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Recent advances in single cell RNA sequencing (scRNA-seq) technologies have

been invaluable in the study of the diversity of cancer cells and the tumor

microenvironment. While scRNA-seq platforms allow processing of a high

number of cells, uneven read quality and technical artifacts hinder the ability

to identify and classify biologically relevant cells into correct subtypes. This

obstructs the analysis of cancer and normal cell diversity, while rare and low

expression cell populationsmay be lost by setting arbitrary high cutoffs for UMIs

when filtering out low quality cells. To address these issues, we have developed

a novel machine-learning framework that: 1. Trains cell lineage and subtype

classifier using a gold standard dataset validated using marker genes 2.

Systematically assess the lowest UMI threshold that can be used in a given

dataset to accurately classify cells 3. Assign accurate cell lineage and subtype

labels to the lower read depth cells recovered by setting the optimal threshold.

We demonstrate the application of this framework in a well-curated scRNA-seq

dataset of breast cancer patients and two external datasets. We show that the

minimum UMI threshold for the breast cancer dataset could be lowered from

the original 1500 to 450, thereby increasing the total number of recovered cells

by 49%, while achieving a classification accuracy of >0.9. Our framework

provides a roadmap for future scRNA-seq studies to determine optimal UMI

threshold and accurately classify cells for downstream analyses.
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Introduction

One of the key objectives in cancer genomics is characterizing

the composition and diversity of cancer and normal cells in the

tumor microenvironment (TME) (Ren et al., 2018). Several

studies have shown that the composition of the TME, such as

the prevalence of infiltrating lymphocytes, polarity of myeloid

cells and signaling from stromal components play a critical role

in the maintenance and progression of malignant cells, and can

serve as indicators of therapeutic potential and response (Gooden

et al., 2011; Awad et al., 2018; Maibach et al., 2020; Wu et al.,

2020; Geng et al., 2021). The study of the TME has been greatly

enhanced by the introduction of single cell RNA sequencing

(scRNA-seq), which enabled characterizing the diversity and

phenotypes of cells in a tumor at a fine resolution (Rubio-

Perez et al., 2021; Tang et al., 2022).

Since the introduction of scRNA-seq more than a decade ago,

several incremental technological advances have improved the

accessibility and quality of transcriptomic analyses (Hwang et al.,

2018; Chen et al., 2019). One such advance is the introduction of

unique molecular identifiers (UMIs) which allows direct

quantification of available transcripts (Islam et al., 2013).

While non-UMI scRNA-seq platforms as Smart-Seq2 provide

an improved transcript coverage and high level of mappable

reads, UMI platforms such as 10X and drop-seq benefit from the

limited amplification bias from highly abundant transcripts

(Picelli et al., 2014; Zhang et al., 2019). The higher

throughput of UMI platforms also improves the detection

rates of rare cell populations, such as certain immune cells,

within tumor samples (Azizi et al., 2018). Thus, scRNA-seq

technologies have greatly enhanced the ability to characterize

the diversity of cancer cells and the TME.

However, the ability to accurately classify the cell types in

scRNA-seq dataset is often limited by technical factors, such as

read quality of the cells. The quality control (QC) process in a

typical scRNA-seq pipeline involves identification and filtering

out cells of low quality, typically based on the number of UMIs,

number of unique genes, and/or the percentage of mitochondrial

DNA (mtDNA). The stress induced by droplet-based UMI

methods introduces a challenge in ensuring that the UMIs

map to healthy cells (Chittur et al., 1988). For example, cells

with leaky or damaged membranes can result in a drop in the

number of UMIs and genes detected, while the number of UMIs

mapping mtDNA may become relatively high (Luecken and

Theis, 2019). This complicates the distinction between true

low-quality cells and quiescent, small, and/or rare cell

populations, thus creating a trade-off between cell quality and

diversity during the QC process (Luecken and Theis, 2019).

Since mitochondrial DNA content varies significantly across

organisms and tissues, comprehensive analysis of these variables

helps to establish universal organism and tissue-specific

threshold guidelines (Osorio and Cai, 2021). However, due to

the variability in the number of UMI and genes owing to

biological and technical factors, a similar universal threshold

cannot be established a priori. A probabilistic model was

proposed to sort out low-quality cells but its accuracy was

limited by the prevalence of low-quality cells, which is usually

unknown (Hippen et al., 2021). Additionally, several scRNA-seq

pre-processing pipelines included different approaches for QC

including the option to view the UMI distribution per cell type

using user-defined marker genes (McCarthy et al., 2017; Guo

et al., 2021; Grandi et al., 2022). However, these approaches

generally depend on the user’s judgment to detect outliers (low-

quality cells) from reads and/or gene distribution curve. The

scRNA-seq literature shows the number of reads threshold

selected at QC can vary from as low as 100 and up to

2500 UMIs, yet the rationale for selecting such thresholds is

usually missing (Liu et al., 2021; Gambardella et al., 2022; Gao

et al., 2022; Karademir et al., 2022; Lian et al., 2022). Another

approach which involves an iterative process between the QC

step and downstream analysis was also proposed to improve the

detection of low-quality cells (Luecken and Theis, 2019). But the

mechanism by which the downstream information can be used to

optimize an initial reads threshold is not yet defined.

To address the lack of a systematic approach to determine an

optimal reads threshold for filtering cells and classifying cells

with high accuracy, we have developed a novel machine learning

framework that uses cell identity information collected from a

high-quality gold standard. Using this approach, we can identify

the lowest reads cut-off that can be implemented in an scRNA-

seq data and accurately classify cell lineages and subtypes. We

used expert-labelled lineage and cell type identities from a gold

standard breast cancer scRNA-seq dataset to train the predictive

classifiers. We systematically downsampled the reads per cell in

the gold standard dataset using a Poisson model and then applied

the classifier to predict cell types. We then calculated the

prediction accuracies of the classifiers using the known

identities of the cells. This allowed us to determine the

optimal threshold at which sufficient biological information

was retained. Using this approach, we rescued 49% more cells

from the gold standard dataset, which is valuable for downstream

analyses of the TME. Using two external datasets, we show that

our approach can be applied to low expression cells and to

subtypes of major cell types as neutrophils and T-cell subtypes,

respectively. Importantly, our framework can be extended to any

scRNA-seq dataset where users seek to rescue and classify

additional cells at optimal read depths.

Methods

Analysis workflow

The analysis pipeline consists of the following main steps

(Figure 1). We applied a stringent QC threshold on the FELINE

dataset (raw UMIs) to filter for the high-confidence, high-quality
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cells. A combination of unsupervised and supervised expert-

led approaches was used to generate the high-quality cell

lineage and subtype labels which were used at the gold

standard for downstream analysis. For each dataset, we

first split it into training and test sets (50/50). Next, the

training set was used to train the classification models to

predict cell lineage and subtypes. The test set was then

downsampled using Poisson model at different target UMI

thresholds. We then assessed the accuracy of the

classification models on the test set at different target

UMI thresholds. The analysis steps are described in more

details in the subsections below.

Gold standard scRNA-seq dataset pre-
processing

We used the FELINE clinical trial scRNA-seq dataset which

spans 35 patients with ER-positive HER2-negative early stage

breast cancer (Griffiths et al., 2021). The patient samples were

processed using the 10X Chromium platform and sequenced

using 150-bp paired-end sequencing at a median depth of

34,000 reads per cell (Griffiths et al., 2021). The reads were

aligned to a reference genome (GRChg38) using Bioinformatics

the ExperT SYstem and CellRanger v.3.0.2 pipelines (Chen and

Chang, 2017). FeatureCounts was then used to generate a matrix

of gene transcript UMIs for each cell, which we refer to as

“original dataset” in this manuscript (Liao et al., 2014).

To generate the gold standard dataset, we applied a stringent

QC filter which retained cells with >1,500 reads,

500—7,000 unique genes, and less than 20% mitochondrial

content, as reported in the original study (Griffiths et al.,

2021). After filtering out “low-quality” cells and doublets, we

retained 176,644 “high-quality” cells. To generate Uniform

Manifold Approximation and Projection (UMAP), we log-

normalized, scaled the count matrix, and ran principal

component analysis (PCA) on the 2000 highly variable genes

using R package Seurat v.4.1.1 (Butler et al., 2018). We then

FIGURE 1
Analysis plan workflow. Flow chart shows the process of initial QC and generation of gold standard cell type annotations from the FELINE
dataset. This is followed by a 50/50 split of a subsample into training and test sets for both SingleR and SingleCellNet classifiers for all datasets. The
test set counts were then transformed using a Poisson model using different thresholds which is then used to determine the classification accuracy
of lineage and cell type labels.
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constructed the K nearest neighbor and using Seurat’s

FindNeighbor function on 10 principal components which

was used to construct the UMAP. We then used SingleR to

generate a preliminary cell type label for each cell using

Human Primary Cell Atlas (HPCA) as a reference

(Mabbott et al., 2013; Aran et al., 2019). These labels were

used to annotate the clusters as either epithelial, stromal, or

immune based on the most frequent cell type labels by

SingleR. The SingleR labels were validated using lineage

marker gene expression for epithelial cells (KRT19,

CDH1), stromal cells (FAP, HTRA1), and immune cells

(PTPRC) (Griffiths et al., 2021). SingleR cell type labels

were also validated using cell type marker gene expression

for macrophages (CSF1R, CD163), T-cells (CD2, CD247),

B-cells (MS4A1, IGHM), fibroblasts (COL5A1, FBLN1),

endothelial cells (VWF), pericytes (RGS5), and

adipocytes (CIDEA). To identify putative cancer cell, we

used InferCNV which predicts copy number alterations

based on the positional gene expression intensity across

all chromosomes (Korsunsky et al., 2019). We used

stromal and immune cells as normal references for

InferCNV and labelled epithelial cells with positive copy

number alterations (CNA) profile as cancer cells (Griffiths

et al., 2021). All downstream analyses excluded non-

malignant epithelial cells. The raw (un-normalized) UMI

count matrix of the gold standard dataset was used for

model training and assessment. A random unbiased

subsample of the gold standard dataset (n = 35,000) was

used to create a Seurat object for downstream analysis. We

removed cells with >15,000 reads to account for any missed

doublets.

External datasets

In addition to the FELINE dataset, we used a subset of whole

blood scRNA-seq dataset (GSE163668) which we will refer to as

“Combes dataset” (Combes et al., 2021). We combined 3 pooled

libraries (GSM4995425, GSM4995426, GSM4995427) spanning

8 patients, removed RBCs and used the remaining cells with the

authors’ cell type labels in our analysis. We also used a

PeripheralBlood Mononuclear Cells (PBMC) dataset freely

available from 10X Genomics which we will refer to as the

“PBMC dataset” (10x Genomics, 2016). We processed this

dataset as described in “Seurat-Guided Clustering Tutorial”

(Hoffman et al., 2022). Cells with more than 5%

mitochondrial counts or more than 2,500 genes or less than

200 genes were filtered out. After clustering the cells, cell types

were annotated using the canonical markers as follows: Naive

CD4+ T (IL7R, CCR7), CD14+ Mono (CD14, LYZ), Memory

CD4+ (IL7R, S100A4), B cells (MS4A1), CD8+ T (CD8A),

FCGR3A + Mono (FCGR3A, MS4A7), NK (GNLY, NKG7),

DC (FCER1A, CST3), Platelet (PPBP).

Low-quality cells subset

For “low-quality” cells which that were excluded from the

gold standard dataset, we predicted the cell type labels using

SingleR and human primary cell atlas (HPCA) as a reference

(Mabbott et al., 2013; Aran et al., 2019). To generate lineage

labels, we aggregated cell type predictions into lineage labels as

follows: epithelial (epithelial cells), stromal (fibroblasts,

endothelial cells, chondrocytes, osteoblast, smooth muscles),

immune (T-cells, B-cells, macrophages, monocytes, NK cells,

neutrophils). To study the outcome of the initial and optimized

thresholds on cell retention rate, we combined the gold standard

subsample (n = 35,000) with a low-quality subsample (n =

35,000) for a total of 70,000 cells.

Training lineage and cell subtype
classification modes

We used two different multi-class prediction algorithms for

the analysis, SingleCellNet (SCN) and SingleR. SCN is a Random

Forest classifier developed for scRNA-seq datasets and

implemented as R package singleCellNet v.0.1.0 (Tan and

Cahan, 2019). SingleR is a reference-based cell type classifier

where after an internal marker genes identification step, cell

identity is determined by Spearman correlation between the

expression profile of the unknown cell and the reference

samples e.g., HPCA (Aran et al., 2019). Due to the infeasibility

to train a random forest classifier on all genes, we applied Seurat’s

FindAllMarkers function (test.use = “negbinom”, min.pct = 0.5,

max.cells.per.ident = 2000, logfc.threshold = 0.5) to generate

lineage and cell type marker gene sets. For either lineage or cell

type levels, we sampled 400 cells per label using splitCommon

function implemented in R package singleCellNet v.0.1.0. The

lineage and cell type samples were split 1:1 into a training and test

set. For the SCN classifier, the UMI matrices of both training sets

were filtered for the corresponding marker gene set previously

identified. The SCN classifier was trained using scn_train function

(nTopGenes = 100, nRand = 50, nTrees = 1000, nTopGenePairs =

200) implemented in the singleCellNet package. In contrast, the

SingleR classifier was trained on all available genes in UMI

matrices without filtering using trainSingleR function

implemented in the R package SingleR v.1.6.1.

Systematic downsampling of reads and
genes

To simulate reduce average reads per cell at a pre-specified

threshold, we downsampled the reads from high-quality cells.

We used a Poisson distribution model to calculate a

transformation factor. The probabilities density function for

an integer vector x is defined as:
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p(x) � λxe−λ

x!

where, λ is the point mass (Poisson rate). For each cell, we

generated a vector of random deviates of length = number of

genes, and λ = target threshold/total reads. Reads from each

cell were multiplied by their transformation factor to reduce

the total counts per cell to the desired threshold.

To downsample the genes of the FELINE dataset, we first

converted the UMI matrix into binary expression. For cells

where n> = 1, we reduced random n genes from being

expressed to not expressed (1 → 0) where n is the number

of genes above test threshold. Each transformed matrix was

then used to assess the accuracy of classification for the

corresponding threshold. In the non-binary experiments,

the remaining binary matrix was converted back to a non-

binary UMI matrix for assessment while in binary-

experiments, both the training and downsampled matrices

were binary.

Model assessment

Using the SCN and SingleR trained models, we generate

the predicted labels for all downsampled matrices using

scn_predict and classifySingleR functions, respectively.

We then used the true labels to calculate the Area Under

Receiver Operating Characteristic Curve (AUROCC) for

both models at each threshold using the R package pROC

v.1.18.0.

Results

Cell retention rates in gold standard
scRNA-seq dataset

The diversity of cell populations within the TME

introduces a challenge when applying a UMI threshold

across tumor samples: a stringent, high UMI threshold

would remove most of the low-quality cells, but also lose

important populations with low reads like immune cells. In

contrast, a lenient threshold would retain the low-UMI

populations, but this could also increase the noise and

possibly skewing the results of the downstream analysis.

In addition, the QC step is usually performed early in the

analysis pipeline where biological information (cell

identities) is not yet available. Thus, a biology-driven

revision of QC thresholds can be easily overseen. In the

FELINE dataset, we had used 1,500 reads as a threshold

for low-quality cells (Figure 1) (Griffiths et al., 2021). To

construct the gold standard dataset, we used InferCNV to

identify cancer cells and SingleR to predict normal cell

identities which were verified by marker gene expression

(Supplementary Figures S1A,B).

After meticulous cell type labelling of high-quality cells, a

closer view of UMI distribution across cell lineages showed a

high level of retention of epithelial cells (87%) post-QC. In

contrast, only around half of the stromal and immune cells

were retained (Figure 2). As breast cancer cells are of epithelial

origin (Noureen et al., 2022), it is expected that actively

FIGURE 2
Post-QC retention rate varies across different lineages and cell types in the FELINE dataset. Density plots depict the reads-per-cell distribution
across different lineages and cell types within a subsample of the original dataset (n = 70,000). The initial QC count cut-off (1,500 reads), as dashed
line, splits the fraction of cells considered as “high-quality”, highlighted in blue, from the cells considered as “low-quality”, highlighted in red, across
different cell populations. The average count and the fraction of “high-quality” cells are annotated for each population.
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proliferating cancer cells were driving a higher average UMI

among epithelial cells (5,354 UMIs) than stromal

(3,114 UMIs) or immune cells (2,154 UMIs) (Figure 2). In

addition, at the finer cell subtype annotation level, two-thirds

of macrophages/monocytes were retained, while only a third

of the sequenced population of T and B lymphocytes were

retained (Figure 2). Since B- and T-lymphocytes have the

lowest average UMIs per cell in this cohort (1,813 and

1,639 respectively), the initial QC threshold only retained a

small fraction of these cells for downstream analyses,

suggesting an optimization of the initial threshold might be

required.

FIGURE 3
Accurate lineage and cell type classification at 450 UMIs in the FELINE dataset. (A,B) Boxplot showing the post-transformation distributions of
observed UMIs (A) and number of unique genes (B) across all thresholds and untransformed control. Mean and median values for each distribution
are denoted. (C,D) Area under the receiver operating characteristic curve (AUROCC) values are shown for the raw (untransformed) counts as well as
the downsampled counts at different thresholds using the SingleR model (C) and the SingleCellNet model (D). The AUROCC values for both
lineage and cell type assessments are shown for each model as well as the selected AUROCC cut-off value (>0.9), dashed line.
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Machine learning framework guides
threshold optimization and accurate
classification

We developed a novel framework that systematically

identified the lowest read depth threshold that can be used

to accurately classify cell lineages and subtypes. Our approach

trained classifiers for lineage and subtypes on a training subset

of the gold standard dataset, and then predicted the cell

lineage and subtypes of a held-out test or validation subset

from the gold standard dataset at progressively diminished

read depths. By following this approach, we could identify

what is the minimum number of average reads required to

accurately classify cells.

We used SCN and SingleR multi-class prediction algorithms

to determine the lowest UMI threshold where sufficient

biological signal was retained. We then applied a Poisson

model to the test datasets to downsample to a set of desired

reads threshold including 0, 50, 100, 150, 200, 250, 300, 350, 400,

450, 500, 600, 700, 800, 900, 1000, 1500, 2000, 3000 and

4000 UMIs.

Following the transformation, the mean number of UMIs in

the downsampled cells were close to the desired UMI thresholds

(Figure 3A). Indeed, the reads in the downsampled cells

followed a Poisson distribution, as the variance increased at

higher thresholds. Noticeably, the number of unique genes

followed a Poisson distribution as well (Figure 3B). We used

the trained classifiers to predict lineage and cell type labels for

the downsampled cells. The ground truth and predicted labels

were used to generate a confusion matrix to calculate the area

under the receiver operator curve (AUROCC) at each

threshold. We considered AUROCC values above 0.9 to be

accurate classifications. The SingleR classifier showed an

accurate prediction of both lineage and cell types at an

average read depth of 450 UMIs or ~200 genes (Figure 3C).

However, the model progressively lost its predictive ability at

below the 250 UMIs threshold. On the other hand, the SCN

classifier showed an accurate prediction for both classes at an

average read depth of 1,500 UMIs or ~650 genes, while its

predictive ability was gradually lost at thresholds below

800 UMIs (Figure 3D). The accuracy of the SingleR classifier

relatively plateaued at the 350 UMI threshold. However, the

accuracy of the SCN classifier increased linearly throughout

with the increasing thresholds. As expected, almost all the

AUROCC values for the broader lineage class were equal or

higher than the narrower cell type class. It’s worth mentioning

that SingleR classifier showed an overall higher classification

accuracy which we attribute to the fact that SingleR calculates

the spearman correlation between each cell’s expression profile

and reference cells regardless of expression values while SCN

only considers expressed genes e.g., non-zero expression values.

Consequently, we selected the conservative 450 UMIs from the

more accurate classifier at the finer cell type resolution as the

optimized threshold.

FIGURE 4
Loss of distinct cell clusters on UMAP below 450 UMIs in the FELINE dataset. Dimension reduction using Uniform Manifold Approximation and
Projection (UMAP) shows that as count thresholds fall below 450 reads, a gradual loss of the distinct cell clusters is observed on lineage (A), and cell
type levels (B) (n = 1,500).
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In addition, we performed downsampling of gene numbers by

dropping random genes at different maximum number of genes

thresholds (Supplementary Figures S2A,B). Like the UMI

downsampling, accurate classification (AUROCC >0.9) of lineages
and cell types was achieved using 200 and 600 genes for SingleR and

SCN classifier, respectively (Supplementary Figures 2C,D). We then

applied the same transformation to a binary countmatrix for training

and test sets (Supplementary Figures S3A,B). Both classifiers yielded

similar performance to non-binary counts at 250 and 450 genes

for SingleR and SCN, respectively (Supplementary Figures

S3C,D). Given the typical correlation between observed

between UMIs and number of genes, it was not surprising

that similar thresholds were obtained using the UMI-based

and the gene number approaches.

FIGURE 5
Significant number of stromal and immune cells are rescued after applying the optimized threshold of 450 UMIs in the FELINE dataset. (A)
Density plots shows the UMI distribution across lineages and cell types within high- and low-quality cells subset (n = 70,000). The initial threshold
(1,500UMIs), dashed line to the right, and the optimized threshold (450UMIs), dashed line to the left, are shown for each plot. The initial “high-quality”
cells, the rescued cells after applying the revised cut-off, and the low-quality cells are highlighted in blue, green, and red, respectively. The
fraction and number of cells gained relative to initially retained cells is denoted under each plot. (B) Bar plot showing the cell number and percentage
gain for lineage and cell types after applying the optimized threshold. (C) Heatmap showing the relative frequency of different cell types before and
after applying the optimized UMI threshold of 450 in 92 tumor samples.
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Loss of distinct clustering below the
optimized threshold

To see the effect of downsampling on the low

dimensional data structure, we analyzed the downsampled

cells from the 1500, 450, 350, 250, and 150 read thresholds

using uniform manifold approximation and projections

(UMAPs). Similar to the initial 1500 UMI threshold, the

cells at the 450 UMI threshold showed distinct separate

clusters at the lineage level (Figure 4A). As threshold was

reduced, the inter-cluster distances gradually decreased. On

the cell type level, the cells at the 450-threshold not only

clustered by lineage but retained a rational biological

hierarchy as shown by subtype cluster grouping

(Figure 4B). As with the lineage level, the distinct

clustering was gradually lost at lower thresholds (Figures

4A,B). This suggests that biological information retained at

as low as 450 reads-per-cell maintains cell identity in our

dataset.

Optimized QC threshold rescue
substantial number of cells with low
transcription level

To increase the number of stromal and immune cells

available for downstream analysis, we applied the

optimized threshold of 450 reads-per-cell to a subsample of

the original dataset (n = 70,000). Relative to number of cells

retained by the initial threshold of 1,500 reads, the optimized

threshold rescued an additional 8,813 stromal cells and

6,535 immune cells, an increase of 77% and 113%,

respectively (Figures 5A,B). The gain was even more

prominent among the cells with low average reads as

FIGURE 6
Accurate lineage and cell type classification at 250 and 150 UMIs in the Combes and PBMC datasets, respectively. For Combes dataset, (A,B)
Boxplot showing the post-transformation distributions of observed UMIs (A) and number of unique genes (B) across all thresholds and
untransformed control. Mean and median values for each distribution are denoted. (C,D) Area under the receiver operating characteristic curve
(AUROCC) values are shown for the raw (untransformed) counts as well as the downsampled counts at different thresholds using the SingleR
model (C) and the SingleCellNet model (D). For PBMC dataset, (E, F) Boxplot showing the post-transformation distributions of observed UMIs (E) and
number of unique genes (F) across all thresholds and untransformed control. Mean and median values for each distribution are denoted. (G,H) Area
under the receiver operating characteristic curve (AUROCC) values are shown for the raw (untransformed) counts as well as the downsampled
counts at different thresholds using the SingleR model (G) and the SingleCellNet model (H). The AUROCC values for cell type assessment are shown
for each model as well as the selected AUROCC cut-off value (>0.7), dashed line.
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2,976 T-cells and 1,298 B-cells were rescued which is 176%

and 151%, respectively, more cells compared to the

populations retained by the initial threshold. The gain

among fibroblasts and macrophages/monocytes was also

notable as the initial populations increased by more than

40% after applying the optimized threshold. The inclusion

of rescued cells markedly improved the representation of

diversity across all tumor samples, previously dominated by

epithelial cells (Figure 5C). With the new thresholds, we

observed a notable gain in lymphocytes across several

tumors. We also noted that the optimized threshold led to

the gain of 10 additional tumor samples that were excluded by

the initial threshold. Thus, threshold optimization allowed the

re-evaluation of cells initially penalized and discarded for

their natively low expression. These rescued cells can then

be incorporated in downstream analysis to characterize

the TME.

Applications in datasets containing cells
with low expression and fine-grain labels

To test the applicability of our approach to cell types with low

gene expression, we used the Combes dataset (see Methods),

which contains cell types with low expression levels, including as

neutrophils and platelets. As with the FELINE dataset, we applied

the transformation based on Poisson distribution to

systematically downsample the counts in the Combes dataset.

The resultant UMI means were reflective of the desired target

UMI thresholds (Figures 6A,B). Using the original published cell

type labels as ground truth, the cell type classification AUROCC

for the untransformed counts were about 0.9, reflecting the low

average read depth of this dataset (1599 UMIs) and very low

coverage in some cell types, such as neutrophils (621 UMIs) and

platelets (740 UMIs). SingleR achieved AUROCC >0.7 for this

dataset at 250 UMIs or ~90 genes while SCN achieved this level of

accuracy at 350 UMIs or ~115 genes (Figures 6C,D).

Similarly, we used the 10X PBMC dataset test (see methods

for details) to demonstrate that the application of the framework

in cell types with fine-grain labels. The PBMC dataset (average

2371 UMIs) contains fine-grain classification of monocytes and

T cells. In addition to CD14+ and FCGR3A + monocytes, this

dataset contains different T cells subtypes like naïve CD4+,

memory CD4+, and CD8+ T cells. Again, we applied the

transformation based on Poisson distribution to systematically

downsample and obtain resultant UMIs that were reflective of

the desired target thresholds (Figures 6E,F). SingleR classified

cells with AUROCC >0.7 at 150 UMIs or ~70 genes threshold,

while the SCN classifier achieved this level of accuracy at

400 UMIs or ~170 genes (Figures 6G,H). Taken together,

these results demonstrate that our framework can be applied

to datasets containing cell types with low expression and fine

granularity.

Discussion

Single cell RNA-seq of tumor samples have proved

indispensable for TME studies. This has allowed researchers

to perform analyses such as in-depth classification of the

composition of tumors, identifying the key signaling

mechanisms operating in cancer and non-cancer cells and

characterizing the heterogeneity and evolution of cancer cells,

which were not previously feasible using bulk-RNA sequencing

(Nath and Bild, 2021). However, the detection of rare cell

populations among the diverse TME is limited by the number

of cells the scRNA-seq platform can handle. The introduction of

UMI-based platforms allowed for higher cell capacity which

better captures the diversity of the TME. However, arbitrary

UMI thresholding during the standard scRNA-seq QC risks

losing considerable number of cells, such as immune cells

with low expression. This can lead to inaccurate assessment of

the composition of the TME and overlook critical associations

between diversity and tumor traits. For example, the presence of

cytotoxic T cells in the TME is strongly associated

immunotherapy response in multiple cancers (Sade-Feldman

et al., 2018; Kim et al., 2021; Nagasaki et al., 2022). Therefore,

assessment of immune response based on diversity of infiltrating

lymphocytes could improve by optimizing the UMI thresholds.

Recent studies to characterize the communication networks

between various individual cell types within breast tumor have

revealed unique signaling networks operate in tumors resistant or

sensitive to cell cycle inhibitor therapy (Griffiths et al., 2022).

Resolving these communication links also requires optimizing

the UMI thresholds to ensure that the TME measured using

scRNA-seq reflects the true composition of the tumor.

To develop a framework that enables optimization of UMI

thresholds, we used a systematic approach to downsample UMIs

and accurately classify cells by lineage and cell type. We trained

two classifiers, SCN and SingleR, on expert-labelled subsample of

our gold standard FELINE dataset which was originally filtered

using a stringent UMI threshold. We then downsampled the

FELINE dataset using a Poisson transformation and evaluated

the classification accuracies at various thresholds. Using a

conservative AUROCC >0.9 as the cut-off for accurate

classification in the FELINE dataset, we determined a

significantly lower new threshold at 450 UMIs, corresponding

to slightly more than 200 genes, compared to the initial threshold

at 1,500 UMIs. The optimized threshold retrieved substantial

number of additional cells that were initially disposed-off during

filtering. The gain was prominent among cells with lower average

reads than cancer cells such as stromal and immune cells.

Notably, B- and T-lymphocytes populations increased more

than 150% by applying the optimized threshold. We also

noticed that the downsampled cells at this threshold retained

similar distinct clustering patterns across lineages and cell type

groups on the UMAP as the gold standard dataset. However, this

was not the case at lower thresholds where the inter-cluster
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distances were gradually lost. We also explored gene

downsampling using random gene removal at different

thresholds using binary and non-binary input which resulted

in similar optimal threshold to the UMI downsampling.

We further extend the application of our framework to two

additional datasets. Analyses with the Combes dataset revealed

that cells with low average expression, like neutrophils, can also

be used in our framework to optimize thresholds. Similarly,

analyses with the PBMC dataset showed that fine grain

classification of cells can be accommodated in the framework.

While this approach improved the diversity of major lineages

and cell types of the FELINE, Combes and PBMC datasets, its

current application depends on the original labeling

accuracy for cell identities. This can be challenging for

some cell populations, such as cells that lack established

RNA markers. Currently, the framework relies on reliable

labeling of cell types in the high-quality cells. A future

addition to this framework could integrate additional

biological information such as pathway level information

and molecular signatures to identify biologically relevant

clusters and improve classification accuracy.

Our machine learning framework provides a systematic

approach to optimize the initial UMI/reads threshold commonly

used in scRNA-seq pipelines based on cell type annotations of cells

with high read depth. This is especially valuable in rescuing cells with

natively low expression like immune cells. Optimizing the QC reads

threshold significantly improves the efficiency of cell diversity TME

studies while maintaining accurate classification of lineage and cell

type. Notably, this framework can be applied to any scRNA-seq

dataset where rescuing rare or low expression cells is crucial for

downstream analysis.
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