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Aberrant expression of chromatin regulators (CRs) could lead to the

development of various diseases including cancer. However, the biological

function and prognosis role of CRs in colon adenocarcinoma (COAD) remains

unclear. We performed the clustering analyses for expression profiling of COAD

downloaded from The Cancer Genome Atlas. We developed a chromatin

regulator prognostic model, which was validated in an independent cohort

data. Time-intendent receiver operating characteristics curve was used to

evaluate predict ability of model. Univariate and multivariate cox regression

were used to assess independence of risk score. Nomogram was established to

assess individual risk. Gene ontology, and Kyoto Encyclopedia of genes and

genomes, gene set variation analysis and gene set enrichment analysis were

performed to explore the function of CRs. Immune infiltration and drug

sensitivity were also performed to assess effect of CRs on treatment in

COAD. COAD can be separated into two subtypes with different clinical

characteristics and prognosis. The C2 had elevated immune infiltration levels

and low tumor purity. Using 12 chromatin regulators, we developed and

validated a prognostic model that can predict the overall survival of COAD

patients. We built a risk score that can be an independent prognosis predictor of

COAD. The nomogram score system achieved the best predict ability and were

also confirmed by decision curve analysis. There were significantly different

function and pathway enrichment, immune infiltration levels, and tumor

mutation burden between high-risk and low-risk group. The external

validation data also indicated that high-risk group had higher stable disease/

progressive disease response rate and poorer prognosis than low-risk

group. Besides, the signature genes included in the model could cause

chemotherapy sensitivity to some small molecular compounds. Our

integrative analyses for chromatin regulators could provide new insights for

the risk management and individualized treatment in COAD.
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Introduction

In recent years, the morbidity and mortality of colon cancer

have been increasing year by year, becoming one of the main

causes of tumor-related death worldwide, which has caused a

serious burden on people’s health and quality of life (Orangio,

2018; Ahmed, 2020). Metastasis and recurrence are the leading

causes of death in most colon cancer patients (Labianca et al.,

2010). At present, the main treatment for colon cancer is surgery,

preoperative neoadjuvant chemoradiotherapy and postoperative

chemoradiotherapy are the routine programs for comprehensive

diagnosis and treatment of colon cancer (Wu, 2018). However,

due to the insidious onset and asymptomatic progression of

colon cancer, some patients with colon cancer are already in the

middle and advanced stages when they are diagnosed, and

conventional treatment cannot prolong the survival time of

these patients (Freeman, 2013). Clinicians mainly assessed the

prognosis of colon cancer patients by the disease process and

tumor stage at the time of diagnosis (Pacal et al., 2020; Cerrito

and Grassilli, 2021). However, traditional methods are

insufficient to accurately assess the prognosis of colon cancer

patients. Therefore, identifying biological markers related to

colon cancer prognosis and survival is of great significance for

patients with colon cancer.

Chromatin regulators (CRs) are a class of enzymes with

specialized functional domains capable of recognizing, forming,

and maintaining epigenetic states in a cellular context-

dependent manner (Frye and Benitah, 2012). CRs are

indispensable upstream regulators of epigenetics (Lam et al.,

2005). According to their regulatory roles in epigenetics, CRs

are generally classified into three major categories:

deoxyribonucleic acid (DNA) methylation, histone

modifications, and chromatin remodelers. Aberrant

expression of CRs is associated with various biological

processes such as inflammation, apoptosis, autophagy, and

proliferation, suggesting that dysregulation of CRs may lead

to the development of various diseases including cancer (Begolli

et al., 2019; Smits et al., 2020; Lee and Kim, 2021). Therefore,

CRs are expected to become new targets for the treatment of

various diseases. However, the biological function and

prognosis role of CRs in COAD remains unclear.

Many studies have shown that differences in tumor

microenvironment, targets, and genes enhance the effects of

traditional treatments and supplement the deficiencies of

previous studies (Ansari et al., 2020; Lin et al., 2020). In

the process of tumor progression, diagnosis, treatment and

prognosis, bioinformatics has gradually played an important

role with the continuous in-depth research of next-generation

sequencing and big data centers (Jacoby et al., 2015). Through

the analysis and comparative study of big data gene chip

information, to calculate differential genes and immune-

infiltrating cell screening in colon cancer to provide

important biological prediction data for tumorigenesis

mechanism and prognosis (Zhang et al., 2021). In our

current research, we first explored the landscapes of

chromatin regulators including differentially expressed

genes, regulation network, correlations, and gene

alterations in colon adenocarcinoma (COAD). Next, we

performed the clustering analysis and identified the

molecular subtypes and explored the characteristics of

different subtypes. Then, we developed a prognostic model

based on chromatin regulators in COAD, and validated the

utility of this model in an independent cohort dataset,

followed by the identification of an independent prognosis

factors of risk score calculated by the chromatin regulators.

Subsequently, we constructed a nomograph scoring tool for

predicting the individual prognosis outcomes. Finally, we

explored the pathways enrichment, immune filtration in

different risk setting, evaluated the effect of chromatin

regulators on immunotherapy in a cohort dataset, and

identified the potential small molecular compounds

associated with chemotherapy sensitivity. Our study

highlights important role of chromatin regulators and

provides new insights for individualized treatment in COAD.

Materials and methods

Data source

We downloaded the sequencing expression data of COAD

from The Cancer Genome Atlas (TCGA: https://portal.gdc.

cancer.gov/) including 473 tumor samples and 41 normal

samples. We exclude these samples with mean absolute

deviation (MAD)<0.1. The clinical information was also

extracted, including age, gender, stage, TNM classification.

The other independent dataset was also downed from the

Gene Expression Omnibus database (https://www.ncbi.nlm.

nih.gov/geo/) (GSE103479: 156 patients with colon

carcinoma). The gene alterations and copy number variations

were also obtained. We obtained the 870 chromatin regulators

from the previous studies (Lu et al., 2018).

Differential expression and gene
alterations analysis

Using “limma” package, we identified the differentially

expressed genes (DEGs) with the |log fold change|>1 and

FDR p < 0.05. We built the protein-protein interaction

network (PPI) using these DEGs in the STRING database

(http://string-db.org), and these data were entered into

Cytoscape Version 3.8 and generate the PPI network. We

explored the correlation among these regulators using the

Pearson correlation. Using “maftools” package, we analyzed

the gene alterations and copy number variation in COAD.
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Identification of molecular subtypes

We first identified risk and favorable factors of the CRs using

univariate cox regression. We performed the clustering analyses

using “ConsensusClusterPlus” package, and identified the

optimal the number of K using consensus matrix and

consensus cumulative distribution function plot (Wilkerson

and Hayes, 2010). Principle component analysis was used to

validate the subtypes distributions. The Kaplan-Meier analysis

was used to compare the survival curve between different

subtypes. We explored the correlations of molecular subtypes

with clinical characteristics using the Chi-square test.

To explore the differences in different subtypes, we calculated

the enrichment score of each sample using this dataset: c2.

cp.kegg.v7.4. symbols and performed the get set variation

analysis (GSVA) using GSVA package (Hanzelmann et al.,

2013). We also compared the immune status between two

subtypes including estimate score, stromal score, immune

score, and tumor purity. The infiltration levels of immune

levels were also evaluated.

Development and validation of prognostic
model based on chromatin regulators

We first performed a univariate cox regression and identified

the prognosis-related chromatin regulators (p < 0.001) in the

TCGA training cohort. The least absolute shrinkage and selection

operator (LASSO) regression was used to the identify the best

genes number, followed by the multivariate cox regression to

achieve the regression coefficient of the included genes in the

model. We calculated the risk score of each sample according to

the following formula: risk score = coef1*gene1
expression+. . .+coefn*genen expression. The COAD patients

were divided into high-risk group and low-risk group

according to the median of risk score. The Kaplan-Meier

survival curves of different risk groups were plotted. We

validated this established model using an independent cohort

data (GSE103479). The time-intendent receiver operating

characteristics curve (ROC) was plotted to calculate the area

under the curve (AUC) at 1-year, 2-year, and 3-year in both

TCGA training cohort and GEO validation cohort. PCA was also

performed to identify the risk groups.

Clinical characteristics and independent
analysis

To investigate the correlations of risk groups with clinical

characteristics, we compared the risk scores among different age

(age>=60 vs. < 60), gender (male vs. female), stage (I-II vs. III-

IV), T (T1-2 vs. T3-4), N (N0 vs. N1-2), M (M0 vs. M1)

classification. We also showed the clinical characteristics and

identified genes expression level between high-risk and low-risk

groups. We further performed the univariate and multivariate

cox regression to detect whether risk score could be an

independent prognosis predictor of overall survival in COAD.

Nomogram establishment and
assessment

To estimate the individual’s prognosis risk, we built a

nomogram score tool based on the following clinical

characteristics: risk score, age, gender, stage, TNM

classification. Using this nomogram tool, we can easily

calculate the 1-year, 3-year, and 5-year overall survival (OS)

rate. We plotted the calibration fitting line between observed OS

and nomogram-predicted OS at 1-year, 3-year, and 5-year, which

can assess the accuracy of nomogram.

Then, we calculated the AUCs of all clinical parameters, risk

score and nomogram tool, and identified the predictive ability of

nomogram tool. Decision curve analysis was used to determine

the clinical practicability of nomograms based on the net benefit

according to different threshold probabilities in COAD patients.

Function enrichment and immune
infiltration

To explore the biological function of different risk groups, we

performed the gene setting enrichment analysis (GSEA) in high-

risk group and low-risk group, respectively. We identified the top

5 signaling pathways of high-risk group and low-risk

group. Then, we explored the immune infiltration status of

high-risk and low-risk groups. We explored the correlations of

risk score with immune cells by calculating the correlation

coefficient. The tumor mutation burden level was also evaluated.

Immunotherapy and chemotherapy
sensitivity

To explore the effect of chromatin regulators on treatment,

we first calculated the tumor immune dysfunction and exclusion

level (Chen et al., 2022). Based on tumor pre-treatment

expression profiles, this tumor immune dysfunction exclusion

(TIDE) module can estimate multiple published transcriptomic

biomarkers to predict patient response to immunotherapy. We

also used the IMvigor210 cohort for validating the effect of CR

regulators on immunotherapy, and the immunotherapy cohort

data for urothelial carcinoma (Mariathasan et al., 2018). Using

the CellMiner database, we further explored the chemotherapy

sensitivity by calculating the Pearson correlation coefficients

(Reinhold et al., 2012). |R|>0.25 and p < 0.05 were considered

significantly correlated.

Frontiers in Genetics frontiersin.org03

Yang et al. 10.3389/fgene.2022.986325

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.986325


Results

Landscapes of chromatin regulator in
colon adenocarcinoma

We depicted the landscapes of chromatin regulators in

COAD using TCGA dataset. The flow of data processing was

presented in Figure 1. We first performed differential expression

analyses between tumor and normal samples using limma with |

logFC|>1 and false discovery rate p < 0.05, and obtained

124 DGEs including 105 up-regulated genes and 19 down-

regulated genes. The volcano plot presented the distributions

of DGEs between tumor and normal samples (Figure 2A). Next,

we built protein-protein interaction network and identified top

10 hub genes using normalized cross correlation methods

(CHEK1, CDK1, TOP2A, CDC6, BUB1, AURK, TTK,

RAD54L, PBK, UHRF1, Figure 2B). Among these chromatin

regulators, we further identified 50 genes related to overall

survival, including 6 favorable genes and 44 risky genes

(Figure 2C). Then, we explored the correlations among these

chromatin regulators, and found ZNF592-BAHD1 and ARID3B,

PHF21A- ZBTB4 and ZNF532, BRD3-PHF2 and BRD2,

APOBEC3F-APOBEC3C and SP140 showed strong positive

correlations (r > 0.5) while BCL10 showed negative

associations with other genes (Figure 2D). Finally, we

analyzed the gene alterations of chromatin regulators in

COAD. Our results indicated that the gene alterations ranged

from 9% to 0% and top gene alterations of chromatin regulators

in COAD were CHD4 (9%), CHD3 (7%), PPARGC1A (5%),

PNK1 (5%), and PHF2 (4%) (Figure 2E). The C > T variations

accounted for most of single nucleotide polymorphism in

COAD. Figure 2F show the locations of gene mutations in

chromosome.

Identification of molecular subtypes

Using the chromatin regulators related to prognosis, we

performed the consensus analysis. The consensus matrix

showed that the optimal number is 2 (Figure 3A). The

consensus CDF achieved the best values when the number of

clustering was 2 (Figure 3B). The COAD can be divided into two

subtypes (C1 = 187, C2 = 260). Then, the Kaplan-Meier analyses

indicated that the C2 group had poorer prognosis than C1 group

(p < 0.003, Figure 3C). The PCA also showed that COAD patients

presented two distinguished two components. The Cluster 2 tend

to be T III-IV stage (p < 0.01). There were no significant

differences in age, gender, stage, N, M classification

FIGURE 1
The flow chart of integrative analysis.
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(Figures 3D,E). Some chromatin regulators were significantly

down-regulated such as ORC1,MAPKAPK3, ELP3, TDRD7, and

PPARGC1A.

Furthermore, the GSVA indicated that some signaling

pathways were significantly positive enriched in C2 such as

Notch signaling pathways, GNRH signaling pathway, BASAL

cell carcinoma, glycosaminoglycan biosynthesis chondroitin

sulfate, ECM receptor interaction, focal adhesion, and MAPK

signaling pathways. The glutathione and pyruvate metabolism,

oxidative phosphorylation, peroxisome, terpenoid backbone

biosynthesis, and citrate cycle tricarboxylic acid cycle were up-

regulated in C1 group (Figure 4A).

Finally, we explored the immune infiltration status of two

subtypes. The C2 had higher estimate, stromal and immune

scores than C1 (Figures 4B–D). However, the tumor purity of

C2 group was lower than C1 group (Figure 4E). The C2 group

also have higher B cells naïve, NK cells activated, and

macrophages M0 infiltration levels while the plasma cells,

Tcells CD4 memory activated, dendritic cells activated, mast

cells activated, eosinophils and neutrophils level of C1 group

FIGURE 2
Landscapes of chromatin regulators in COAD. (A) Volcano showed the differential expression of chromatin regulators between tumor and
normal samples. (B) Protein-protein interaction network of chromatin regulators. (C) Prognosis roles of chromatin regulators in COAD. (D)Heatmap
showed the correlations among chromatin regulators. (E,F): Gene alteration levels of chromatin regulators in COAD.
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were significantly elevated (Figure 4F). We then considered the

C2 group as “hot tumor” and C1 group as “cold tumor.”

Development and validation of prognostic
model based on chromatin regulators

We first developed the prognostic model in TCGA training

cohort. Using the FDR p < 0.01, we identified the 18 genes related

to prognosis in COAD including two favorable genes

(PPARGC1A and MAPKAPK3) and 16 risky genes

(Figure 5A). We next performed the LASSO regression and

identified the genes and number included in the prognostic

model (Figures 5B,C). Twelve genes were included in the final

model, and we established the following formula for calculating

the risk score of each sample: risk score = EXPAPOBEC3F*0.142

+ EXPSMARCD3 * 0.376 - PPARGC1A * 0.223 + BRD9*0.370 +

JDP2*0.592 + NEK9 * 0.028 + BAHD1 * 0.366 + PHF2 * 0.063 +

PHF1*0.158 + PYGO2*0.435 -MAPKAPK3 * 0.577 + GADD45B

* 0.007. We divided the COAD patients into high-risk group (n =

FIGURE 3
Identification of molecular subtypes based on chromatin regulators in OAD (A,B) The consensus matrix and CDF identified two subtypes in
COAD. (C) The Kaplan-Meier survival curve of two subtypes. (D) PCA indicated two obvious components. (E) The correlations of molecular subtypes
with clinical characteristics and gene expression profiling.
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223) and low-risk group (n = 224). The Kaplan-Meier analysis

indicated that the high-risk group had worse overall survival than

low-risk group (p < 0.001, Figures 5D,E). PCA also indicated two

different risk groups (Figure 5F). Subsequently, we validated this

model in an independent cohort data. Our results showed that

the established model was well validated in this cohort (Figures

5G–I). The 1-year, 2-year, and 3-year AUCs were 0.735, 0.756,

and 0.721 in the training cohort (Figure 5J). The AUCs were

0.592, 0.585, 0.606 at 1-year, 2-year, and 3-year, respectively

(Figure 5K).

Clinical correlations and independent
analysis

We further analyzed the correlations of risk score with

clinical characteristics. The results indicated that age and

gender were not associated with risk score (Figures 6A,B),

while the patients with Stage III-IV, T3-4, N1-N2 and

M1 had elevated risk score (Figures 6C–F). The high-risk

group tend to be advanced clinical stage (Figure 6G).

APOBEC3F, SMARCD3, BRD9, JDP2, NEK9, NAHD1,

FIGURE 4
Function enrichment and immune status of two subtypes. (A)GSVA showed the differentially expressed signaling pathways. (B–E)Comparisons
of immune infiltration levels between C1 and C2. (F) The infiltrations levels of immune cells between C1 and C2.
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PHF2, PHF1, PYGO2, and GADD45B were significantly high-

expressed in high-risk group.

The univariate indicated that elevated risk score was

significantly with poor overall survival (HR:3.34, 95%CI:

2.394–4.658, p < 0.001, Figure 7A), and the multivariate

cox regression risk score is an independent prognosis

predictor for COAD patients (HR:2.770, 95%CI:

1.960–3.915, p < 0.001, Figure 7B). Besides, Age, M1, and

N1-2 classification were also risk factors for overall survival in

COAD. Using clinical parameters and risk score, we built the

nomogram score system (Figure 7C). We estimated the 1-year,

3-year and 5-year OS were 0.94, 0.853, and 0.765 for an 85-

FIGURE 5
Development and validation of a chromatin regulator prognostic model in COAD. (A) The forest plot of univariate cox regression. (B,C) LASSO
regression identified the number of genes included in themodel. (D–F) The Kaplan-Meier survival curve, risk score and survival times distribution and
PCA in TCAG training cohort. (G–I) The Kaplan-Meier survival curve, risk score and survival times distribution and PCA in GEO validation cohort. (J)
ROC of risk score at 1-year, 2-year, 3-year in TCGA. (K) ROC of risk score at 1-year, 2-year, 3-year in GEO.
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year male patient with T3, N1, low-risk, and Stage II. The

calibrations plots of 1-year, 3-year and 5-year showed

the nomogram-predicted OS and observed OS can be

fitted well. Furthermore, the nomogram achieved the best

predict ability (AUC = 0.801) followed by risk score

(AUC = 0.740, Figure 7D). The decision curve analysis also

indicated the nomogram can be well applied in the clinical

practice because the nomogram has the best net benefit

(Figure 7E).

Function enrichment and immune
infiltration

The GSEA indicated the top 5 enrichments were cell

adhesion molecules cams, cytokine receptor interaction,

extracellular matrix receptor interaction, focal adhesion, and

hematopoiesis cell lineage in high-risk group (Figure 8A),

while the top 5 enrichments were oxidative phosphorylation,

Parkinson’s disease, proteasome, ribosome, and systemic lupus

FIGURE 6
The correlation of risk score with clinical parameters. (A–F) Comparisons of risk score between different age, gender, stage, T, N and M
classification. (G) The correlations of risk groups with clinical parameters and signature gene expression.
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erythematosus in low-risk group (Figure 8B). The risk score was

positively associated with APOBEC3F, SMARCD3, BFRD9,

JDP2, NEK9, BAHD1, PHF1, PHF2, PYGO2, and GADD45B.

the PPARGC1A and MAPKAPK3 were negatively associated

with risk score (Figure 8C).

The immune infiltration analyses indicated that risk score was

positively associated with T cells, CD8T cell, cytotoxic lymphocytes,

B lineage, monocytic lineage, myeloid dendritic cells, endothelial

cells, and fibroblasts (Figure 8D). The risk score was also positively

related to tumor mutation burden (TMB) level (Figure 8E).

FIGURE 7
Independent analysis of risk score in COAD. (A,B) Forest plot of univariate and multivariate cox regression. (C) Nomogram and calibration plots
using risk score and clinical characteristics. (D) Time-independent ROC of nomogram, risk score and clinical parameters. (E)Decision curve showed
the clinical applications.
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Immunotherapy and chemotherapy
sensitivity

We also explored the effect of chromatin regulators on

immunotherapy. We first evaluated the tumor immune

dysfunction and exclusion level (TIDE). Our results indicated

that the high-risk group had higher TIDE, exclusion, and

dysfunction levels except MSI (Figures 8F–I), which means

the high-risk group had poor response to immunotherapy.

The IMvigor data confirmed our results. The stable/

progression disease group had higher risk score than the com

complete/part remission (Figure 9A). Furthermore, the high-risk

had poorer overall survival than low-risk group (Figure 9B, p <
0.001).

FIGURE 8
Pathway enrichment and immune infiltration of different risk groups. (A,B) KEGG pathways enrichment of high-risk and low-risk groups. (C,D)
The correlations of risk score and signature gene and immune cells. (E) correlations of risk score with TMB. (F–I)Comparisons of TIDE, MSI, exclusion
and dysfunction between high-risk group and low-risk groups.
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We then evaluated the effects of signature genes on

chemotherapy sensitivity. We found that GADD45B can cause

chemotherapy resistance to Bafetinib, Vmurafenib, Selumetinib,

Dabrafenib, Cobimetinib, Hypothemycir, Trametinib, and

Nilotinib. MAPKAPK3, BRD9, JDP2, PPARGC1A can

enhanced the sensitivity of some small molecular compounds,

including Fludarabine, Cladribine, 5-fluoro deoxy urine uracil,

Acetalax, and Dabrafenib (Figures 9C–R).

Discussion

The present study has the following several findings (Ahmed,

2020): The COAD can be separated into two subtypes with

clinical characteristics, prognosis outcomes, and biological

function enrichment. The C2 group had elevated immune

infiltration levels and low tumor purity, which can be

considered as “hot tumor” and the C1 group had low level

FIGURE 9
Effect of chromatin regulators on immunotherapy of IMvigor data (A,B) of and chemotherapy sensitivity (C–R).
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immune status considered as “cold tumor” (Orangio, 2018).

Using 12 chromatin regulators, we developed a prognostic

model that can predict the overall survival and risk

classifications among COAD patients. This model was well

validated in an independent external cohort data (Labianca

et al., 2010). We built a risk score that can be an independent

prognosis predictor of COAD. The high-risk group based on risk

score tended to have risky clinical characteristics (Wu, 2018).

Using clinical parameters and risk score, we built the nomogram

score system that can achieve the best predict ability and were

also confirmed by decision curve analysis about its clinical

application (Freeman, 2013). There were significantly different

function and pathway enrichment, immune infiltration levels,

and TMB level between high-risk and low-risk group (Pacal et al.,

2020). The high-risk group had poor response to

immunotherapy. The external validation data also indicated

that high-risk group had higher SD/PD response rate and

poorer prognosis than low-risk group. Besides, the signature

genes included in the model could cause chemotherapy

sensitivity to some small molecular compounds. Our

integrative analyses for chromatin regulators could provide

new insights for the risk management and individualized

treatment in COAD.

Epigenetic changes, considered to be one of the most

important markers of tumors, are driven by chromatin

regulator (Dey, 2011; Florea and Karaoulani, 2018). The

chromatin regulators dynamically regulate chromatin structure

and epigenetic regulation of gene expression in response to

endogenous and exogenous signaling cues (Weaver and

Bartolomei, 2014). Somatic changes or misexpression of CR

may reprogram the epigenetic map of chromatin, leading to a

wide range of common diseases, especially cancer (Shu et al.,

2012). Currently, the function role of chromatin regulators in

COAD is still unclear. We first explored the relevance in

prognosis and treatment for COAD. We identified two

molecular subtypes using prognosis-related chromatin

regulators. Two subtypes had different expression profiling of

chromatin regulators and clinical characteristics. The cluster

2 showed elevated stromal and immune activation and was

mainly enriched in some important tumor-related signaling

pathways such as Notch, Gnrh, and MAPK signaling

pathways, which had been suggested to be closely associated

with tumor occurrences (Kranenburg, 2015; Lajko et al., 2019;

Tang et al., 2021). ECM receptor interaction and focal adhesion

were also highly enriched in cluster 2. On the contrary, the cluster

1 had low immune infiltration level and was mainly enriched in

some metabolism-related pathways and functions such as

glutathione, pyruvate, TCA cycle and oxidative

phosphorylation. Thus, the cluster 2 can be regarded as “hot

tumor,” and the cluster 1 was called “cold tumor.” Whether the

tumor is hot or cold affects whether immunotherapy, represented

by PD-1 inhibitors, is effective. This is because tumor cells

overexpress PD-L1 protein and induce high expression of PD-

1 on immune cells such as T lymphocytes. When the two are

combined, they inhibit the function of T lymphocytes, allowing

tumors to escape immune attack (Reschke and Olson, 2022).

Using these chromatin regulators, we established a

prognostic model with twelve chromatin regulators. Previous

studies also established prognostic models using other gene sets.

Zhou et al. developed an autophagy-related lncRNA model for

COAD and the 3-year predictive AUCwas 0.790, which was close

to our model (Zhou et al., 2020). Using 44 ferroptosis-related

lncRNAs, Li developed a prognostic model with AUC of

0.860 that was slightly higher than our AUC (Li et al., 2021).

Li also built a prognostic model using immune-related genes, and

the predictive ability was 0.792. Broadly speaking, all these model

had similar predictive abilities, which suggested that our model

was effective (Miao et al., 2020).

In this model, PPARGC1A and MAPKAPK3 were favorable

genes in this model. Previous study had reported that the

expression of PPARGC1A was negatively associated with

some immune cells, which means that PPARGC1A may be

responsible for regulating the immune components of tumor

microenvironment (Ma et al., 2021). As a member of the Ser/Thr

protein kinase family. MAPKAPK3 functions as a mitogen-

activated protein kinase (MAP kinase)- activated protein

kinase. Previous studies reported that ERK, p38 MAP kinase

and Jun N-terminal kinase were all able to phosphorylate and

activate this kinase, which suggested the role of this kinase as an

integrative element of signaling in both mitogen and stress

responses (Wagner and Nebreda, 2009; Sun et al., 2015). It

was reported that MAPKAPK3 can promote autophagy via

some phosphorylation pathway in vivo and vitro, which may

explain its favorable role in COAD (Wei et al., 2015). The other

10 gene were oncogenes in the model. Such as APOBEC3F that

could be a new treatment target in multiple cancers including

COAD (Svoboda et al., 2016). SMARCD3 (Jiang et al., 2020),

BRD9 (Sabnis, 2021), JDP2 (Mansour et al., 2018), were also

reported to be a oncogene role in some cancer. We calculated the

risk score for each sample based on the established prognostic

model and divided COAD patients into high-risk and low-risk

groups. The high-risk group and low-risk group had different

overall survival. The time-independent ROC indicated that the

prognostic signature with 12 chromatin regulators had accurate

and reliable predictive ability. The established model was

effectively validated in an independent cohort data. The

univariate and multivariate cox regression also demonstrated

that risk score was an independent risk factor for poor overall

survival. Based on the risk score and clinical parameters, we

constructed a nomogram scoring tool for individual’ survival

outcomes. The calibration, ROC and decision curve analysis had

excellent predictive ability.

The risk score was found to be positively associated with

many immune cells including T cells, CD8 T cells, monocytic

lineage, endothelia cells and fibroblasts. We also found that the

high-risk group and low-risk group had different immune
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infiltration levels. Immune cell infiltration in tumor

microenvironment affects the prognosis of tumor therapy

(Bader et al., 2020; Lei et al., 2020). To explored the effect of

chromatin regulators on immunotherapy, we further evaluated

the TIDE levels of different risk groups. We found that the high-

risk group had relatively high immune status including TIDE,

exclusion, and dysfunction, which means the high-risk group

may have poor prognosis when receiving immunotherapy. The

data from an immunotherapy cohort data (IMvigor210)

confirmed these assumptions that patients with high-risk

score and immune infiltration had poor prognosis (Vander

et al., 2019). Recently, several clinical trials had been

performed to explore the efficacy of immunotherapy (Bao

et al., 2020; Mlecnik et al., 2020). Our results provided some

references for these researches. Finally, we evaluated the effect of

chromatin regulators on chemotherapy sensitivity, and found

GADD45B can cause chemotherapy resistance to Bafetinib,

Vmurafenib, Selumetinib, Dabrafenib, Cobimetinib,

Hypothemycir, Trametinib, and Nilotinib. MAPKAPK3,

BRD9, JDP2, PPARGC1A can enhanced the sensitivity of

some small molecular compounds, including Fludarabine,

Cladribine, 5-fluoro deoxy urine uracil, Acetalax, and

Dabrafenib. These findings will help clinical treatment for

COAD patients.

The present study had several limitations. First, the sample

size of validation cohort was small, and study with larger sample

size were required. Based on suggestions from professional filed,

at least two independent cohorts were required for the present

prognostic model. Second, the biological function, molecular

mechanism and the effect of chromatin regulators were not

validated through experiments in vivo and vitro. Data from

experimental research will further refine the present findings.

Although we evaluated the effect of chromatin regulators on

immunotherapy using two different methods, the

immunotherapy was carried out in the other tumor types.

Studies performed in COAD will be more persuasive.

In conclusion, we obtained twomolecular subtypes in COAD

using chromatin regulators, which had different clinical

characteristics and immune landscapes. We further established

and validated a chromatin-related prognostic model that can be

capable of predicting overall survival of COAD patients. More

important, we also found that chromatin regulators could affect

the immunotherapy and chemotherapy sensitivity in COAD

patients. Our study will provide new risk management and

individualized treatment strategies for COAD that could bring

more benefits for patients.
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