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Background: Cuproptosis is a novel form of cell death discovered in recent. A

great quantity of researches has confirmed the close relationships and crucial

roles between long non-coding RNAs (lncRNAs) with the progression of

colorectal cancer (CRC). However, the relationship between cuproptosis and

lncRNAs remains unclear in CRC.

Methods: 1,111 co-expressed lncRNAs with 16 cuproptosis regulators were

retrieved from CRC samples of The Cancer Genome Atlas (TCGA) database.

Through univariate Cox and least absolute shrinkage and selection operator

regression analysis, a prognosis model was constructed with 15 lncRNAs. The

Kaplan-Meier, receiver operating characteristic curve, C-index and principal

component analysis identified the prognostic power. Furthermore, a

cuproptosis-related cluster was generated based on the 15 lncRNAs by

unsupervised methods. The correlations between the cuproptosis-related

signatures with immune cell infiltration and anti-tumor therapy were

explored by multiple algorithms.

Results: A risk score and nomogram with great prediction ability were

constructed for CRC prognosis evaluation. The immune activate pathways,

immune infiltration cells, immune functions, immune score and immune

activation genes were remarkably enriched in the high risk group. The

cuproptosis-related cluster was generated, of which the cluster 2 showed

longer overall survival. The immune cell infiltration analysis indicated the

similar results of cluster 2 with the high risk group, implying a significant

marker for “hot tumor.” The cluster 2 also presented high expression of

immune checkpoint molecules, MSI-H status and higher susceptibility to

multiple immunotherapy drugs.
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Conclusion: We appraised a novel cuproptosis-related prognosis model and

molecular signature associated with prognosis, immune infiltration and

immunotherapy. The identification of cuproptosis-related lncRNAs improved

our understanding of immune infiltration and provided a significant marker for

prognosis and immunotherapy in CRC.
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Introduction

Copper is a necessary microelement for organic activities,

and yet it changes to be cytotoxic when the concentration exceeds

a certain threshold (Ruiz et al., 2021; Ge et al., 2022). It was lately

reported that copper-induced cell death, named cuproptosis, is a

novel type of cell death due to intracellular copper accumulation,

distinct from any known format of cell death including apoptosis,

autophagy, necrosis, ferroptosis and pyrotosis (Xi et al., 2016;

Marshall et al., 2019; Koppula et al., 2022; Pan et al., 2022; Wang

et al., 2022). Excessive copper participates in mitochondrial

tricarboxylic acid (TCA) cycle through directly binding to

lipoylated proteins, thus subsequent lipoylated protein

aggregation and Fe-S deficiency result in proteotoxic stress

and cell death (Tsvetkov et al., 2022). It was widely revealed

that dysregulation of cell death mechanism was closely related

with development and progression of various cancer types, and

cell death related genes were promising targets for suppressing

tumor growth and progression (Mao et al., 2021; Lei et al., 2022;

Zhang et al., 2022). However, the correlations between

cuproptosis and tumor progression remain unclear.

Long non-coding RNA (lncRNA) is a type of non-coding RNA

with the length of more than 200 nt and without protein coding

potential (Park et al., 2021;Winkle et al., 2021). LncRNAs can regulate

genes’ expression and functions through multiple patterns, including

signal, decoy, guide and scaffold (Schmitt and Chang, 2016; Liu et al.,

2021). Increasing studies revealed the key roles of lncRNAs on tumor

growth, progression, metastasis, chemoradiotherapy resistance and

immunosuppression (Huang et al., 2018; Kim et al., 2018;Wong et al.,

2018; Chen et al., 2019; Goodall and Wickramasinghe, 2021).

LncRNA RMRP promoted MDM2-induced p53 ubiquitination

and degradation via SNRPA1, thus promoting cell proliferation

and preventing cell apoptosis (Chen et al., 2021). LncRNA

LINC00336 inhibited ferroptosis through functioning as a ceRNA

to promote the expression of cystathionine-β-synthase (CBS) in lung

cancer (Wang et al., 2019). Nonetheless, the studies of cuproptosis-

related lncRNA have not been retrieved up to now. Therefore,

exploring cuproptosis-related lncRNAs facilitates our cognition of

the crucial roles of cuproptosis and lncRNAs on the progression of

colorectal cancer (CRC).

With the progression of biological immune system and tumor

immune contexture, immunotherapy has been widely adapted in

clinical patients (Best et al., 2022; Di Luccia and Colonna, 2022).

However, the efficiency of immunotherapy differs greatly in

individuals with divergent tumor immune contexture (Guillerey

et al., 2016; Ciardiello et al., 2022; Liu et al., 2022). The interaction of

tumor-immune system provided a large mount of foundation to

construct a rational stratification of patients. Tumors have been

classified into “hot tumor” and “cold tumor” according to the

immune cell infiltration around tumors, and further regrouped

into three types: immune-inflamed, immune-excluded and

immune-desert (Galon and Bruni, 2019; Noman et al., 2020;

Bruchard et al., 2022; Eggermont et al., 2022). Immune

checkpoint blockades targeting PD-1 and PD-L1 have been

approved for solid tumor with mismatch repair deficient

(dMMR)/high microsatellite instability (MSI-H), including CRC

(Homet Moreno and Ribas, 2015). With regard to the outcome,

the overall prognosis of CRC patients was markedly affected by the

enrichment of tumor immune cell infiltration (Anitei et al., 2014;

Biller and Schrag, 2021). A prognostic and accuracy study showed

that immunoscore was an indicator for immune reactions and

prognosis evaluation of CRC patients (Pagès et al., 2018).

Therefore, insight knowledge of the characteristics of the host

immune system and fundamental mechanisms of tumor

development and progression contributes to making a sweeping

generalisation to patient stratification and provides potential targets

for immunotherapy. Increasing evidence indicates that lncRNAs are

involved in the regulation of tumor immune response (Li et al., 2021;

Chen et al., 2022). LncRNA NKILA sensitizes T cells to activation-

induced cell death through suppressing NF-κB activity, therefore

promoting tumor immune evasion (Huang et al., 2018). Cancer cell-

derived exosomes lncRNA SNHG16 upregulated CD73 expression

via miR-16-5p/SMAD5 axis in Vδ1 T cells and subsequently

converted Vδ1 T cells into CD73+ immunosuppressive

phenotype in breast cancer (Ni et al., 2020). Consequently, taking

a closer look of the regulations of lncRNAs on tumor immune

microenvironment is of great significance.

In the study, we systemically integrated the RNA-seq data of

605 CRC samples from The Cancer Genome Atlas (TCGA) and

886 CRC samples from Gene Expression Omnibus (GEO)

database. 1,111 cuproptosis-related lncRNAs were retrieved.

Then, a prognosis model and molecular cluster with

cuproptosis-related lncRNAs were constructed. Further

analysis uncovered the close relationships between the

cuproptosis molecular signatures with prognosis and immune

cell infiltration, implying the great potential for the cuproptosis
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molecular signature as a biomarker of prognosis evaluation and a

target for turning “cold tumor” into “hot tumor” in CRC.

Materials and methods

Preparation of RNA-seq data

RNA-sequencing data and clinical annotation of colon cancer

and rectal cancer were downloaded from TCGA database and GEO

database. Transcriptome profiles of 605 samples (43 normal samples

and 562 cancer samples) in TCGA-colon adenocarcinoma/rectum

adenocarcinoma (COAD/READ) were obtained and merged in the

format of fragments per kilobase million (FPKM). The GEO data of

GSE39582 (19 normal samples and 566 cancer samples) (Conesa

et al., 2016), GSE17536 (177 colorectal cancer tissues) (Smith et al.,

2010) and GSE72970 (124 colorectal cancer tissues) (Del Rio et al.,

2017) were obtained for external validation of the prognosis model.

Identification of cuproptosis-related
lncRNAs

A list of 16 cuproptosis regulators were retrieved from lipoylated

TCA cycle pathway of copper induced cell death (FDX1, LIPT1,

LIAS, DLD, MTF1, GLS, CDKN2A, DLAT, PDHA1, PDHB, DBT,

GCSH, and DLST) (Tsvetkov et al., 2022) and copper transport

protein (SLC31A1, ATP7A, and ATP7B) (Graden andWinge, 1997;

Lukanović et al., 2020). According to their roles in lipoylated TCA

cycle pathway, these regulators were classified into 4 groups:

7 upregulators, 3 downregulators, 3 enzymes and 3 carriers. To

find lncRNAs related with 16 cuproptosis regulators, pearson

correlation analysis was conducted to analyze the expressions of

lncRNAs and 16 cuproptosis regulators in the colorectal cancer

tissues. Co-expressed lncRNAs with 16 cuproptosis regulators were

identified by the standard of coefficients |Pearson R| >0.4 and p <
0.001. Next, differentially expressed lncRNAs between normal and

cancer samples were screened by |Log2 fold change| >1 and

FDR<0.05 with R package “limma” (3.50.3).

Establishment of the prognosis model
with cuproptosis-related lncRNAs

The samples were randomly divided into the train group and

test group. According to the clinicopathological data and the

expression of cuproptosis-related lncRNAs in the train group,

univariate Cox regression analysis was performed to screen

prognosis-related lncRNAs (p < 0.05). Next, LASSO analysis

was employed to optimize the selected lncRNAs. Then, a best

model was generated by multivariate Cox regression model

analysis. The risk score was computed as follows (Song et al.,

2022; Sotiriou et al., 2006):

risk score � ∑
n

i�1
coef(lncRNAi)* exp(lncRNAi)

Coef (lncRNAi) and exp (lncRNAi) represent the coefficient

and expression of each lncRNAs, respectively.

Assessment of the prognosis model and
construction of nomogram

The samples were regrouped into high risk and low risk

group based on the median of risk score. The Kaplan-Meier,

principal component analysis (PCA), t-distributed stochastic

neighbor embedding (t-SNE), uMAP, treceiver operating

characteristic (ROC) curve and C-index were adapted to

appraise the accuracy of the prognosis model. Then, the

univariate and multivariate Cox regression analysis were

employed to assess if the prognosis model could function as

an independent prognostic indicator for CRC. Last, a nomogram

was established to predict 1-, 3-, and 5-years overall survival rates

combined risk score with age, gander, T, N, M, and stage. The

calibration curves and decision curve analysis (DCA) were

plotted to test the consistency and net benefits.

Gene set enrichment analyses

GSEA was used to identify the significantly enriched

biological behaviors and pathways in the two risk groups with

the hallmark gene sets (v7.5.1) and KEGG gene sets (v7.5.1)

(Liberzon et al., 2015; Wu et al., 2021).

Investigation of the immune infiltration

The immune infiltration in TCGA samples was appraised by

several algorithms including XCELL, TIMER, QUANTISEQ,

MCPcounter, EPIC, and CIBERSORT. The enrichments of

immune cells and immune functions were examined with

single-sample gene set enrichment analysis (ssGSEA)

(Charoentong et al., 2017). In addition, the stromal score and

immune score of each sample were quantified by ESTIMATE

algorithm.

Unsupervised consensus cluster for
cuproptosis-related lncRNAs

According to the expression of identified cuproptosis-related

and significant prognosis-related lncRNAs, the unsupervised

consensus clustering analysis was employed to classify samples

into distinct molecular patterns with R package

“ConsensusClusterPlus.”

Frontiers in Genetics frontiersin.org03

Zhu et al. 10.3389/fgene.2022.984743

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.984743


FIGURE 1
The process of this work and network of lnRNA-mRNA co-expression. (A) The process of this work. (B) The PPI network of 16 cuproptosis
regulators analyzed by the STRING database. (C) The lncRNA-mRNA co-expression network. (D) The volcano plot of differentially expressed lncRNAs
between normal and cancer samples.
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Somatic mutation and microsatellite
instability analysis

The somatic mutation data of samples was obtained from

the TCGA database by varscan file format. The significant

mutated genes and tumor mutation burden (TMB) were

calculated with R package “maftool.” The percentages of

microsatellite stability (MSS), high MSI (MSI-H) and low

MSI (MSI-L) were computed in different cuporptosis-related

clusters.

Significance of the cuproptosis-related
signatures in chemotherapy and
immunotherapy

To assess the efficiencies of different anti-tumor drugs on the

patients with distinct cuproptosis-related signature, the

“pRRophetic” package was adapted to calculate the half-

maximal inhibitory concentration (IC50) of 251 common

chemotherapy drugs, such as AKT inhibitor, Cisplatin, and

Paclitaxel (Geeleher et al., 2014). The immune cell proportion

score (IPS) data of TCGA samples was downloaded from The

Cancer Immunome Altas (https://tcia.at/home). The IPS scores

of anti-CTLA4, anti-PD-1 and anti-PD-L1 drugs were compared.

Statistical analyses

All the data analysis was exerted by R software (version 4.1.2)

and Strawberry Perl (version 5.3.0). p-value < 0.05 was set as

statistical significance.

Results

Identification of cuproptosis-regulated
lncRNAs

The process of this work is exhibited in Figure 1A. RNA-

sequencing data and clinical annotation of colon cancer and

rectal cancer were downloaded from TCGA database, which

consisted of 43 normal samples and 562 cancer samples. A

total of 16 cuproptosis regulators were retrieved from

lipoylated TCA cycle pathway of copper induced cell death

in recent publication. The interaction of these genes was

depicted with a PPI network, analyzed by the STRING

database (Figure 1B, Supplementary Table S1). By pearson

correlation analysis, 2,246 co-expressed lncRNAs with

16 cuproptosis regulators was identified

(coefficients>0.4 and p < 0.001, Supplementary Table S2).

Then, a lncRNA-mRNA co-expression network was generated

to describe the interrelations (Figure 1C). Last,

1,111 differentially expressed lncRNAs (Log2 fold

change >1 and FDR<0.05, Figure 1D, Supplementary Table

S3) between normal and cancer samples were selected for

further analysis.

Construction of cuproptosis-related
prognosis model

To construct prognosis model, the samples were randomly

divided into the train group and test group, of which the train

group was used to generate model and the test group to

validate model. Univariate Cox regression analysis of the

above 1,111 cuproptosis-related lncRNAs was performed in

the train group. We identified 42 prognosis-related lncRNAs

(p < 0.05, Figure 2A) and made a heatmap to portray the

expression of these lncRNAs in normal and cancer samples of

TCGA COAD/READ (Figure 2B). To decrease the fitting of

prognostic signatures, LASSO regression analysis was

employed to optimize the prognosis-related lncRNAs

(Figures 2C,D). 26 lncRNAs (Supplementary Table S4)

were extracted for multivariate Cox regression model.

Accidentally, we discovered that 26 prognosis-related

lncRNAs all positively correlated with cuproptosis

regulators (Figure 2E). Then, the multivariate Cox

regression model analysis was performed and the optimal

prognostic model was constructed with 15 lncRNAs (p <
0.05). 15 lncRNAs and their weighted coefficients were

shown in Supplementary Table S5.

With the median of risk score being the cut off, the

samples were regrouped into high risk group and low risk

group in the train group, the test group and the all samples

(Supplementary Table S6). The scatterplot of risk score,

survival time and survival status were drawn in the high

and low risk groups of the train group, the test group and

the external validation set (Figures 3A–I). The high risk group

showed poorer overall survival. Besides, the high risk group

also exhibited same survival disadvantage in patients with

stratified gender, T, N, M, and stage (Supplementary

Figure S1).

Assessment of cuproptosis-related
prognosis model

To detect the differences within the high and low risk groups,

PCA was conducted. The results indicated that all genes (Figure 3J),

cuproptosis regulators (Figure 3K) and 1,111 cuproptosis-related

lncRNAs (Figure 3L) could not distinguish the samples, while

lncRNAs in the risk model exhibited the best discrimination

ability (Figure 3m). Then, the univariate (Figure 4A) and

multivariate (Figure 4B) Cox regression analysis were employed

to assess whether the risk score could act as an independent
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prognostic factor for CRC. The results identified the great prediction

efficiency with HR value being 1.614 and 1.480 respectively. The

area under curve of ROCwere utilized to appraise the sensitivity and

specificity of the risk score. The 1-, 3- and 5-years AUC of all the

samples were 0.786, 0.742 and 0.702 (Figure 4C). Also, the 1-year

AUC of risk score was higher than that of stage, age and gender

(Figure 4D), implying the greater prediction efficiency. The C-index

showed the same results (Figure 4E).

FIGURE 2
Screen of cuproptosis-related lncRNAs. (A) The results of univariate Cox regression analysis of prognosis-related lncRNAs. (B) The expression
profiles of 42 prognosis-related lncRNAs. (C) The cross-validation in the LASSO model. (D) LASSO coefficient profile of prognosis-related lncRNAs.
(E) Sankey diagram of cuproptosis regulators and prognosis-related lncRNAs.
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GEO data (GSE39582, GSE17536, and GSE72970) and

clinical phenotypes were obtained for external validation of

the prognosis model. The results indicated that patients in

high risk group showed a shorter overall survival (Figures 3C,F,I,

Supplementary Table S7). The univariate (Figure 4F) and

multivariate (Figure 4G) Cox regression analysis identified the

risk score as an independent prognostic factor for CRC. The 1-,

3-, and 5-years AUC were 0.620, 0.612, and 0.598 (Figure 4H).

Although lower than the 1-year AUC of stage, the 1-year AUC of

risk score presented fine sensitivity and specificity (Figure 4I). Taken

together, the external validation confirmed the great prediction

efficiency for prognosis in CRC.

Construction and validation of nomogram

Combined risk score with clinicopathological features

including age, gender, T, N, M, and stage, we constructed a

nomogram to calculate the overall survival rate of 1-, 3-, and 5-

years (Figure 4J). The calibration plots demonstrated a good

concordance for the prediction efficiency of 1-, 3-, and 5-years

overall survival (Figure 4K). Furthermore, the DCA curve also

confirmed the prediction efficiency of nomogram and risk score

(Figure 4L). The 1-year AUC of the nomogram was up to 0.843

(p < 0.05, Figure 4M), showing the predominant predicative

ability.

FIGURE 3
Construction of the cuproptosis-related prognosis model. (A-C) The scatterplot of risk score in the train set, test set, and the external validation
set, respectively. (D-F) The distribution of survival time and survival status of high and low risk groups in the train set, test set, and the external
validation set. (G-I) The Kaplan–Meier survival curves of overall survival between high and low risk groups in the train set, test set, and the external
validation set. (J-M) The PCA with all genes, cuproptosis regulators, 1,111 cuproptosis-related lncRNAs and 15 model lncRNAs for all the
samples.
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FIGURE 4
Assessment of cuproptosis-related prognosis model and construction of Nomogram. (A,B) The univariate and multivariate Cox regression
analysis of overall survival in all samples. (C) The 1-, 3-, and 5-years ROC of risk score in all samples. (D) The 1-year ROC of risk score, age, gender and
stage. (E) The C-index of risk score, age, gender and stage. (F,G) The univariate and multivariate Cox regression analysis of overall survival in the
external validation set. (H) The 1-, 3-, and 5-years ROC of risk score in the external validation set. (I) The 1-year ROC of risk score, age, gender
and stage in the external validation set. (J) The nomogram was constructed with risk score, age, gender, T, N, M, and stage to predict the overall
survival rate of 1-, 3- and 5-years. (K) The calibration curves for predicting the probability of 1-, 3- and 5-years. (L) DCA curves for assessing the
clinical utility of the nomogram. (M) The 1-year ROC of nomogram, risk score, age, gender and stage.
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FIGURE 5
The correlations between clinicopathological features and immune cell infiltration with risk score. (A) The heatmap of 15 model lncRNAs
expression and clinicopathological features in high and low risk group. (B) The heatmap of GSVA with hallmark sets between high and low risk
group. (C) The heatmap of GSVAwith KEGG sets between high and low risk group. (D) The immune cell bubble plot. (E,F) The enrichment of immune
cells and immune functions in high and low risk group by ssGSVA algorithm. (G) The immune score, stromal score and ESTIMATE score in high
and low risk group by ESTIMATE algorithm. (H) The expression of immune activated genes between high and low risk group. *p < 0.05; **p < 0.01;
***p < 0.001.
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The correlations between
clinicopathological features and immune
cell infiltration with risk score

We analyzed the correlations between clinicopathological

features with risk score. As shown in Figure 5A, high risk

score was preferentially related to more M1, higher stage and

dead status. GSEA results of hallmark gene sets indicated that

high risk group was enriched with immune activation biological

functions, including inflammatory response, IL2/

STAT5 signaling, IL6/JAK/STAT3 signaling and interferon

gamma (Figure 5B). GSEA analysis of KEGG also showed

significant enrichment in high risk group with immune

activated pathways (Figure 5C), such as B cell receptor

signaling pathway, JAK/STAT signaling pathway, toll like

receptor signaling pathway, natural killer cell mediated

cytotoxicity and T cell receptor signaling pathway. The

immune cells enrichment analysis by multiple algorithms

demonstrated that high risk group was positively correlated

with the enrichments of CD8+ T cell, CD4+ T cell, B cell, NK

cell, macrophage and cancer associated fibroblast (Figure 5D).

Furthermore, high risk score was positively related with the

enrichment levels of NK cell, B cell, CD8+ T cell, CD4+

T cell, monocyte, macrophage and cancer associated fibroblast

(Supplementary Figure S2). Besides, ssGSEA results indicated

that high risk group was rich in immune cells (Figure 5E),

including dendritic cell, B cell, CD8+ T cell, macrophage, NK

cell and tumor infiltration lymphocyte, and immune functions

(Figure 5F), including APC co-stimulation, CCR, check-point,

cytolytic activity, inflammation promoting and type I IFN

response. The stromal score and immune score of each

sample were quantified with ESTIMATE algorithm

(Supplementary Table S8). The high risk group presented

higher immune score, stromal score and ESTIMATE score

(Figure 5G). The immune activity related genes such as

CD8A, CXLC10, CXCL9, GZMA, GZMB, IFNG, PRF1,

TBX2A, and TNF, were upregulated in high risk group,

especially CD8A, CXLC10, CXCL9, and PRF1 (Figure 5H).

The above results demonstrated that high risk was closely

correlated with progressed clinicopathological features and

high immune cell infiltration status, implying “hot tumor” type.

The investigation of risk score with TMB
and the clinical treatment

Considering the close relationship between risk score with

immune cell infiltration, we analyzed the levels of TMB and

clinical treatment response between different risk groups in this

part. Regretfully, no significant difference of somatic mutation

and TMB between high and low risk group was observed

(Supplementary Figures S3A,B). The Kaplan-Meier curves

showed no significant difference of overall survival between

high and low TMB group (Supplementary Figure S3C), but a

trend of a shorter 5-years survival in high TMB

group. Nonetheless, the differences of overall survival were

obvious between groups with different TMB level and risk

score (Supplementary Figure S3D). Then, we compared the

expression of immune checkpoint genes in the high and low

risk group, and found that all these genes showed high levels in

high risk group (Supplementary Figure S3E). To examine the

efficiency of immune checkpoint blockades, the IPS of TCGA

samples was downloaded online (Supplementary Table S9,

https://tcia.at/home). The high risk group presented high IPS

with anti-CLTA4 drug, meaning better immunotherapy response

(Supplementary Figure S3F). Last, we adapted the “pRRophetic”

package to calculate the IC50 of 251 common chemotherapy

drugs. The results showed that various anti-tumor drugs

presented lower IC50 in high risk group, such as rapamycin,

gemcitabine, paclitaxel (Supplementary Figures S3G–L,

Supplementary Figure S4).

Generation and immune cell infiltration
characteristics of cuproptosis-related
subtypes

To draw a comprehensive picture of cuproptosis-related

pattern, consensus clustering was performed with the

15 cuproptosis-related prognostic lncRNAs to group

samples into different signature subtypes (Supplementary

Figures S5A,B). Eventually, two cuproptosis-related

phenotypes were generated, termed as cluster 1–2

(Supplementary Figures S5C,D, Supplementary Table S10).

The correlations between clinicopathological features with

cluster group were analyzed. The results showed that

cluster 2 was preferentially related to higher T stage and

more alive status (Figure 6A). The Kaplan-Meier curves

indicated a better overall survival in cluster 2 than that in

cluster 1 (Figure 6B). The alluvial diagram showed the

majority of high risk samples was grouped into cluster 1,

while most of low risk samples were classified into cluster 2

(Figure 6C). Then, we employed PCA to verify whether cluster

group could distinguish the samples. The results showed a

markedly difference between the two clusters (Figure 6D). In

addition, t-SNE and uMAP analysis also indicated same result

(Figures 6E,F).

To evaluate the biological functions of the two cuproptosis-

related clusters, GSVA was performed with hallmark gene sets

and KEGG sets. Cluster 2 was markedly enriched in immune

activation functions and pathways, such as allograft rejection,

inflammatory response, interferon gamma response, interferon

alpha response, IL2/STAT5 signaling, IL6/JAK/

STAT3 signaling, antigen processing and presentation and

natural killer cell mediated cytotoxicity (Figures 6G,H). The

ssGSEA results indicated high enrichment of almost all the
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immune cells in cluster 2 group, including dendritic cell, B cell,

CD4+ T cell, CD8+ T cell, macrophage and NK cells

(Figure 7A). Then, the immune cells enrichment analysis was

further analyzed by multiple algorithms. The heatmap showed

the similarly high enrichment of almost all the immune cells in

cluster 2 group (Figure 7B). In addition, the cluster 2 group

showed higher immune score, stromal score and ESTIMATE

score (Figures 7C–E). The immune activity related genes were

upregulated in cluster 2, espically CD8A, CXLC10, CXCL9,

GZMA, IFNG, TNF, and PRF1 (Figure 7F). The above results

demonstrated that cluster 2 was significantly enriched in immune

infiltration cells, conforming to “hot tumor” type, while cluster

1 exhibited with low immune cells infiltration, according with

“cold tumor.”

FIGURE 6
The construction and function annotation of cuproptosis-related cluster. (A) The heatmap of 15 model lncRNAs expression and
clinicopathological features in cluster 1 and cluster 2. (B) The Kaplan–Meier survival curves of overall survival between cluster 1 and cluster 2. (C) The
alluvial diagram showed the attribute changes from risk score to cluster subtype. (D) The PCA of the two clusters. (E) The t-SNE of the two clusters. (F)
The uMAP analysis of the two clusters. (G) The heatmap of GSVA with hallmark sets between the two clusters. (H) The heatmap of GSVA with
KEGG sets between the two clusters.

Frontiers in Genetics frontiersin.org11

Zhu et al. 10.3389/fgene.2022.984743

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.984743


FIGURE 7
The immune cell infiltration characteristics of cuproptosis-related clusters. (A) The enrichment of immune cells in the two clusters by ssGSVA
algorithm. (B) The immune cell bubble plot in the two clusters. (C–E) The immune score, stromal score and ESTIMATE score in the two clusters by
ESTIMATE algorithm. (F) The expression of immune activated genes between the two clusters. (G) The expression of immune checkpoint genes
between the two clusters. (H) The distribution of MSI status in the two clusters. (I) The Kaplan-Meier curves of overall survival in different groups
of TMB combination with clusters. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 8
The Relationship of cuproptosis-related clusters with clinical treatment. (A–D) The IPS in the two clusters. (E–X) The IC50 of 20 anti-tumor
drugs in the two clusters.
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Relationship of cuproptosis-related
subtypes with tumor somatic mutation
and clinical treatment

Given the close correlation between cuproptosis-related

cluster with immune cell infiltration, we further explore

whether cuproptosis-related cluster could affect

immunotherapy response. First, we examined the expression

of immune checkpoint genes, and found high levels of all

these genes in cluster 2 (Figure 7G). Second, the status of MSI

was compared between the two clusters. The cluster 2 showed

high frequency of MSI-H and low frequency of MSS (Figure 7H).

Third, it is a pity that no significant difference of somatic

mutation and TMB between the two clusters was observed

(Supplementary Figures S6A–C). However, the Kaplan-Meier

curves showed obvious differences between groups with different

TMB level and cluster (Figure 7I). Then, we examined the

efficiency of immune checkpoint blockades, and found high

IPS with anti-CLTA4 drug or combination of anti-CTLA4

and anti-PD-1 drug in cluster 2, meaning better

immunotherapy response (Figures 8A–D). Last, we adapted

the “pRRophetic” package to predict the IC50 of different

chemotherapy drugs in the two clusters. The results indicated

that multiple drugs presented lower IC50 in cluster 2

(Figures 8E–X).

Discussion

In the past decades, intracellular copper toxicity has not

been clearly elaborated (Oliveri, 2022). Although the drugs of

copper ionophores have entered clinical trials, beneficial

outcomes have not been acquired, which may result from

failing to screen appropriate patient populations and

understand the action of drugs’ mechanism (O’Day et al.,

2013; Davis et al., 2020; Tsang et al., 2020). With the discovery

of copper-induced cell death mechanism—cuproptosis in

recent, it will improve our cognition of drugs targeting

copper and help to construct suitable patient subgroup. In

this study, we constructed a prognosis model with

cuproptosis-related lncRNAs to predict prognosis and

clinical efficiency of anti-tumor drugs for CRC patients.

Furthermore, a cuproptosis-related cluster was established

and closely correlated with clinicopathological features and

immune cell infiltration. The cuproptosis-related patterns

contribute to our understanding of mechanisms targeting

copper drugs and tumor microenvironment, suggesting an

available biomarker for distinguishing “hot tumor” and “cold

tumor” and predicting efficiency of immunotherapy in CRC.

LncRNAs has been widely reported to participate in the

development and progression of various cancers (Yang and

Al-Hendy, 2022). However, there was no cuproptosis-related

lncRNA reported up to now. In consideration of multi-

dimensional regulation of lncRNAs in the levels of

epigenetics, transcription, post-transcription, translation and

post-translation, there are reasons to believe that lncRNAs are

involved in the regulation of cuproptosis and the roles of

cuproptosis on the progression of cancers. In the study, we

identified 15 cuproptosis-related and prognosis-related

lncRNAs, which may be conducive to further research of

lncRNAs and cuproptosis. Based on the expression of the

15 lncRNAs, a cuproptosis-related prognosis model was

constructed. The univariate and multivariate Cox regression

analysis, ROC and C-index demonstrated the predominant

efficiency of predicting prognosis of this model. A nomogram

was constructed to compute the survival rate of 1-, 3-, and 5-

years, whose accuracy was confirmed by ROC, calibration and

DCA curves. Therefore, we established and verified a novel

cuproptosis-related prognosis model and nomogram for CRC.

With the advance of tumor immunobiology and targeted

drugs, immunotherapy has been widely adapted in clinic and

archived beneficial outcomes (Zhang et al., 2021; Luo et al., 2022).

Nonetheless, the outcome is highly heterogeneous in patient

subgroup with different tumor microenvironment (Zeng et al.,

2021). The tumor microenvironment has been demonstrated to

affect the result of immunotherapy in various studies (Song et al.,

2021). According to the immune cell infiltration in tumor

microenvironment, the tumor is classified into two types: “hot

tumor” and “cold tumor” (Zhao et al., 2021). “Hot tumor” is rich

in immune cells and immune activated, therefore positive

response to immunotherapy, while “cold tumor” is short of

immune cells and immune deserted, thus no-response to

immunotherapy. In this work, high risk group was enriched

with immune activated functions and pathways and high

immune score. The immune cell infiltration analysis showed

high enrichment in high risk group and positive correlation of

immune cell infiltration with risk score. Therefore, the high risk

group was classified as “hot tumor,” while the low risk group was

“cold tumor.” The drug sensitivity analysis indicated the low

IC50 of various anti-tumor drugs in high risk group, which

provided foundation for the selection of clinical treatment

schedule. When we examined the efficiency of immune

checkpoint blockades, only drugs anti-CTLA4 exhibited a

positive response in high risk group. Various factors may

intervene immunotherapy. Consequently, in-depth studies

need to be taken to dissect the correlation of cuproptosis with

tumor microenvironment.

To draw a synthetic picture of cuproptosis-related patterns, a

cuproptosis-related cluster was constructed based on the

15 lncRNAs. The cuproptosis-related cluster was closely

correlated with clinicopathological features and prognosis of

CRC. GSVA and immune cell infiltration analysis showed

high enrichment of immune activated pathways, such as B cell

receptor signaling pathway, cytokine-cytokine receptor

interaction, natural killer cell mediated cytotoxicity, T cell

receptor signaling pathway and toll like receptor signaling
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pathway, and multiple immune cells including dendritic cell,

B cell, CD4+ T cell, CD8+ T cell, macrophage and NK cells.

Accordingly, cluster 2 was grouped into “hot tumor,” while

cluster 1 was “cold tumor.” Similarly, the drug sensitivity

analysis indicated the low IC50 of various anti-tumor drugs in

cluster 2. Furthermore, we examined the expression of immune

checkpoint genes in two clusters and found high expression in

cluster 2. In addition, immune checkpoint blockades of anti-

CTLA4 and anti-PD-1 exhibited a positive response in cluster 2.

Taken together, the cuproptosis-related cluster was closely

correlated with clinicopathological features and immune cell

infiltration, and contributed to differentiating “hot tumor” and

“cold tumor.” The generation of cuproptosis-related cluster is

expected to be a significant biomarker for prognosis evaluation

and a target for altering “cold tumor” into “hot tumor” in CRC.

Conclusion

We comprehensively explored the cuproptosis-related

pattern in CRC samples from different databases, and

constructed a cuproptosis-related prognosis model and a

cuproptosis-related cluster with 15 cuproptosis-related

lncRNAs. The cuproptosis-related prognosis model and

cluster were both closely correlated with clinicopathological

features and immune cell infiltration, and conducive to

distinguishing “hot tumor” and “cold tumor.” In a word,

the systematic analysis emphasized the crucial roles of

cuproptosis-related patterns in prognosis and immune cell

infiltration of CRC, which contributed to our understanding

of the interaction of cuproptosis and tumor

microenvironment.
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