pathomics

were performed. Genomics studies involved both DNA and RNA analyses. DNA

analyses included the patient’s tumor and germline tissues and involved

targeted panel sequencing and copy number analyses. RNA analyses

included tumor and adjacent normal tissues and involved studies covering

expressed mutations, differential gene expression, gene fusions and molecular

pathways. Radiomics approaches were utilized on clinical imaging studies and

pathomics techniques were applied to tumor whole slide images.

Results: A comprehensive molecular profiling endeavor involving over

50 genomic analyses corresponding to 16 sequencing datasets of this rare

neoplasm of the lung were generated along with detailed radiomic and

pathomic analyses to reveal insights into the etiology and molecular

behavior of the patient’s tumor. Driving mutations (AKT1) and compromised

tumor suppression pathways (TP53) were revealed. To ensure the accuracy and

reproducibility of this study, a software infrastructure and methodology known

as NPARS, which encapsulates NGS and associated data, open-source software

libraries and tools including versions, and reporting features for large and

complex genomic studies was used.

Conclusion: Moving beyond descriptive analyses towards more functional

understandings of tumor etiology, behavior, and improved therapeutic

predictability requires a spectrum of quantitative molecular medicine
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approaches and integrations. To-date this is themost comprehensive study of a

patient with PSP, which is a rare tumor of the lung. Detailed radiomic, pathomic

and genomic molecular profiling approaches were performed to reveal insights

regarding the etiology and molecular behavior. In the event of recurrence, a

rational therapy plan is proposed based on the uncovered molecular findings.

KEYWORDS

pulmonary sclerosing pneumocytoma, molecular profiling, TP53 signaling pathway,
genomics, radiomics, pathomics, case report

1 Introduction

Pulmonary Sclerosing Pneumocytoma (PSP) is a relatively

uncommon benign tumor of the lung with potential for

malignant transformation that is manifested most commonly

by metastasis to regional lymph nodes (Zheng et al., 2022). PSP

was first reported by Liebow in 1956 (Liebow and Hubbell, 1956),

and shows a striking female predominance (female to male ratio

5:1) (Kalhor et al., 2010). Histologically, PSP is primarily

composed of 2 cell types (cuboidal epithelial and polygonal

stromal cells) and four histological types (hemorrhagic,

sclerotic, solid and papillary) (Gao et al., 2020).

Due to the lack of noteworthy clinical or imaging findings,

PSP is hard to recognize, and most cases are diagnosed by

histopathological analysis (Song et al., 2021). The neoplasm

may be confused with other benign nodules like hamartoma,

tuberculoma, bronchial cysts, or certain lung cancers (Cheung

et al., 2003). Often, patients are asymptomatic and PSP is

detected incidentally. Non-specific associated symptoms may

include: cough, chest pain, chest tightness and hemoptysis

(Cardemil et al., 2004).

Initial studies of PSP focused primarily on analyzing features

discovered using conventional X-ray or CT imaging. PSP has

been described as a distinct, juxta-pleural nodule with strong and

homogeneous enhancement on CT (Im et al., 1994; Xie et al.,

2003). Nevertheless, using the above-mentioned techniques,

there are no specific or classic imaging findings associated

with PSP (Wang et al., 2011).

In recent years, because of the widespread use of next-

generation sequencing (NGS), the study of PSP at the

molecular-level has emerged. PSP lacks the classic driver gene

mutational signatures of lung adenocarcinoma, e.g., EGFR,

KRAS; ALK, or ROS1 fusions (Sartori et al., 2007; Pal and

Chetty, 2020). A study utilizing whole-exome sequencing to

explore genomic modifications in PSP has been performed

(Jung et al., 2016). That study confirmed a high frequency of

AKT1 point mutations (overall 31 of 68 patients, 46%) including

p.E17K. It has been postulated that AKT1 mutations are the

genetic hallmark of PSP (Yeh et al., 2020). Another study

revealed that irregular activation of the mTOR pathway is a

consistent genetic event in PSP (Boland et al., 2021). The PI3K/

AKT/mTOR pathway is one of the most frequently activated

oncogenic pathways (Porta et al., 2014), and activated AKT

phosphorylates mTOR, which activates mTORC1.

This is the first study to use an advanced quantitative

molecular medicine approach to provide a more thorough

description of PSP. Using a combination of genomics,

radiomics (Lambin et al., 2017) and pathomics (Gupta et al.,

2019) a comprehensive description of the patient’s presentation

as well as the molecular determinants of this rare tumor are

provided along with a precision medicine therapy plan in case of

recurrence.

2 Case presentation

The patient is a pre-menopausal female who was admitted

to the hospital because of progressive and severe left sided

flank pain over a 1-week duration. The patient was a former

smoker (cigarettes, one pack/day) for 7 years, who quit 2 years

ago. She currently uses vaping products on a regular basis. The

initial clinical suspicion included a possible kidney stone;

however, imaging studies were negative for stones, but did

reveal a 3 cm mass in the left lower lung. Following a referral

to medical oncology a lobectomy of the left lower lung for

curative intent was performed by thoracic surgery.

Histopathologic features were consistent with pulmonary

pneumocytoma cell types, the tumor measured 3.2 cm in

greatest dimension, surgical margins were clean, and two

hilar/peribronchial lymphnodes were negative for

malignancy (stage Ib, p.T2a.N0.M0, NCCN v.3.2022). Also

identified were abundant hemosiderin-laden macrophages,

compatible with vaping related lung injuries.

3 Methods

3.1 Ethical compliance

This study is part of a clinical trial (NCT02597738) approved

by the Institutional Review Board of the University of Arkansas

for Medical Sciences (UAMS). As part of this trial, written

informed consent was obtained from the patient for research

use of clinical specimens and associated data.
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3.2 Genomics sample preparation

The QIAGENQIAseqHuman Lung Cancer Panel (DHS-005Z)

library prep kit (QIAGEN, 2022) was used for targeted DNA-based

assays involving tumor and normal (T/N). Supplementary File 1 in

BED format contains the exact regions of interest for the amplicon-

based assay. An Illumina HiSeq 3000 was utilized for all NGS

studies. The lung cancer panel, which utilizes uniform molecular

identifiers (UMIs) was run with a coverage of 3,000x for the tumor

and 600x for the germline. Whole genome sequencing (WGS)

libraries were constructed using the New England BioLabs (NEB)

NEBNext Ultra II DNA library prep kit (NEB, 2022), and sequenced

in an ultra-low-pass fashion for copy number analysis (CNA) at

~0.3x coverage for T/N. For RNA-based experiments, the Illumina

TruSeq Stranded Total RNA library prep kit (Illumina, 2022) was

used. Six biological replicates were utilized for the tumor and six for

the normal adjacent lung tissue. Sequencing was targeted at 200M

reads for these 12 samples. In summary, six biological replicates of

the tumor and adjacent normal lung (12 RNA NGS libraries) were

built and sequenced, and four DNA libraries were built and

sequenced.

3.3 Genomics molecular profiling

Genomics datasets were processed as previously reported by the

NGS Post-pipeline Accuracy and Reproducibility System (NPARS), a

reproducible software infrastructure developed by our group (Ma et al.,

2021). Three separate pathway analysis tools were utilized and all run

using default parameters. For canonical signaling pathway analysis,

two traditional pathway analysis tools were used, pathfindR v1.6.3

(Ulgen et al., 2019) and Gene Set Enrichment Analysis (GSEA) v4.2.3

(Aravind et al., 2005). Additionally, an unsupervised pathway analysis

tool namedWeighted CorrelationNetworkAnalysis (WGCNA) v1.71

(Langfelder and Horvath, 2008) was used and then limma (v3.52.1)

based methods were employed to further elucidate outputs generated

by WGCNA. A normalized RNA-seq gene counts matrix, which was

generated by NPARS via DESeq2 v1.36.0 (Love et al., 2014), was used

as input for signaling pathway analyses.

3.4 Radiomics

DICOM imaging studies from the initial medical workup

were obtained from the UAMS PACS and converted to NIfTI

format. Segmentations and visualizations were produced using

3D Slicer v4.13 (Fedorov et al., 2012). Tumor segmentations

(performed via thresholding techniques) were produced from CT

studies. The border region was segmented by adding a margin of

10 mm to the tumor. Radiomic features were extracted from

original images using Pyradiomics (van Griethuysen et al., 2017),

both in aggregate for segmentations and as feature maps. A bin

width of 25 voxels was used, and feature maps used a kernel

radius of 1 voxel and calculated in 2D space. The entropy

radiomics feature used is defined by the Image Biomarker

Standardization Initiative as intensity histogram entropy

(Zwanenburg et al., 2020).

3.5 Pathomics

Whole slide images were acquired using an Aperio CS2 whole

slide imaging scanner (Leica Biosystems) at ×40 magnification.

Image analysis was performed using the open-source program

QuPath (v0.3.2) that included a suite of tools (Bankhead et al.,

2017). Representative areas of the slide were annotated by a

pathologist, indicating areas of tumor, hemosiderin-laden

macrophages, and background lung parenchyma. From these

areas, cell nuclei were segmented using StarDist with the he_

heavy_augment model as described in the QuPath

documentation (Schmidt et al., 2018). Cell expansion was

enabled to approximate overall cell size. Cell classification was

accomplished using the built-in object classifier to train a

random trees classifier using the default feature extractor.

Features included measurements of area, shape and, color of

nuclei, cytoplasm, and overall cell.

4 Results

Figure 1 shows the salient medical imaging for the patient and

results from radiomics analyses. Sub-image (A), shows a pre-operative

chest CT imagewith contrast, zoomed to show amore optimal view of

the tumor in the left lower lung. Segmentations of the tumor and a

1.0 cm circumferential border were performed. At presentation, the

tumor had a maximum diameter of 3.2 cm, minimum diameter of

2.8 cm and a volume of 19.6 cm3. The median radiodensity of the

tumor was 41 HU, approximately midway between the median

densities of the kidneys (24 HU) and the liver (58 HU). As

reference, themedian density of normal lung (alveolar space) is ~ -650.

As part of cancer staging a PET/CT study (B) was performed.

Raw PET values were converted to standardized uptake values

(SUV). The mean SUV in the tumor was 1.3 with a maximum

SUV of 2.2. A reference volume of approximately 3 cm was

measured in the liver (standard comparison), which had a mean

SUV of 1.2 and maximum SUV of 1.5, implying that the tumor

had relatively low metabolic activity.

From the CT study, radiomic features were extracted (C) and

compared between the tumor and surrounding border region

representing the tumor microenvironment. Radiomic features

are most informative when comparing many similar tumors, but

salient information can be inferred from a single case. We

extracted the entropy of the segmentations (C), which is a

measure of the amount of information required to encode the

voxels of the image. Entropy measures the randomness of the

voxel values, where low values represent more homogenous
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regions and higher values represent more heterogenous regions.

The median entropy of the tumor and border regions were

0.92 and 1.89 respectively, illustrating that the

microenvironment (border region) was more complex

(heterogeneous). This result was highly statistically significant

using a two-sidedWilcoxon test (p < 2.2 x 10−16). Finally, volume

rendering showing the size and position of the tumor (D) was

produced using segmentations of the lungs and tumor from the

PET/CT study.

Figure 2 displays the results of pathomics analyses. As

background, nuclear segmentation using StarDist performed well

overall, with the primary deficiencies being occasional segmentation

of large cytoplasmic blebs without a visible nucleus, over-estimation

of nuclear size in foamy macrophages, and difficulty distinguishing

nuclei from hemosiderin in some hemosiderin-laden macrophages.

In Supplementary Figure 1, examples of measurement maps

corresponding to cell circularity are shown overlaid onto

intermediate magnification photomicrographs of background

lung and the tumor. In Figure 2, the pathologist’s annotations

(A) are shown in a low-power (4x) photomicrograph for areas

containing tumor (red) and hemosiderin laden macrophages (blue).

Density maps for cells classified as tumor (B), and as hemosiderin-

laden macrophages (C) for a region of tissue which was not used for

classifier training are displayed separately and then jointly (D).

Figure 3 displays a graphic produced by RCircos v1.2.2 (Zhang

et al., 2013), which summarizes and integrates the findings of seven

genomics methods into a single graphical image. The layout of the

RCircos diagram is as follows, from the outmost circle inward this

plot contains: i. human chromosomal ideogram, ii. lung cancer

targeted 72 gene panel for T/N, iii. RNA expressed mutations from

the full transcriptome (represented as a “dot” due to spacing), iv.

WGSDNAT/NCNAwith the red color representing amplification,

black for normal, and deletion as blue, v. Tumor RNA gene

expression and, vi. Tumor RNA gene fusions. In our study,

52 total genomic analyses were generated and analyzed,

specifically: DNA targeted panel T/N, DNA ultra-low-pass WGS

T/N for CNA, RNA studies involving six biological replicates from

the tumor and the normal adjacent lung (12 samples) subjected to:

1) RNA expressed mutation analysis, ii) statistical inferencing with

DESEq2 (Love et al., 2014), and iii) Fusion analysis via STAR-Fusion

(Haas et al., 2019). Supplementary Figure 2 illustrates the tissue

specimens and genomic analyses (total of 52) generated.

FIGURE 1
Radiomics analysis of the PSP tumor. (A) Pre-operative chest CT scan with contrast utilizing lung window settings. The image is an axial
projection that has been zoomed to show an optimal view of the tumor that resides in the left lower lung along with a small region of the
mediastinum. Tumor segmentation is outlined in red, with the 1 cm border surrounding the tumor proper, outlined in green. The x-axis contains a
size scale (cm) and y-axis Hounsfield Units (HU) scale (−1200–200) with shading. (B)Combined PET/CT of the tumor (zoomed) at diagnosis. The
tumor had a SUVmax of 2.2 and SUVmean of 1.3, the x-axis contains a size scale (cm) and y-axis contains the SUV scale (0–4.5) with color coding. (C)
Feature map showing the entropy of the tumor and 1 cm surrounding region, generated from a sagittal slice of the CT at presentation. The tumor is
significantly more homogenous than the surrounding region. The x-axis contains a size scale (mm) and y-axis contains an entropy scale (0–3.5) with
shading. (D) Volume rendering showing the size and position of the tumor at diagnosis. Produced using segmentations of the lungs and tumor from
the PET/CT series.
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Examining Figure 3, three somatic non-synonymous DNA

mutations were found by the targeted DNA panel: AKT1 p.E17K,

NF1 p.H1826Y, APC p.V1822D, with sequencing depths of 6,243

(allelic frequency: 36.75%), 5,809 (6.72%), 9,735 (61.6%)

respectively (see Supplementary Table 1 for targeted DNA

panel details). The AKT1 mutation is a driver for PSP tumors

(Yeh et al., 2020), the findings for NF1 and APC are not drivers.

The germline TP53 mutation p.P72R was detected with a depth

of 1573 and an allelic frequency of 50%, but this is not indicated

to be of significance per ClinVar (TP53). Finally, a TP53 p.K382fs

frameshift mutation was found at the low allelic frequency of

0.6% and a depth of 5158; however, the mutation did not pass

filter by smCounter2 (Xu et al., 2019) (homopolymer).

Due to RNA-seq experiments covering the entire

transcriptome and the use of six biological replicates, a total

of 1,119,654 RNA expressed mutations were found to pass filter

by HaplotypeCaller (DePristo et al., 2011; Van der Auwera et al.,

2013). Using the recommended depth filter of 10 from Guo et al.

and limiting mutations to those having a predicted impact of

moderate or high, the RNA expressed mutation analysis was

further filtered (Guo et al., 2017). After filtering, 8,139 mutations

remained for further analysis. Among these mutations, 2,938 of

them are found in all six tumor samples (see Supplementary

Table 2), and 1,854 mutations are private to specific samples (see

Supplementary Table 3). Based on the RNA-seq VCF files of the

six tumor samples and the six normal samples, a phylogentic

analysis was performed using PHYLIP v3.697 (PHYLIP) (see

Supplementary Figure 3). The PHYLIP dendrogram shows a

clear separation of tumor vs. normal and with the tumor arising

from the normal. The driving mutation found in the DNA study,

AKT1 p.E17K was expressed in five of six RNA biological

replicates with a depth range of 101–471, and VAF range of

28%–49% (see Supplementary Table 4).

Ultra-low pass WGS experiments revealed copy number

variations concentrated in chromosomes 5, 10, 14, 17, 19 and

21 (all amplifications). All the three DNA mutated genes, AKT1,

NF1, and APC, were amplified (see Supplementary Table 5;

Supplementary Figure 4). A differential gene expression

(DGE) analysis was performed by DESeq2 (Love et al., 2014)

on the RNA-seq data via NPARS. DGE analysis revealed

FIGURE 2
Pathomics analysis of the PSP tumor. (A) Low-power (4×) photomicrograph showing areas containing tumor (outlined red) and hemosiderin-
laden macrophages (outlined blue) as annotated by the pathologist. (B) Tumor with red color density maps showing the number of cells per mm2 as
identified by the classifier, and shown as percentages (0–100), where the 100% scale value corresponds to 1660 cells permm2, alongwith intense red
coloring. (C) Tumor tissue with blue color density maps showing hemosiderin-ladenmacrophages where themost intense blue color and scale
value of 100% corresponds to 349 cells per mm2 (as identified by the classifier). (D)Overlaid density maps for both cell types (same classifier results
and color intensity scales as in (B,C).
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11,646 genes to be significantly differentially expressed (adjusted

p-value < 0.1) between the tumor and matched normal adjacent

lung replicates (see Supplementary Table 6). A significant finding

was the overexpression of MDM2 in the tumor (log2 fold change:

1.33; q-value: 2.93E-11), a key regulator in the TP53 pathway.

RNA-seq gene fusion analysis showed a number of fusion

events across the genome (see Supplementary Table 7), with

TIMM23-PARGP1 found in all six tumor replicates. However,

the TIMM23-to-PARGP1 fusion does not drive PSP, in the

literature to-date. The total distinct fusions found across all

six tumor replicates and passed by STAR-Fusion was 36.

Using RNA-seq data (tumor and normal adjacent lung

biological replicates), both conventional signaling pathway

analysis tools, pathfindR and GSEA, found a large number of

abnormal candidate pathways. The pathways found to be

statistically significant by pathfindR are listed in

Supplementary Table 8. The GSEA’s most significant

pathways are listed in Supplementary Table 9. WGCNA

initially clusters genes into significant modules (in this study,

there are total of 100 modules). Then using the R package limma

v3.52.1, the most significantly differentiated modules were

extracted (Ritchie et al., 2015). Next, the most differentiated

module (module number 1, containing 5,108 genes), was sent to

pathfindR for further analysis. The most significant pathways for

genes within module number 1 were identified (see

Supplementary Table 10). Comparing the output from these

pathway analysis tools, we found that the TP53 signaling

pathway to be statistically significant by all three pathway

FIGURE 3
RCircos plot produced by the NGS Post-pipeline Accuracy and Reproducibility System (NPARS). This figure summarizes and integrates seven
genomics methods into one graphical plot. From the outermost ring inward: (i) human chromosomal ideogram, (ii) DNA panel mutations (tumor vs.
germline), (iii) RNA expressedmutations from the full transcriptome, each dot represents a RNA expressedmutation (depth greater than or equal 10),
(iv) whole genomeDNA copy number variations (tumor vs. germline) with red representing a copy number greater than 2, copy number equal to
2 by black coloring, and a copy number smaller than 2 by blue, (v) RNA gene expression (TPM) and, (vi) RNA gene fusions.
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analysis tools, and MDM2 overexpressed. Using pathfindR’s

KEGG (Kanehisa and Goto, 2000) integration, the

TP53 pathway shown in Figure 4.

5 Discussion and conclusion

Why does a relatively young woman develop an unusual tumor

in her lung? How is her presentation involving left flank pain related

to her pathologic processes? Using genomics, radiomics and

pathomics we sought to bring additional clarity to these questions.

The patient presentedwith severe left flank pain. It is established

that disease processes or injuries involving the lower lung may

present as flank pain (LeBlond, 2015). The 3D position of the tumor

and the proximity to the left lung base is nicely displayed by the

radiomics study in Figure 1D. Utilizing segmentation and entropy

calculations (Figure 1C) radiomics showed the tumor region to be

much more homogeneous vs. a surrounding 1 cm rim representing

an inflamed microenvironment, which is now known to be filled

with abundant hemosiderin-laden macrophages. Hemosiderin-

laden macrophages are an important finding regarding an acute

lung injury and indicates alveolar hemorrhage (Beasley, 2010). This

finding was also observed and quantified by the pathomics study

(Figures 2C,D). The patient’s lung injury is related to her vaping

practices and may be manifested in left lower lung due to tumor

growth and corresponding increased metabolism (Figure 1B).

The first principal genomicfinding of this study, was the detection

of the AKT1 p.E17Kmutation within both the DNA and RNA of the

patient’s tumor with convincing VAF and depth of coverage. This

finding is consistent with previous studies that have shownmany PSP

cases to harbor AKT1 mutations (Jung et al., 2016; Yeh et al., 2020).

There is a growing body of evidence that AKT1 mutations are a

hallmark of PSP (Yeh et al., 2020), and this oncogene can be assumed

to be the driving mutation for this patient’s tumor.

AKT1 is a member of the AKT kinase family. As meaningful

down-stream regulators of the PI3K signaling pathway, members

of the AKT kinase family play an import role. In all cancers, the

PI3K/AKT pathway is considered one of the most frequently

deranged (Mundi et al., 2016). Although our signaling study did

not find the pathway to be statistically significant, the pathway

contains a mutated AKT1, driving tumor proliferation (Yeh et al.,

2020), and is a viable drug target.

The second principal genomic finding, was that the

TP53 signaling pathway was found to be statistically

significant in all three pathway analysis methods. Chief among

the alteration of genes in the TP53 pathway is that the

p53 inhibitor MDM2 is significantly over-expressed in the

patient’s tumor. The overexpression of MDM2 in tumors

FIGURE 4
Pathway Result by pathfindR. The colored plot was generated based on KEGG pathway diagrams through pathfindR. Red colors represent
upregulated genes, and green colors the down regulated genes. In this plot for the TP53 pathway, MDM2 which is the principal negative regulator of
the pathway, was significantly upregulated.
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inhibits p53 and favors an uncontrolled environment for cell

proliferation (Chène, 2003; Hou et al., 2019). This helps to

explain an additional reason for tumor development. Namely,

a dampened response regarding tumor suppressor function by an

essential pathway focused on tumor surveillance and eradication.

In the TP53 signaling pathway, p53 and MDM2 proteins form a

central hub which is one of the key molecular complexes most

frequently connected to other signaling pathways in the cell. The

MDM2-p53 hub receives stress inputs, and by forming and changing a

large number of other pathways and functions in the cell, p53 responds

to the inputs (Levine, 2020). The MDM2-p53 hub is also a negative

feedback loop. In this loop,MDM2 is transcriptionally induced byp53,

but reciprocally blocks p53 activity (Zhou et al., 2017). According to

the colored KEGG pathway plot generated by pathfindR (Figure 4), it

is evident that the MDM2 gene is significantly upregulated.

Per standard-of-care guidelines, the patient had a lung surgery for

curative intent, but a precision oncology therapy plan was formulated

as a precaution in case of tumor recurrence. Active clinical trials

enrolling patients that target MDM2 abnormalities and AKT1 p.E17K

mutations exist. RegardingMDM2 inhibitors: (i) RO5045337 (Roche),

prevents the MDM2 protein from binding to the transcriptional

activation domain of p53 (NCI, 2022; Roche, 2022); (ii) siremadlin

(HDM201, Novartis), increases the activity of the tumor suppressor

p53 by selectively inhibiting the MDM2-p53 interaction (Novartis,

2022; Stein et al., 2022); and, (iii) alrizomadlin (APG-115, Ascentage),

restores p53 expression by binding to MDM2 protein (Tolcher et al.,

2019; Ascentage, 2022). Regarding the AKT1 finding, there are two

small molecule drugs targeting the ATK1 p.E17K mutation being

investigated: (i) capivasertib (AZD5363, AstraZeneca), inhibits all three

isoforms of AKT by inhibiting downstream signaling of the

AKT1 p.E17K mutation, (Chen et al., 2020; Kalinsky et al., 2021;

AstraZeneca, 2022); and, (ii) BAY1125976 (Bayer), deactivates full-

length AKT1 by binding into an allosteric binding pocket (Politz et al.,

2017; Bayer, 2022) (see Supplementary Table 11).

To date, this study provides themost comprehensive analysis of

a single human PSP neoplasm by utilizing radiomics, pathomics,

and multiple genomic analyses. Using these studies insights are

gleaned and discussed that span the patient’s initial presentation,

tumor development with molecular determinants, and a precision

medicine therapy plan is proposed in case of recurrence.
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