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Locating the genetic variation of important livestock and poultry economic

traits is essential for genetic improvement in breeding programs. Identifying the

candidate genes for the productive ability of Huaxi cattle was one crucial

element for practical breeding. Based on the genotype and phenotype data

of 1,478 individuals and the RNA-seq data of 120 individuals contained in

1,478 individuals, we implemented genome-wide association studies

(GWAS), transcriptome-wide association studies (TWAS), and Fisher’s

combined test (FCT) to identify the candidate genes for the carcass trait, the

weight of longissimus dorsi muscle (LDM). The results indicated that GWAS,

TWAS, and FCT identified seven candidate genes for LDM altogether: PENKwas

located by GWAS and FCT, PPAT was located by TWAS and FCT, and XKR4,

MTMR3, FGFRL1, DHRS4, and LAP3 were only located by one of the methods.

After functional analysis of these candidate genes and referring to the reported

studies, we found that they were mainly functional in the progress of the

development of the body and the growth of muscle cells. Combining advanced

breeding techniques such as gene editing with our study will significantly

accelerate the genetic improvement for the future breeding of Huaxi cattle.
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Introduction

In ancient China, cattle, as the primary means of production, were mainly used as the

draft ox and rarely considered the source of meat. With the rapid development of the

economy, consumers’ demand for beef, concerning quantity and quality, has increased in

China. There is an urgent need to improve the productivity and quality of beef for the beef

breed in China by directly changing the production capacity of beef cattle.
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Locating the genetic variation of important livestock and

poultry economic traits is still essential for genetic improvement.

The genome-wide association study (GWAS) has successfully

identified thousands of loci associated with complex features

(Watanabe et al., 2019). However, 90% of the associated single

nucleotide polymorphisms (SNPs) are located in the non-coding

region of the gene, and their functions still are unknown, so the

molecular mechanism of phenotypic variation cannot be

explained clearly (Cannon and Mohlke, 2018). Previous

studies have proved that gene expression is important in the

phenotype of human diseases (He et al., 2013), and many genetic

variations associated with phenotypes were likely to be

expression quantitative trait loci (eQTL) (Nicolae et al., 2010).

Furthermore, eQTL can be used to estimate the effects on gene

expression and then be combined with physical phenotypes to

conduct transcriptome-wide association studies (TWAS) to

identify pivotal expression–trait associations (Gusev et al.,

2016). The TWAS algorithm has been successfully

implemented to identify the causal genes for the essential

quantitative trait in cattle (Koupaie et al., 2019; Liu et al., 2021).

In this study, we utilized three strategies to identify the

candidate genes that significantly affect the producibility of

Huaxi cattle. First, we applied GWAS to identify the

candidate gene by using 1,478 Huaxi cattle genotypes with the

phenotypes of longissimus dorsi muscle (LDM) weight. Second,

we implemented TWAS with genotypes (1,478 individuals), gene

expression data of 120 individuals (contained in the

1,478 individuals), and phenotypes. Third, we utilized an

ensemble approach, Fisher’s test (Yu et al., 2008; Kremling

et al., 2019), combining the results of GWAS and TWAS to

identify the candidate gene. Finally, we analyzed the function and

preliminarily explored the molecular mechanism of the

candidate genes with Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses, which

was helpful to the following breeding of Huaxi cattle.

Materials and methods

Animal resources and phenotype: The Huaxi cattle population,

including 1,478 cattle born between 2008 and 2021, was established

in Ulgai, Xilingol League, and Inner Mongolia of China. After

weaning, all calves were moved to the Jinweifuren fattening farm in

Beijing, where they shared uniform management and standardized

feeding [they were fed with the total mixed ratio (TMR) according

to the eighth revised edition of the Nutrition Requirements of Beef

Cattle (NRC, 2006)]. Animals were slaughtered at 22–26 months of

age with electrical stunning, followed by bloodletting. The weight of

the longissimus dorsi muscle (LCM, kg) was weighed after being

chilled at 4°C for 24 h.

Genotype and quality control: Genomic DNA was isolated from

blood samples using the TIANampBloodDNAKit (Tiangen Biotech

Co., Ltd., Beijing, China). DNA quality was acceptable when the

A260/A280 ratio was in the range of 1.8–2.0. All individuals were

genotyped using an Illumina BovineHD BeadChip that contained

770,000 SNPs. Quality control (QC) procedures were carried out

using PLINK v1.9 (Purcell et al., 2007) to filter out SNPs with call

rate <90%, minor allele frequency (MAF) < 0.05, and a significant

deviation from the Hardy–Weinberg equilibrium (p < 10−6),

and >10% animals with missing genotype data were removed

from the analysis. Finally, 1,478 cattle with 607,198 SNPs on

29 autosomal chromosomes with an average distance of 3 kb were

included in subsequent analyses.

RNA extraction, library construction, sequencing, and quality

control: Total RNA was extracted from SAT samples using TRIzol

reagent (Invitrogen, Life Technologies) following themanufacturers’

instructions. The RNA concentration, purity, and integrity were,

respectively, analyzed on Qubit RNA Assay Kit (Life Technologies,

CA, United States), NanoPhotometer Spectrophotometer (Thermo

Fisher Scientific,MA,United States), andRNANano 6000Assay Kit

of the Bioanalyzer 2,100 system (Agilent Technologies, CA,

United States). The high-quality samples with 28S/18S > 1.8 and

OD 260/280 ratio >1.9 were applied for constructing cDNA libraries

according to the protocol of IlluminaTruSeqTMRNAKit (Illumina,

United States). Samples that presented an RNA integrity number

greater than 7.0 were then sent for paired-end RNA sequencing

(read length 150 bp) on the Illumina NovaSeq 6,000 platform (Modi

et al., 2021). The RNA sequencing was completed by Beijing

Novogene Technology Co., Ltd. Trimmomatic (v0.39) was

applied to remove the reads containing low-quality reads, poly-

N, and adaptor sequences (Bolger et al., 2014). Sequentially, the

clean reads were aligned to the Bos taurus reference genome ARS-

UCD1.2 using HISAT2 (v2.2.1) (Lachmann et al., 2020), and then

the generated SAM files were converted to BAM files through

SAMtools (v1.11). featureCounts (v1.5.2) was used to estimate

read counts (Liao et al., 2014).

GWAS: GWAS analysis of LDM traits based on the linear

mixed model (LMM) was completed using GEMMA (Zhou and

Stephens, 2012):

y � Xb + Sg + Zα + e,

where y is the vector of phenotypes, b is the vector of fixed effect

including age, sex, farm, and the days of fattening, S is the

indicator variables of SNPs (0, 1, 2), g is the effect vector of SNPs,

α is the polygenic effect vector, α ~ N(0, Kσ2g), e is the random
residual, and e ~ N(0, Iσ2e). In GWAS, the Wald test was used to

test the SNP significance, and the threshold of the p-value was set

at 1/m, where m is the number of SNPs (Wu et al., 2014).

TWAS: REML (restricted maximum likelihood) was utilized

to evaluate the heritability of each gene base on the gene

expression and cis-SNPs located within 1 Mb of the physical

position of the gene. Then, the gene with significantly non-zero

heritability will be incorporated in the subsequent analysis. For

the preselected gene, Bayesian Sparse LMM (BSLMM) was used

to estimate the effect values of the cis-SNPs for gene expression,

and the prediction model that estimated gene expression with
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cis-SNPs was constructed (Zhou et al., 2013). Afterward, the

prediction model was utilized to estimate the gene expression

values of the 1,358 individuals without transcriptome sequencing

data but with genotypes (Dai et al., 2019; Zhou et al., 2020).

Finally, all of the gene expression data were integrated with

phenotypes to implement TWAS with LMM:

y � Xb +Wu + e,

where y and b are the same as in GWAS,W is the designmatrix of

the gene expression matrix, which is constructed with transcripts

per kilobase million (TPM) (Luningham et al., 2020), u is the

vector of gene effect, e is the random residual, and e ~ N(0, Iσ2e).
In TWAS, the significant gene test was implemented with FDR,

and the threshold of the p-value was set at FDR×n/m, where

FDR = 0.01, n is the number of genes with a p-value < 0.01, andm

is the total number of genes in the LMM (Benjamini and

Hochberg, 1995).

Fisher’s combined test (FCT): The p-value in GWAS of each

SNP in the top 10% of most associated SNPs was assigned to the

nearest gene and then combined with the p-value in TWAS (linear

model with multi-dimensional scaling (MDS) principal coordinates

+ 5 probabilistic estimation of expression residuals (PEERs)) for that

same gene using Fisher’s combined test as implemented in the

sumlog method in the metap package (Dewey 2017) in R. TWAS

p-values for genes which were not tested in TWAS was set to p =

1 prior to combining with GWAS p-values (Kremling et al., 2019).

Similarly, the significant gene test was implemented in FCT using

FDR with an identical threshold of the p-value.

Gene functional analysis: Gene Ontology (GO) is a database

describing the function of genes and proteins. It annotated the

genes into three types of terms: MF, BP, and CC (Ashburner

et al., 2000). The KEGG database integrated the genome,

regulatory network, and system function information

(Kanehisa et al., 2016). To explore the function of candidate

genes, we applied DAVID (https://david.ncifcrf.gov/) to

implement GO and KEGG analyses of the genes and

constructed the associated network of the gene-participated

terms using ToppCluster (https://toppcluster.cchmc.org/).

Results

Genome-wide association studies

Figure 1A shows the Manhattan plot and QQ-plot of the

GWAS analysis of LDM. The QQ-plot showed that there was no

FIGURE 1
Identification of the candidate genes for LDM. (A) Manhattan plot and QQ plot of GWAS; the red dashed line indicates the threshold of
Bonferroni’s multiple test, p = 1.65 × 10−6. (B)Manhattan and QQ plots of TWAS; the red dashed line indicates the threshold of the corrected p-value
with FDR = 0.01 (p = 1.33 × 10−4). (C)Manhattan andQQ plots of FCT; the red dashed line indicates the threshold of the corrected p-value with FDR =
0.01 (p = 1.33 × 10−4). (D) Distribution of the estimated heritability of the genes. The blue area represents the distribution of the heritability of all
gene expression, and the blue dashed line represents themean of the heritability estimates of converged gene expression (0.152 ± 0.263); the orange
area represents the expression of 1,650 significant genes (p < 0.05), and the orange dashed line represents the mean of the heritability estimates of
significant gene expression (0.631 ± 0.324). (E) Results of GO and KEGG analyses of the candidate genes.
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apparent systematic deviation. Most of the points were

distributed around the diagonal (the expansion coefficient is

1.05), which means that only a few SNPs were associated with the

phenotype. The threshold of the p-value (p = 1.65 × 10−6) was set

with Bonferroni’s multiple test, and three SNPs in the 14th

chromosome were significantly associated with the

phenotypes, among which BovineHD1400006836 and

BovineHD4100011289 were annotated to PENK, BTB-

00557532 was annotated to XKR4, and the reference cattle

genome was ARS-UCD1.2 more details are demonstrated in

Table 1.

Transcriptome-wide association studies

After removing the genes with the average TPM

(transcripts per kilobase million) less than 0.1, the

expression levels of 15,325 genes of 120 individuals were

assigned as phenotypes and 15,401 cis-SNPs, located within

1 Mb of the physical position of the gene, were assigned as the

genotypes, and the heritability of the gene expression was

estimated with REML. As shown in Figure 1B, the heritability

of 15,324 genes converged in the progress of REML, and the

average heritability was 0.152 ± 0.263. With p < 0.05 as the

threshold, 1,650 genes were retained for the subsequent

analysis, with an average heritability of 0.631 ± 0.324.

The Manhattan plot and QQ plot of TWAS for LDM were

demonstrated in Figure 1C. The QQ-plot indicated that most

points were distributed around the diagonal (expansion

coefficient λ = 1.03), and several genes were significantly

associated with LDM. After being corrected for the false

discovery rate (FDR) of 0.01, the threshold of the p-value was

set at 1.33 × 10−4, and five genes were found to be significantly

associated with LDM. The location of these genes is listed in

Table 2. PPAT (p = 7.68 × 10−5), MTMR3 (p = 9.11 × 10−5),

FGFRL1 (p = 1.17 × 10−4), DHRS4 (p = 1.26 × 10−4), and LAP3

(p = 1.32 × 10−4) were located in chromosomes 6, 17, 6, 10, and 3,

respectively.

Fisher’s combined test

The Manhattan plot and QQ plot of FCT analysis are shown

in Figure 1D. The expansion coefficient λ of the QQ-plot was

1.02 with no systematic deviation, and most points were

distributed on the diagonal, with only a minority of points

floating above the diagonal. As with TWAS, the threshold of

the p-value was set at 1.33 × 10−4. The Manhattan plot indicated

TABLE 1 Details of the significantly associated SNPs identified by GWAS.

SNP Chromosome Locationa MAFb Lengthc Candidate gened p-valuee

BovineHD1400006836 14 23,552,180 0.35 5,312 PENK 6.09E-07

BTB-00557532 14 24,643,266 0.38 32,311 XKR4 1.26E-06

BovineHD4100011289 14 23,553,712 0.22 6,844 PENK 1.63E-06

aThe SNP position (bp) on ARS-UCD1.2.
bThe minor allele frequency.
cThe distance between SNP and the nearest gene.
dThe nearest genes found on the Ensemble database (www.ensembl.org).
ep-values calculated by LMM.

TABLE 2 Details of the five candidate genes identified by TWAS.

Gene Chr Starta Enda Effect ± SDb p-valuec h2 ± SDd

PPAT 6 71,782,614 71,821,764 -0.0031 ± 0.00089 7.68E-05 0.76 ± 0.32

MTMR3 17 68,971,211 69,102,722 -0.0060 ± 0.00020 9.11E-05 0.61 ± 0.31

FGFRL1 6 117,346,407 117,358,800 0.0020 ± 0.00068 1.17E-04 0.58 ± 0.30

DHRS4 10 21,088,232 21,100,627 -0.0069 ± 0.0022 1.26E-04 0.68 ± 0.32

LAP3 3 37,140,752 37,166,191 0.018 ± 0.0031 1.32E-04 0.70 ± 0.34

aThe SNP position (bp) on ARS-UCD1.2.
bThe effects of gene expression calculated by LMM in TWAS.
cp-values calculated by LMM.
dThe heritability of gene expression calculated by REML.
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that FCT identified two candidate genes significantly associated

with LDM, namely, PPAT (p = 9.69 × 10−5) and PENK (p = 7.26 ×

10−5), which were also identified by TWAS and GWAS,

respectively.

Functional analysis of candidate genes

Combining the results of GWAS, TWAS, and FCT, PENK,

XKR4, PPAT, MTMR3, FGFRL1, DHRS4, and LAP3 were

identified as the candidate genes of LDM. To further explore

the function of these genes, we performed GO and KEGG

analyses of these genes. The results are demonstrated in

Figure 1E. These candidate genes participated in 48 GO

terms, which contained 16 molecular function (MF) terms,

23 biological progress (BP) terms, and nine cellular

component (CC) terms. For MF, the candidate genes mainly

function in the progress of fibroblast growth factor activity

regulation (GO:0005007 and GO:0017134), NADPH activity

(GO:0004090), and serine, threonine, and tyrosine metabolism

(GO:0004722 and GO:0004725). KEGG pathway analysis found

that candidate genes were involved in 10 pathways, mainly

including amino acid and peptide metabolism, signal

transduction pathway, purine metabolism, and other biological

processes.

Discussion

Abundant studies have proven that GWAS could precisely

locate the candidate loci for the quantitative traits in livestock

breeding, especially for the traits with high heritability. It was

one of the most widespread methods used in plant and animal

improvement programs. However, the regulatory mechanism

from SNP to phenotypic variation was still unknown in most

cases, and it was impossible to determine the genuine

pathogenic gene of the trait associated with the candidate

SNPs due to the linkage disequilibrium (LD) in the SNPs. In

recent years, the innovation of sequencing technology

provided more other omics biological information,

transcriptome, metabolome, etc., and assisted in locating

candidate genes more accurately. TWAS implement the

association analysis based on the gene expression data with

the phenotype to locate the candidate genes directly. The

results of previous studies indicated that TWAS performed

well in practice (Dai et al., 2019; Luningham et al., 2020; Li

et al., 2021). In this study, we not only performed GWAS and

TWAS individually but also utilized an ensemble approach,

FCT, combining the results of GWAS and TWAS to locate the

candidate genes for LDM.

For LDM in this study, we indented seven candidate genes

by GWAS, TWAS, and FCT in total: PENK was located by

GWAS and FCT, PPAT was located by TWAS and FCT, and

the remaining five genes were only located by one of the

methods. An et al. (2019) also located PENK, which was

associated with the height of Brahman cattle and Nerol

cattle populations. The studies on humans also found that

PENK regulated cell development by encoding the opioid

peptide growth factor (ORF) to affect height (Pryce et al.,

2011). Zhan et al. (2014) found that a variation site (8p12.1) in

XKR4 was associated with human thyroid-stimulating

hormone (TSH) secretion, and it was the candidate gene for

the development traits in Brahman cattle, Korean yellow

cattle, Chinese Holstein cattle, and Chinese Sujiang pig

populations (Lindholm-Perry et al., 2012; Edea et al., 2020;

Naserkheil et al., 2020; Xu et al., 2020). The protein encoded by

PPAT was a member of the purine/pyrimidine

phosphoribosyltransferase family, which was essential in

regulating the proliferation, migration, and invasion of

thyroid cancer. Gene function analysis found PPAT

functionals in inosinic acid biosynthesis (GO:0006189), and

GART was the functional partner of PPAT, which had a

fundamental impact on nucleotide metabolism and internal

environment balance (Welin et al., 2010). MTMR3 is a

member of the MTM family associated with muscular

dysplasia, which participates in the cell progress of

proliferation, differentiation, autophagy, and division by

regulating the synthesis of myotube (Hnia et al., 2012). The

reported studies have confirmed thatMTMR3 was the virtually

candidate gene in the Holstein population for the quantitative

traits, such as milk fat rate, milk yield, and milk protein

content (Pimentel et al., 2011). FGFRL1 encoded fibroblast

growth factor receptor one, which plays a crucial role in the

progress of cell adhesion, embryonic slow muscle fiber

development, and bone tissue formation (Amann et al.,

2014; Niu et al., 2015; Yang et al., 2016). Bluteau et al.

(2014) indicated a slight reduction in the whole bone of the

FGFRL1 gene knockout mice. The study on Holstein also

identified FGFRL1 as a candidate gene for development

traits in the Holstein population (Zhang et al., 2017).

DHRS4 encodes NADP(H)-dependent retinol

dehydrogenase/reductase. The study on pigs found that

rs196958886, one of the SNPs of this gene, may induce the

peroxisome proliferator-activated receptor alpha (PPARα)
gene, affect the interaction between fatty acids and glucose

metabolism, and ultimately affect the quality of pork (Hwang

et al., 2017). LAP3 encodes leucine aminopeptidase, which is

functional in protein metabolism and growth (Yao et al.,

2020). Substantial studies on cattle found that LAP3 was a

candidate gene that affects important production traits such as

visceral organ weight, body size, and carcass traits (Setoguchi

et al., 2009; Bongiorni et al., 2012; Xia et al., 2017; An et al.,

2018; An et al., 2020). Zheng et al. (2011) implemented

association analyses between LAP3 and milking traits in the

Holstein population and concluded that LAP3 was the vital

candidate gene for milking traits.
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Conclusion

In conclusion, we identified seven candidate genes of LDM

by GWAS, TWAS, and FCT based on genome and

transcriptome information. According to the previous

relevant studies and the results of gene function analysis,

the candidate genes were mainly functional in the progress

of the development of the body and the growth of muscle cells.

Combining advanced breeding techniques such as gene

editing with our study will significantly accelerate the

genetic improvement of Huaxi cattle.
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