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Mutation detecting is a routine work for sequencing data analysis and the

trading of existing tools often involves the combinations of signals on a set of

overlapped sequencing reads. However, the subclonal mutations, which are

reported to contribute to tumor recurrence and metastasis, are sometimes

eliminated by existing signals. When the clonal proportion decreases, signals

often present ambiguous, while complicated interactions among signals break

the IID assumption for most of the machine learning models. Although the

mutation callers could lower the thresholds, false positives are significantly

introduced. Themain aim here was to detect the subclonal mutations with high

specificity from the scenario of ambiguous sample purities or clonal

proportions. We proposed a novel machine learning approach for filtering

false positive calls to accurately detect mutations with wide spectrum

subclonal proportion. We have carried out a series of experiments on both

simulated and real datasets, and compared to several state-of-art approaches,

including freebayes, MuTect2, Sentieon and SiNVICT. The results demonstrated

that the proposed method adapts well to different diluted sequencing signals

and can significantly reduce the false positive when detecting subclonal

mutations. The codes have been uploaded at https://github.com/TrinaZ/TL-

fpFilter for academic usage only.
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1 Introduction

Mutations may alter the reading frame of protein coding sequences and have been

strongly implicated in neurodevelopmental disorders, cardiovascular diseases, cancers

and many other human diseases (Fang et al., 2016). Mutation calling via genomic

sequencing, also named variant detection, has become a routine task in cancer

OPEN ACCESS

EDITED BY

Zeeshan Ahmed,
The State University of New Jersey,
United States

REVIEWED BY

Junwei Luo,
Henan Polytechnic University, China
Rosalind J. Cutts,
Institute of Cancer Research (ICR),
United Kingdom

*CORRESPONDENCE

Tian Zheng,
zt12389@stu.xjtu.edu.cn

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 29 June 2022
ACCEPTED 17 October 2022
PUBLISHED 22 November 2022

CITATION

Zheng T (2022), TLsub: A transfer
learning based enhancement to
accurately detect mutations with wide-
spectrum sub-clonal proportion.
Front. Genet. 13:981269.
doi: 10.3389/fgene.2022.981269

COPYRIGHT

© 2022 Zheng. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 22 November 2022
DOI 10.3389/fgene.2022.981269

https://www.frontiersin.org/articles/10.3389/fgene.2022.981269/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.981269/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.981269/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.981269/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.981269/full
https://github.com/TrinaZ/TL-fpFilter
https://github.com/TrinaZ/TL-fpFilter
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.981269&domain=pdf&date_stamp=2022-11-22
mailto:zt12389@stu.xjtu.edu.cn
https://doi.org/10.3389/fgene.2022.981269
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.981269


diagnosis and precision treatments. The existing mature

methods depend essentially on combinations of statistical

signals (also known as features in machine learning) on a

set of mutation-centred overlapped reads for detection and

filtering (Cibulskis et al., 2013; Tian et al., 2020). One frequent

concern in cancer genomics is that tumor samples are always

heterogeneous, composed of tumor cells, stromal

contamination and normal cells (Tang et al., 2016). Since

one goal of a somatic pipeline is to establish the catalog of

the somatic mutations occurring in the tumor cells, at this

time, the tumor somatic mutations are subclones, it is

important to take into consideration the composition of the

sample. The proportion of tumor cells in total cells is usually

summarized as “tumor purity” (which approximately equals to

the proportion of tumor cell somatic mutations in total sample

somatic mutations and is usually summarized as “clonal

proportion”) (Arora et al., 2019). For most cancer types in

The Cancer Genome Atlas (TCGA), the content of normal

cells in tumor samples is generally between 30% and 70%.

Previous studies have shown that tumor purity will have an

important impact on the gene data in tumor research. When

detecting subclonal mutations, existing signals are often

diluted due to insufficient abundance and may lead to

deviation in biological interpretation results (Stratford

et al., 2016; Rhee et al., 2018; Koudijs et al., 2019).

Existing detection signals for short read data are mainly

divided into five categories (Ho et al., 2020): 1) read depth

(Abyzov et al., 2011; Klambauer et al., 2012), 2) paired-end

read (Chen et al., 2009), 3) split read (Ye et al., 2009), (iv)de

novo assembly (H, L et al., 2015; Chen et al., 2014) and their

combinition (Rausch et al., 2012; Layer et al., 2014; Chen et al.,

2016). The ensemble strategy by using multiple discrete

approaches to detect variations and then integrating all

variant call sets to generate a unified call set is widely adopted

by large-scale human genome studies (Nagasaki et al., 2015;

Sudmant et al., 2015). It is a big challenge to filter out false

positive variant calls. As shown in Figure 1, cells with different

colors have subclonal variation with different proportions. How

to accurately identify the subclonal variation of tumor tissue is a

computational problem to be solved.

A novel research varied tumor purity and coverage through

biological experiments to detect the actual accuracy change of

mutation callers when the subclonal mutation signal was diluted,

and the results showed that when the tumor purity is less than

50%, the F-score of all callers dropped precipitously, generally

less than 20%. When tumor purity was 20% or lower, the

FIGURE 1
Schematic diagram of subclonal variation and detection signals. When the main clone and sub clone were included, the cell distribution and
sequencing signal were diluted. Red circle indicates themain clone variation, blue circle and purple circle indicate the sequencing signal of subclone
variation. The value of sequencing signal of sub-clone variation is closely related to the number and proportion of corresponding cells, but the
distribution of the number of cells including main clone and subclone is unknown, so the value of sequencing signal is difficult to determine.
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accuracy and precision of the mutation callers are significantly

decreased (Xiao et al., 2021). 166 false positives can be introduced

per mega-base by every 2% reduction in the proportion of tumor

purity (Cibulskis et al., 2013) and the precision of mutation drops

rapidly (even less than 25%) when the clonal proportion is less

than 50% (Koudijs et al., 2019).

We tried to explain this phenomenon from two aspects,

combined with our understanding of the existing mutation

detection softwares and false positive filtering algorithms.

First, the existing methods mainly set thresholds and perform

filtering based on the value difference of a series of signals

between the real mutations and the false positives (Cibulskis

et al., 2013; Viola et al., 2018). The basis of threshold setting is the

probability of signal distribution. According to the probability

density function, whether it is artificial design or machine

learning, the inflection point of filtering can be found. All

signal values may be affected by the proportion of subclonal

mutations, but the formula for impact is hard to quantify in

three-dimensional space, and the probability density function is

essentially different for different signals. Regardless of how the

signal threshold setting is changed, it only partially reduces false

positives and cannot fundamentally filter false positives and

accurately detect subclonal mutations, not to mention the

wide-spectrum range of clonal proportions. Second, the clonal

proportion is a continuous variable, and no training set can

enumerate all possible values. The existing machine learning

methods train the model under fixed clonal proportions, but this

leads to poor application of the model on other datasets with

different clonal proportions (Garrison et al., 2012; Can et al.,

2016; Freed et al., 2017). A TCGA-related research showed that

many subclonal variations are still missed after 41.8% false

positives are filtered out on low-quality samples even used

different variation detection and multiple filter software, and

the average detection rate is only 72.5% (Gao et al., 2019). These

challenges hurt the specificities of the existing approaches when

applied to cancer sequencing data. It is not practical to train the

corresponding model for each diluted signal. We need to

deconstruct the relationship between the signals and the

clonal proportion and to explore the binary separable

relationship to accurately identify the subclonal mutations.

Motivated by these, we focused on the accurate detection of

subclonal mutations and filtering of false positive mutation calls.

We proposed a novel approach to the scenario of various clonal

proportions that overcomes these limitations by means of a

transfer learning technique. On the basis of observing the

relationship between the sequencing signal and the proportion

of the subclonal mutations, we reconstructed a new regenerative

Hilbert space and mapped the sequencing signal to it, making the

false positive and the true mutation binary separable in the new

high-dimensional space. We carried out a series of experiments

on both simulated and real datasets. The results were compared

to state-of-art approaches, including MuTect2 (Cibulskis et al.,

2013), Freebayes (Garrison et al., 2012), SiNVICT (Can et al.,

2016), and Sentieon (Freed et al., 2017). The results

demonstrated that the proposed method adapts well to

different datasets with wide-spectrum clonal proportions and

can significantly reduce false positives. The code has been

uploaded at https://github.com/TrinaZ/TL-fpFilter for

academic use only.

2 Results

We tried to weaken the interference of sample abundance

such as tumor purity and clonal proportion on the variation

detection signals by algorithm design. To measure the effect of

the proposed algorithm, we calculated the correlation between

the variation detection features and the clonal proportion as

shown in Figure 2. We extracted a 100 Mbps reference sequence

from human genome 19 (hg19) and obtained the value of

sequencing signal data under different clonal proportions by

simulation software. We simulated the clonal proportion every

5% points from 0 to 1 and obtained the value of signals at

different proportion. 26 popular features are extracted from the

Variant Call Format file and their descriptions with calculated

formula are shown in Section 3.1; Table 1. We calculated the

Spearman rank correlation coefficient between each feature and

clonal proportion. As we known, the closer the absolute value of

the correlation coefficient is to 1, the stronger the correlation

between the two factors is, and the closer it is to 0, the weaker the

correlation is. The blue results in Figure 2 indicate the

relationship between features and clonal proportion before

algorithm processing. The results in red indicate the

correlation after algorithm processing. The black error line on

the histogram shows the possible error related to each data mark

in the data series in graphical form. In this figure, it is set as 5%,

and it is allowed to have a possible error of plus or minus 5%.

The results in blue (initial correlation) demonstrate that

almost all the signals are strongly correlated with the clonal

proportion (±1). The results in red (final correlation)

demonstrated that the correlation was significantly reduced

(±0.5). We conducted a detailed analysis on the features that

were not strongly correlated with the clonal proportion, PE and

AS, defined as the number of paired-end reads supporting the

variant and the alternate allele split-read observation count, with

partial observations recorded fractionally. The Spearman

correlation coefficients between them and the clonal

proportion are 0.49 and 0.09, respectively. The reason may be

that the correlation between each pair of signals and the clonal

proportion is not high. PE values are generally large, and the

influence of the proportion is limited. As the values of AS are

generally small, the influence is still low.

To further quantitatively analyse the specific relationship

between each signal and the clonal proportion, we visualized the

correlation matrix of the six signals, CIEND, SQ, RP, CN, RO,

and CIPOS, between different clonal proportions
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(Supplementary Figure S1 in Supplementary Material). The

heatmap figures demonstrated that the correlation between

each signal and clonal proportion is different. Complicated

interactions occur among the signals and break the

independent co-distribution assumption of classic learning

models. This further illustrates that the use of ordinary

machine learning methods cannot linearly strip the impact of

clonal proportion on different signals. The baseline obtained by

training signals under a certain clonal proportion is effective

under the corresponding determination of clonal proportion, but

the correlation between signals and proportion has changed in

other values, and the classification baseline is no longer

applicable. It is unrealistic to retrain under continuously

changing proportion conditions. We pick out the seven most

relevant features and draw the correlation diagram as shown in

Figure 3 to show their similarity. The results show that the

features with strong correlation can not completely replace each

other, and the influence of sample abundance should not be

eliminated by deleting features.

2.1 Performance on simulated data

To verify the performance of the proposed method under

clear evaluation benchmarks, we conducted tests on simulated

datasets. We sampled a 1 M base pair (bps) region from the

human reference genome and randomly planted 200 structural

variations in each data set, including insertion, deletion, complex

indel, copy number variant (CNV), and their combination. We

set the length of variation to 800–1,200 bps and the length of

CNV to 1,000 bps and set both to follow a normal distribution.

The variation interval was larger than 2000 bps. We set an

elevated region to 1,000 bps longer than its own length and

set the mutation rate of the region to 0.01. Some associated SNVs

(single nucleotide variants) were planted in the preset elevated

region, and the background mutation rate was set to 0.0001.

Approximately one-fourth of the inserted fragments of the

complex indel came from nearby regions. Twenty-five percent

of CNVs were accompanied by a deletion, and 15% of CNVs were

accompanied by an insertion. The length of the sequencing reads

was set to 100 bps, the distribution of insert sizes was set to follow

a normal distribution with a 500 bps mean and 15 bps standard

deviation, and the sequence error rate of read sampling was

considered to be 0.001. The structure variation was detected by

SpeedSeq (Chiang et al., 2015) with the default parameters, and

the signals were extracted from the output VCF(Variant Call

Format) file. The true and false positive labels were obtained by

comparison with the original insertion file.

We repeated the above process 20 times and obtained a

data set containing 4,000 samples. Furthermore, we used the

classic method of data sampling to balance the positive and

negative categories: undersampling a large number of

categories (classic easyensemble) and oversampling a small

number of categories (classic SMOTE). Finally, for each clonal

proportion simulated dataset, the positive and negative

categories were balanced. We collected 4,000 samples each

for clonal proportions of 5%, 10%, 15%, 20%, 25%, and 30%

and used them as the source domain and target domain. The

FIGURE 2
The Spearman Correlation between the Features and Clonal Proportion. According to the Spearman correlation coefficient of sequencing
signal and the diluted sequencing signal, it can be seen that most of the signals have strong correlation with the clonal proportion (Initial Correlation
in Blue). The results showed that the correlation coefficient between the transferred features and sample purity was significantly reduced (Final
Correlation in Red).
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confusion matrix is a standard format for precision

evaluation, in which TN means true negative, FP means

false positive, FN means false negative, and TP means true

positive. The elements on the main diagonal of the confusion

matrix correspond to the correct classification, while the other

elements tell us how many samples in a category are

incorrectly classified into other categories. The accuracy

results are shown in Table 2, and the exact precision, recall

and F1-scores are given in Supplementary Tables S1-S3. Each

of them is the average of five repeated experiments.

The results showed that the accuracy of false positive

filtering is stable above 80%, and the average of the six

results is 89.03%, which demonstrated that the proposed

method can successfully filter out false positives from the

structural variation detection. The accuracy of the final

output voting result is stable and higher than average, which

also proves the necessity of applying the voting algorithm.

Moreover, we found that the effect of the transfer from high to

low propagation is higher than the accuracy of transfer from

low to high clonal proportions, which is consistent with the

conclusion that false positives increase as the detected preset

clonal proportion decreases.

2.1.1 Method comparison on mixed-proportion
simulated datasets

In real situations, many different subclonal mutations with

different clonal proportions may exist at the same time. To

sufficiently demonstrate the performance of their framework

on real data and further simulate the real cancer detection

situation, we mixed different proportions of simulated data to

give a better estimate of the performance of the proposed

framework. We set the clonal propagation to follow a normal

distribution, with an average value of 70% and a variance of 10%.

The number of mutations was randomly generated in the interval

[2200, 2400]. The parameters are set as follows: error rate, 0.01;

min-depth, 100; left-strand-bias, 0.3; right-strand-bias, 0.7; read-

end-fraction, 0.01; qscore-cut-off to 20, use-poisson-germline

specified with value to 1, disable-lvl to 5, filter specified with value

to 0. Each experiment is the average of 5 independent replicates.

In addition, we compared the proposed method to a set of

TABLE 1 Features list.

Feature Definition Extraction source

IMPRECISE Imprecise structural variation IMPRECISE value in INFO column

CIPOS Confidence interval around POS for imprecise variants CIPOS value in INFO column

CIEND Confidence interval around END for imprecise variants CIEND value in INFO column

CIPOS95 Confidence interval (95%) around POS for imprecise variants CIPOS95 value in INFO column

CIEND95 Confidence interval (95%) around END for imprecise variants CIEND95 value in INFO column

GT Genotype GT value in FORMAT column

SU Number of pieces of evidence supporting the variant SU value in FORMAT column

PE Number of paired-end reads supporting the variant PE value in INFO column

SR Number of split reads supporting the variant SR value in INFO column

GQ Genotype quality GQ value in FORMAT column

SQ Phred-scaled probability that this site is variant (non-reference in this sample) QUAL column

GL1 Genotype Likelihood, log10-scaled likelihoods of the data given the called genotype for each possible genotype
generated from the references and alternate alleles given the sample ploidy

First GL value in FORMAT column

GL2 Second GL value in FORMAT
column

GL3 Third GL value in FORMAT column

DP Read depth DP value in INFO column

RO References allele observation count, with partial observations recorded fractionally RO value in INFO column

AO Alternate allele observations, with partial observations recorded fractionally AO value in INFO column

QR Sum of quality of references observations RO value in FORMAT column

QA Sum of quality of alternate observations AO value in FORMAT column

RS References allele split-read observation count, with partial observations recorded fractionally RS value in FORMAT column

AS Alternate allele split-read observation count, with partial observations recorded fractionally AS value in FORMAT column

ASC Alternate allele clipped-read observation count, with partial observations recorded fractionally ASC value in FORMAT column

RP References allele paired-end observation count, with partial observations recorded fractionally RP value in FORMAT column

AP Alternate allele paired-end observation count, with partial observations recorded fractionally AP value in FORMAT column

AB Allele balance, fraction of observations from alternate allele, QA/(QR + QA) QA/(QR + QA)

CN Copy number of structural variant segment CN value in FORMAT column
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popular variation detection tools that performed outstandingly in

detecting low-proportion sample variation, including Freebayes

(Garrison et al., 2012), SiNVICT (Can et al., 2016), Sentieon-

2019 (Freed et al., 2017) and GATK3.8 MuTect2 (Cibulskis et al.,

2013) (Table 3).

R1-5 represent five mixed sample experiments, and

5–30 represent fixed clonal proportion sample experiments

under the same conditions. The results demonstrated that the

proposed method adapts well to the mixed proportion datasets.

Among the four comparison methods, Sentieon is least affected

by clonal proportion, with a false positive rate of approximately

13%. The false positive rates of other methods are higher than

20%, and Freebayes was most affected by the clonal proportion,

with a false positive rate higher than 40%. The proposed method

can significantly filter false positives, and the highest false

positive rate can be reduced by 55.35%. We further analysed

the results and found that the general performance of each

method on the fixed proportion dataset is slightly better than

that on the mixed dataset. This is because the average value of the

mixed dataset is 70%, and the fixed variance is less than 30%. This

is also consistent with the influence of clonal proportion on the

detection accuracy. Among them, the proposedmethod performs

outstandingly in low-clonal-proportion fixed datasets and mixed

datasets.

2.1.2 Quantifying the effect of the proposed
stage I

As proof of the value of the proposed method, we quantified

the effect of transfer learning for false positive filtering. The

results are shown in Table 4, which compares the performance of

the model trained only on the target dataset (baseline, listed in

column “B”) with the model transferred from the source dataset

to the target dataset (listed in column “TCA”). For the

FIGURE 3
Relationship between themost relevant features. We analyzed the correlation between the seven features most related to the clone proportion
in the cross clone proportion correlation analysis, and found that there was no consistent correlation between the seven features from a two-
dimensional perspective.

TABLE 2 Benchmark results of the method on simulated data.

TSP
SSP

Accuracy (%)

5% 10% 15% 20% 25% 30%

5% 80.18 81.10 80.43 72.75 72.83

10% 84.83 89.03 89.23 85.05 82.45

15% 83.30 91.45 90.53 90.55 89.95

20% 79.38 86.95 86.18 91.03 91.98

25% 73.90 83.00 87.85 91.75 91.78

30% 73.93 81.63 80.48 91.10 89.50

Average 79.07 84.64 84.93 88.61 85.78 85.80

Output 81.18 87.70 89.93 91.95 91.30 92.10

The best results are highlighted in boldface.
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comparison baseline samples, the model is applied with the

autofit parameters and without TCA. For the TCA samples,

the model exactly follows the proposed stages. Each result is the

average of five repeated experiments. The results demonstrated

that the transfer component analysis improved the average

accuracy, precision, recall and F1-scores over the baseline.

More specifically, TCA led to average improvements of

22.18% in accuracy, 7.92% in precision, 12.89% in F1-score,

and 6.11% in recall rate. Upon further analysis, TCA played a

greater role in samples with low clonal proportions.

2.1.3 Quantifying the sensitivity to parameters
We conducted parameter adjustment experiments and

quantified the sensitivity of the method to the following

parameters, which include the dimensionalities of the latent

spaces of TCA, the largest number of decision trees

(n_estimators), the maximum number of features considered

in the split (max_features), the maximum depth of the decision

tree (max_depth), and the minimum number of samples

required for the internal node subdivision (min_samples_split).

TABLE 3 Comparison results on mixed purity samples.

SP(%) Precision (%)

TL-fp Filter freebayes Sentieon SiNVICT MuTect2

R1 87.02 53.19 87.13 78.59 79.00

R2 88.63 53.41 88.17 79.19 80.03

R3 86.24 53.69 87.65 79.63 79.73

R4 91.32 53.70 88.52 79.71 79.52

R5 89.98 53.44 87.62 78.97 80.89

5 89.23 33.88 87.49 74.81 77.37

10 89.50 53.35 87.71 78.98 79.62

15 91.02 53.47 87.57 81.00 79.08

20 90.82 53.02 86.50 76.69 78.35

25 90.32 53.87 87.98 79.93 79.85

30 90.50 53.47 87.90 79.08 78.90

The best results are highlighted in boldface. SP represents the sample purity. R1-5 represent five mixed sample experiments. 5–30 represent fixed purity sample experiments under the same

conditions.

TABLE 4 Performance values in terms of accuracy, recall, precision and F1-score for Baseline (B) and Transfer Component Analysis (TCA).

SP (%) Accuracy (%) Recall (%) Precision (%) F1-score (%)

B TCA B TCA B TCA B TCA

5 62.90 81.18 58.85 72.80 81.90 87.45 68.48 79.45

10 69.60 87.70 77.80 84.20 75.49 89.53 76.62 86.78

15 74.45 89.73 89.40 93.00 85.20 86.92 87.25 89.86

20 60.30 91.95 89.10 92.25 76.41 91.70 82.27 91.97

25 64.27 91.30 88.60 90.70 84.36 91.80 86.43 91.25

30 69.37 92.10 85.05 92.50 88.32 91.77 86.65 92.13

The best results are highlighted in boldface.

TABLE 5 The test results of the dimensionalities of the latent space.

Sample purity (%) The dimension of the latent space

5 10 15 20 23

5 * 79.43 79.43 80.05 80.10

10 * 85.43 86.63 87.13 87.70

15 * 88.73 89.15 88.90 89.73

20 * 90.98 90.50 90.75 90.93

25 * 89.13 89.85 89.75 89.98

30 * 91.05 89.88 89.70 90.33

The best results are highlighted in boldface.
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2.1.3.1 The dimensionalities of the latent spaces

We first tested how the dimensionalities of the latent spaces

in TCA affect the classification performance. We used linear

kernels and set the dimension of the latent space to vary from 5 to

23. During the experiment, we found that when the value of the

dimensionalities of the latent spaces was 24–26, there was no

correct result because the total number of features was 26. The

exact results are shown in Table 5. When the value is in the range

of [10, 23], the accuracy of the method remains high, but when

the value is 5, there is no output due to the low dimensionality.

Moreover, note that within the allowable range, the higher the

dimension of the latent space is, the higher the accuracy of the

method, the higher the cost, the larger the calculation amount

and the longer the training time. Therefore, in subsequent

experiments, we fixed the value of this parameter to 15 in a

trade-off between accuracy and computational complexity.

2.1.3.2 n_estimators

The value of n_estimators represents the maximum number

of decision trees of in the extra tree classifier, the maximum

number of iterations of weak learners, or the maximum number

of weak learners. The extra tree classifier has relatively few

important parameters, and the main concern is n_estimators.

Generally, if the value of n_estimators is too small, the extra tree

classifier is easily underfitted; if the value of n_estimators is too

large, the calculation amount will be too large. When the value of

n_estimators reaches a certain number, the model improvement

obtained by increasing n_estimators will be very small, so a

moderate value is generally selected. The default is 100, and in

this case, the best value of n_estimators based on the

experimental results is 60–70. The results are listed in

Supplementary Table S4.

2.1.3.3 max_features

The max_features represents the maximum number of

features considered in the extra tree classifier. In this problem,

the number of features is 26, and the default max_features is

“auto,” which means that the maximum number of features

considered is 21(n − ��
n

√ ). In general, we can use the default

“auto.” We tested the values from 0 to 23 and found that it

reached the optimal value when the maximum number of

features was 19. The results are listed in Supplementary Table S5.

2.1.3.4 max_depth

Themax_depth indicates the maximum depth of the decision

tree in the extra tree classifier, which can be left blank by default.

If it is left blank, the decision tree will not limit the depth of the

subtree when it is built. In general, this value can be ignored when

there are few data or features. If the number of model samples

and features is high, it is recommended to limit the max_depth.

The specific value depends on the distribution of the data, and the

common recommended range is [10, 100]. We debugged in the

variable range of this parameter and found that the experimental

results are not sensitive to this parameter. The results are listed in

Supplementary Table S6, and the optimal value of max_depth in

this case can be 7–11.

2.1.3.5 min_samples_split

The value of min_samples_split represents the minimum

number of samples required for internal node subdivision, which

can limit the ability of the sub tree to subdivide. If the number of

samples of a node is less than the value of min_samples_split, it

will stop selecting the best partition feature. The default value of

the min_samples_split is 2. See Supplementary Table S7 for the

experimental results of adjusting this parameter. The results

demonstrated that this parameter has little effect on these

data, and the proposed method has the highest performance

when the value of min_samples_split is set to 1.

2.1.3.6 min_samples_leaf

The min_samples_leaf represents the minimum number of

samples required for each leaf node (Supplementary Table S8).

We debugged this parameter for a comprehensive experiment,

and the results showed the best effect when this parameter is 1.

2.1.4 Quantifying the boundary of the proposed
method

To further test the application boundary of the proposed

method, we varied the number of available samples and the range

of the label error rate and recorded the method performance.

1) The minimum applicable number of samples.

Generally, in the application of machine learning algorithms,

the smaller the number of samples is, the lower the accuracy of

the algorithm will be. We selected three test datasets, which

included 200, 400, and 600 samples, to test the method

performance on small samples. The ratio of positive and

negative labels was set to 1:1 to eliminate the possible impact

of data imbalance. The values of each parameter were set to the

optimal values of the above experiments. The results are shown in

Supplementary Table S9, which demonstrated that our method is

still effective when the number of samples is less than 1,000, and

the effect is not significantly different.

2) The maximum allowable range of label error rate.

In addition to the applicable sample size, the sample error

rate may affect the applicability of the software. To further test

the application boundary of our method, we varied the label error

rate and recorded the performance of the proposed method. The

label error rate refers to the frequency of the error in which a

positive sample is marked as negative or a negative sample is

marked as positive. We set the sample size to 4,000 and the value

of each parameter to the optimal values of the above experiments.

The results are shown in Supplementary Table S10. We can see
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that our method performs well in all aspects of the indicators as

long as the error rate is less than 30%, and the results are

significantly stable. However, it should be noted that when the

clonal proportion is 5% and the label error rate is 20% or 30%, the

recall rate is relatively low.

2.2 Performance on real data

To further test the performance of this method, we carried

out experiments on real data sets. We selected 12 groups of panel

data and 12 sets of whole-exome sequencing (WES) data from

the real database and carried out experiments. It should be noted

that, due to the importance and scarcity of real human gene data,

we use 12 groups of data here, which should be highlighted as a

limitation.

2.2.1 The experiments on the panel datasets
We obtained six groups of lung cancer data and six groups of

breast cancer data from the public database to test the

performance of the proposed method on real data (Ma et al.,

2017). Due to the characteristics of the formation principle of

cancer species, the clonal proportions of these two types of cancer

can be extremely low, and their detection accuracy is seriously

affected by tumor purity. All clinical information was removed,

patients were numbered by a random target, and all germline

mutations were also removed before we obtained the data. The

raw data have already been processed on the public database,

following the pipeline in which the raw sequence read was

mapped by BWA-0.7.5, and GATK3.8 MuTect2 and CNVkit

were used to detect the true structural variation information.

SpeedSeq was used to extract the VCF standard file, and the label

was annotated by comparison with the standard results in the

public database.

We chose a test sample size of 100 and randomly selected

50 true positive samples and 50 false positive samples. We set the

parameter to the best results of the tuning experiment. Because it

is difficult to simulate data on batch errors and population

characteristics, there is a large gap between the real data and

the simulated data.We randomly selected 4 of the real data sets as

the source domain for training (training datasets) and made the

remaining eight samples the final test sets. The results are shown

in Table 6. In addition, we listed the results of

GATK3.8MuTect2 on the same samples. The real data we

choose is panel datasets, and its parameter settings have been

adjusted to detect low-frequency mutations, which is preferable

to find low-frequency mutations. There are many false positives,

resulting in a very low detection effect of MuTect. Experimental

results show that our method can greatly filter false positives in

this situation.

2.2.2 The experiments on the WES datasets
To further test the performance of the proposed method on

real data, we applied it to real WES datasets. We obtained

12 groups of lung cancer data detected by the We6v chip

from the public database (Table 7). All clinical information

was removed, patients were numbered by a random target,

and all germline mutations were removed before we obtained

the data. The raw data were already processed on the public

database, following a pipeline in which the raw sequence read was

mapped by BWA-0.7.5, and GATK3.8MuTect2 and TNscope

2018.3 were used to detect the true structural variation

information. The results of Mutect2 were filtered by

FilterMutectCalls and the low_t_alt_frac; t_lod_fstar of

TNscope. The sequencing depth was 300×/500×. The label

was annotated by comparison with the public database and

the overlapping results of several software detection results.

Other experimental settings are consistent with the panel data

experiment.

The results demonstrated that the proposedmethod has good

adaptability to real data and even better adaptability to simulated

data.Wemixed two types of cancer as the source domain, and the

results showed that the proposed method has no training

differences or preferences for cancer types and can effectively

TABLE 6 The experiment results on real datasets.

The proposed method (%) MuTect2

F-1 score Recall Accuracy Precision Candidate Detected Validated Validation rate (%)

1 76.52 88.00 73.00 67.69 1968 1,501 506 33.71

2 82.57 90.00 81.00 76.27 2437 1,502 474 31.56

3 80.41 78.00 81.00 82.98 2598 1,678 491 39.06

4 87.38 90.00 87.00 84.91 2433 1,506 500 33.20

5 85.71 96.00 84.00 77.42 2752 1,616 501 31.00

6 90.38 94.00 90.00 87.04 2129 1,477 502 33.98

7 86.54 90.00 86.00 83.33 2937 1896 550 29.00

8 88.99 88.00 89.00 90.00 2848 1,539 512 33.27
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overcome the impact of diluted sequencing signals on real data

and filter false positives. The results showed that 1) dilution of

sequencing signals is obvious in cancers with low clonal

proportions, and 2) the proposed method can correct this

effect and effectively reduce false positives.

3 Materials and methods

The overall operation schematic of the proposed method is

shown in Figure 4. For users, the input of the proposed method is

the standard VCF file, and the output is the set of mutations after

filtering out the false positives. It should be noticed that VCF files

can be non standard between different software. The VCF file

format for this method is the format specified in The Variant Call

Format (VCF) Version 4.1 Specification, which master version

can be found at https://github.com/samtools/hts-specs. The

software supports the user in inputting a series of data with

different batches and training with their specific source domains.

The calculation steps are detailed in stages as follows. First, the

proposed approach incorporates a comprehensive set of features

(signals) according to the existing strategies. Then, it requires at

TABLE 7 The experiment results on real datasets.

The proposed method (%) Mutect2

F-1 score Recall Accuracy Precision Detected Validated Validation rate
(%)

1 91.76 91.43 93.90 92.08 14146 9606 67.90

2 91.17 90.76 93.83 91.59 14466 9454 65.35

3 91.92 91.49 93.60 92.35 13906 8495 61.08

4 87.12 86.74 93.95 87.51 14746 8877 60.19

5 90.27 89.89 94.15 90.66 15271 9566 62.64

6 88.00 87.62 94.10 88.38 15168 9559 63.02

7 93.07 92.83 96.40 93.31 25224 15433 61.18

8 94.86 94.63 96.57 95.10 26499 16512 62.31

9 89.83 89.66 97.45 89.99 35934 19577 54.48

10 77.04 76.80 95.55 77.29 20315 13277 65.36

11 94.37 94.02 94.82 94.73 17366 9775 56.29

12 91.04 90.63 93.73 91.46 14230 9871 69.37

FIGURE 4
The flow diagram of the proposed method.
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least two training sets with different proportions. The framework

first trains the models according to one set, which is defined as a

source domain. The trained models focus on the associations

between the features and true mutations. Next, when the other set

is input for training, the framework not only trains another

source domain but also focuses on the transformations among

the features between the source domains. Now, when other fixed

clonal proportions are considered, the framework can generate,

perhaps roughly, models for the new group of proportions

according to the source domains and the transformations. The

transfer learning algorithms can automatically reconstruct

models applicable to other clonal proportion datasets based

on knowledge of the previously trained false positive filter model.

3.1 Stage I: Transfer component analysis

Specifically, for each mutation call, a fixed set of predefined

features is computed (Table 1) to obtain a handcrafted feature

vector consisting of effective standards for mutation detection.

We define the feature matrix as X, the marginal probability

distribution of inputs as P(X) , X � {x1, x2, . . . , x26} ∈ χ as a

learning dataset sample, and X as the space of all document

vectors. Each vector corresponds to a structural variation filter

result with two states: false positive and true positive.

Transfer learning involves the extraction of a meaningful

latent representation from a pretrained model to use for a new,

similar objective (Pan et al., 2010). We use the learned internal

representations of the current state-of-art transfer component

analysis (TCA) (Matasci et al., 2015) method in transfer learning

to eliminate the influence of clonal proportion. TCA is able to

‘transfer’ the knowledge about one domain (called the source) to

another (called the target) when given inputs of two feature

matrices with different clonal proportions in the target domain

and the source domain. By minimizing the distance between

them and maintaining their respective data characteristics, TCA

obtains dimension-reduced data in the source domain and the

target domain, which makes the probability distribution of the

two parts of the data more similar and shortens the data

distribution distance between them, thus eliminating the

difference between the different clonal proportions.

The model ft (target) is learned by considering the model fs

(source), a training set that possibly follows a different data

distribution.We get N samples corresponding to a certain sample

purity which expressed by Ds,

Ds � {(Xs1, ys1), . . . , (Xsn, ysn)} (1)

where Xsi ∈ χ is the features, and ysi is the binary label indicating

whether it is a real variation or a false positive. The target data of

other unknown sample purity is represented by Dt, where Dt �
{(Xt1, yt1), . . . , (Xtn2

, ytn2
)}, Xti ∈ χ is the features, and yti is the

binary label as well. We define P(Xs) and Q(Xt) as the marginal

distributions of Xs � {Xsi} and Xt � {Xti}, respectively. Due to

different clonal proportions, P ≠ Q but P(Ys|Xs) � P(Yt|Xt).
Then, our problem can be expressed as follows: by learning Ds

from the classifier, we want to predict the labels yti corresponding

to the inputs Xti in the target data set Dt of unknown clonal

proportion so that we can solve a learning problem in the target

clonal proportion domain by utilizing the training proportion

data of the source domain, correct the influence of clonal

proportion, and reduce the false positive mutation calls for

any clonal proportion.

Because the probability distributions of signals in the target

and source domains are different, TCA assumes that a feature

map can make the data distributions after mapping

approximately equal. The proposed method tries to learn

transfer components across domains in a reproducing kernel

Hilbert space using maximum mean discrepancy (MMD), which

can minimize the distribution difference in different data

domains (different clonal proportions).

DISTANCE(XS,XT) �

������������������
n2∑n1

i�1∅(Xi) − n1∑n2
j�1∅(Xj)

n1n2

������������������H
(2)

Where n1 represents the number of samples in the source

domain, and n2 represents the number of samples in the

target domain. Φ(Xi) is the data distribution map of the

source domain, and Φ(Xj) is the data distribution map of the

target domain. The MMD matrix is represented as L, and each

element lij of L is calculated as:

lij �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

n 2
1

xi, xj ∈ Ds

1

n 2
2

xi, xj ∈ Dt

− 1
n1n2

otherwise

. (3)

while the central matrix H is calculated as H � In1+n2 −
1/(n1 + n2)11T . The linear kernel function k(x, y) � xty is

selected to construct the kernel matrix K:

K � [Ks,s Ks,t

Kt,s Kt,t
] (4)

Ks,s and Kt,t are the Gram matrix defined on the source

domain data and the target domain data in the embedded space,

respectively. Ks,t and Kt,s are the Gram matrix defined on the

cross-domain data. Ks,t = Kt,s
T. 1 ∈ Rn1+n2 is the column vector

with all 1, and In1+n2 ∈ R(n1+n2)×(n1+n2) is the identity matrix. TCA

calculates the eigen-decomposition matrix according to

(KLK + μI)−1KHK and takes the first M eigenvectors to

construct the feature data conversion matrix W � {Spj p,Tpj p}
from clonal proportion pj to purity p, where Spj p is the source

domain conversion matrix after dimensionality reduction, and
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Tpj p is the target domain conversion matrix after dimensionality

reduction. The optimal feature dimension hereM is set to 23 after

multiple experiments.

3.2 Stage II: Extra tree classifier

False positive filtering is essentially a binary classification

problem in machine learning. The normalized data set is split

into training and testing sets, and the training data are passed to

the model building phase for supervised analysis. In this work,

the tree-like structure classifier introduces randomization in the

process of constructing classifiers to creates a set of diverse

classifiers and is more applicable than neural networks and

linear classifiers. We use the extremely randomized trees

(extra tree) algorithm as the classifier (Moosmann et al.,

2008), which is a kind of integrated learning algorithm based

on a parallel strategy and an average algorithm (Geurts et al.,

2006).

The extra tree classifier adopts disturbance and combination

technology. Compared with other classifiers, forest classifiers can

use these two arrays to obtain a better fit by implementing an

estimator that fits a number of randomized decision trees (a.k.a.

extra trees) on variable subsamples of the dataset and uses

averaging to improve the predictive accuracy and control

overfitting. It not only randomly selects samples when

constructing a subset of data but also extracts the features

randomly (that is, when building a model, some features are

used instead of all features for training). The extra tree classifier

has an additional layer of randomness. When the optimal split

value is selected for the continuous variable feature, a split value

is randomly generated for each feature within its feature value

range, and calculation is then performed to select one value for

splitting. The extra tree classifier has stronger anti-noise ability

and further processes the diluted sequencing signal to avoid

falling into local optima or overfitting because of the tree-based

combination and randomness.

3.3 Stage III: The Boyer-Moore majority
vote algorithm

To avoid possible accidental factors in the transfer of a single

source domain and to further eliminate the influence of diluted

sequencing signals, we selected five low-clonal proportion

samples as source domains at every 5% interval and carried

out five transfers to make the model more convincing and

supportive. The extra tree classifier obtained the mutations

after filtering out the false positives but completed only one

transfer. Each source domain may have different results. We

added a majority vote algorithm—the Boyer-Moore majority

vote algorithm (Cantone et al., 2003)—before the output of the

algorithm to sort the final result. For each clonal proportion

target domain, the output of one extra tree classifier was regarded

as one vote, and the voting majority was taken as the final output.

That is, for each result transferred from a fixed sample purity

hi, (i = 1, 2, 3, . . ., a), hki (x) refers to the output label yj

H(x) �
⎧⎪⎪⎨⎪⎪⎩

yj if ∑T
i�1
hji (x)> 0.5∑N

k�1
∑T
i�1
hki (x)

reject, otherwise

(5)

The number of source domain can be set by users. We here

set it as 5 and choose sample purity in the range of 5%–30%. The

formal description of the whole transfer learning approach

proposed in this paper is reported in Algorithm 1.

Input: Source matrixes DSk Target matrixes DT

Output:Filtered mutation calls

1: Extract the feature datasets S

2: for k = 1 to a:

3: Construct the kernel matrix

K and Xk,Xp

4: Build the MMD matrix L and central

matrix H

5: Calculate the eigendecomposition

matrix M

6: Construct the transformation

matrix W

6: for i = 0 to K:

7: Build the training sample Xk

8: Generate a base classifier

9: while the node is split do:

10: Select m features Randomly

from M

11: Select the optimal attribute

12: Generate a decision tree

13: end

14: end for

15: end for

16: Count the prediction results of all

base classifiers

17: Generate the final classification

result Ykp.

18: Obtain the result set R.

19: Vote

20: Return L

Algorithm 1. TLsub.

4 Conclusion and discussion

The proposed method deconstructs the relationship between

sequencing signals and the clonal proportion by analysing signal

data and introduces a transfer learning method to reconstruct a
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new reproducing Hilbert space, which eliminates the dilution

effect of the clonal proportion on the sequencing signal and

completes the filtering of false positive variation. The exact

detection of subclonal mutations with diluted sequencing

signals is considered fundamental for a better

understanding of the mechanisms behind the expression of

genes, the impact of their perturbation in the context of

specific biological processes or pathways, and the wide

applicability of liquid biopsy. These studies provide

unprecedented opportunities for improvements in the

diagnosis and treatment of different types of cancers and

other human diseases. We developed an enhancement

version of mutation detection by filtering false positives

from next-generation sequencing data based on transfer

component analysis and the Extra Tree Classifier. The

proposed method can eliminate the influence of diluted

sequencing signals that are mainly caused by the subclonal

proportion. The main innovations are as follows: 1) the

proposed method directly inputs the standard VCF file,

which will not be affected by the sequencing software and

detection tools. 2) The transfer learning framework was used

to train on the fixed clonal proportion, which made it possible

that the obtained model can be directly applied to all clonal

proportions, eliminating the negative impact of diluted

sequencing signals. 3) The extra tree classifier was selected

to avoid overfitting and local optimization. 4) The final

filtering results were obtained by the Boyer-Moore majority

vote algorithm to further improve the accuracy of the

algorithm. 5) Cost savings.

Given these innovations, it is encouraging to see the high

accuracy of the proposed method on both simulated and real

validation datasets. We carried out a series of experiments on

both simulated data and real data and compared the proposed

method to a set of popular variation detection tools, including

Freebayes, SiNVICT, Sentieon-2019 and GATK3.8 MuTect2.

The results show that the proposed method adapts well under

different clonal proportions and can significantly reduce the

false positive rate, and the efficiency is significantly high and

stable on datasets with diluted sequencing signals. In future

work, we will develop a distributed version to analyse larger

datasets.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

TZ wrote the main manuscript text and prepared all of the

experiments.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.981269/full#supplementary-material

References

Abyzov, A., Urban, A., Snyder, M., and Gerstein, M. (2011). Cnvnator: An
approach to discover, genotype, and characterize typical and atypical cnvs from
family and population genome sequencing. Genome Res. 21 (9), 974–984. doi:10.
1101/gr.114876.110

Arora, K., Shah, M., Johnson, M., Sanghvi, R., Robine, N., Nagulapalli, K., et al.
(2019). Deep whole-genome sequencing of 3 cancer cell lines on 2 sequencing
platforms. Sci. Rep. 9 (1), 19123. doi:10.1038/s41598-019-55636-3

Can, Kockan, Faraz, Hach, Iman, Sarrafi, Robert, H., Bell, Brian, Beja, K., et al.
(2016). Sinvict: Ultra-sensitive detection of single nucleotide variants and indels in
circulating tumour dna. Bioinformatics 33 (1), 26–34. doi:10.1093/bioinformatics/
btw536

Cantone, D., and Faro, S. (2003). Fast-search: A new efficient variant of the boyer-
moore string matching algorithm. Exp. Effic. Algorithms,14 47–58. doi:10.1007/3-
540-44867-5_4

Chen, K., Chen, L., Fan, X., Wallis, J., Ding, L., andWeinstock, G. (2014). Tigra: A
targeted iterative graph routing assembler for breakpoint assembly. Genome Res. 24
(31), 310–317. doi:10.1101/gr.162883.113

Chen, K., Wallis, J., McLellan, M., Larson, D. E., Kalicki, J. M., Pohl, C. S.,
et al. (2009). Breakdancer: An algorithm for high-resolution mapping of
genomic structural variation. Nat. Methods 6 (6), 677–681. doi:10.1038/
nmeth.1363

Chen, X., Schulz-Trieglaff, O., Shaw, R., Barnes, B., Schlesinger, F., Kallberg, M.,
et al. (2016). Manta: Rapid detection of structural variants and indels for germline
and cancer sequencing applications. Bioinformatics 32 (122), 1220–1222. doi:10.
1093/bioinformatics/btv710

Chiang, C., Layer, R. M., Faust, G. G., Lindberg, M. R., Rose, D. B., Garrison, E. P.,
et al. (2015). Speedseq: Ultra-fast personal genome analysis and interpretation. Nat.
Methods 12 (10), 966–968. doi:10.1038/nmeth.3505

Frontiers in Genetics frontiersin.org13

Zheng 10.3389/fgene.2022.981269

https://www.frontiersin.org/articles/10.3389/fgene.2022.981269/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.981269/full#supplementary-material
https://doi.org/10.1101/gr.114876.110
https://doi.org/10.1101/gr.114876.110
https://doi.org/10.1038/s41598-019-55636-3
https://doi.org/10.1093/bioinformatics/btw536
https://doi.org/10.1093/bioinformatics/btw536
https://doi.org/10.1007/3-540-44867-5_4
https://doi.org/10.1007/3-540-44867-5_4
https://doi.org/10.1101/gr.162883.113
https://doi.org/10.1038/nmeth.1363
https://doi.org/10.1038/nmeth.1363
https://doi.org/10.1093/bioinformatics/btv710
https://doi.org/10.1093/bioinformatics/btv710
https://doi.org/10.1038/nmeth.3505
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.981269


Cibulskis, K., Lawrence, M. S., Carter, S. L., Sivachenko, A., Jaffe, D., Sougnez, C.,
et al. (2013). Sensitive detection of somatic point mutations in impure and
heterogeneous cancer samples. Nat. Biotechnol. 31 (3), 213–219. doi:10.1038/
nbt.2514

Fang, H., Bergmann, E. A., Arora, K., Vacic, V., Zody, M. C., Iossifov, I., et al.
(2016). Indel variant analysis of short-read sequencing data with scalpel. Nat.
Protoc. 11 (12), 2529–2548. doi:10.1038/nprot.2016.150

Freed, D., Aldana, R., Weber, J. A., and Edwards, J. S. (2017). The sentieon
genomics tools - a fast and accurate solution to variant calling from next-generation
sequence data. bioRxiv.23 142. doi:10.1101/115717

Gao, G., Parker, J., Reynolds, S., Silva, T. C., Wang, L. B., Zhou, W., et al. (2019).
Before and after: Comparison of legacy and harmonized tcga genomic data
commons’ data. Cell Syst. 9 (1), 24–34. doi:10.1016/j.cels.2019.06.006

Garrison, E., and Marth, G. (2012). Haplotype-based variant detection from
short-read sequencing. https://arxiv.org/abs/1207.3907

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees.
Mach. Learn. 63 (1), 3–42. doi:10.1007/s10994-006-6226-1

H, L. (2015). Fermikit: Assembly-based variant calling for illumina resequencing
data. Bioinformatics 31 (369), 3694–3696. doi:10.1093/bioinformatics/btv440

Ho, S., Urban, A., and Mills, R. (2020). Structural variation in the sequencing era.
Nat. Rev. Genet. 21 (1), 171–189. doi:10.1038/s41576-019-0180-9

Klambauer, G., Schwarzbauer, K., Mayr, A., Clevert, D. A., Mitterecker, A.,
Bodenhofer, U., et al. (2012). Cn.mops: Mixture of Poissons for discovering copy
number variations in next-generation sequencing data with a low false discovery
rate. Nucleic Acids Res. 40 (69), e69. doi:10.1093/nar/gks003

Koudijs, K., Terwisschavan Scheltinga, A. G. T., Böhringer, S., Schimmel, K., and
Guchelaar, H. J. (2019). The impact of estimated tumour purity on gene expression-
based drug repositioning of clear cell renal cell carcinoma samples. Sci. Rep. 9 (1),
2495. doi:10.1038/s41598-019-39891-y

Layer, R., Chiang, C., Quinlan, A., and Hall, I. M. (2014). Lumpy: A probabilistic
framework for structural variant discovery. Genome Biol. 15 (84), R84. doi:10.1186/
gb-2014-15-6-r84

Ma, F., Guan, Y., Yi, Z., Chang, L., Xu, B., Li, Q., et al. (2017). Assessing tumor
heterogeneity using circulating tumor dna to predict and monitor therapeutic
response in metastatic breast cancer. J. Clin. Oncol. 35 (15 s uppl), 11543. doi:10.
1200/jco.2017.35.15_suppl.11543

Matasci, G., Volpi, M., Kanevski, M., Bruzzone, L., and Tuia, D. (2015).
Semisupervised transfer component analysis for domain adaptation in remote

sensing image classification. IEEE Trans. Geosci. Remote Sens. 53 (7), 3550–3564.
doi:10.1109/tgrs.2014.2377785

Moosmann, F., Nowak, E., and Jurie, F. (2008). Randomized clustering forests for
image classification. IEEE Trans. Pattern Anal. Mach. Intell. 30 (9), 1632–1646.
doi:10.1109/TPAMI.2007.70822

Nagasaki, M., Yasuda, J., Katsuoka, F., Nariai, N., Yamamoto, M., Kawai, Y., et al.
(2015). Rare variant discovery by deep whole-genome sequencing of 1, 070 Japanese
individuals. Nat. Commun. 6, 8018. doi:10.1038/ncomms9018

Pan, S. J., and Qiang, Y. (2010). A survey on transfer learning. IEEE Trans. Knowl.
Data Eng. 22 (10), 1345–1359. doi:10.1109/tkde.2009.191

Rausch, T., Zichner, T., Schlattl, A., Stutz, A. M., Benes, V., and Korbel, J. O.
(2012). Delly: Structural variant discovery by integrated paired-end and split-read
analysis. Bioinformatics 28 (33), i333–i339. doi:10.1093/bioinformatics/bts378

Rhee, J. K., Jung, Y. C., Kim, K. R., Yoo, J., Kim, J., Lee, Y. J., et al. (2018). Impact of
tumor purity on immune gene expression and clustering analyses across multiple
cancer types. Cancer Immunol. Res. 6 (1), 87–97. doi:10.1158/2326-6066.CIR-17-
0201

Stratford, J., Hariani, G., Jasper, J., Brown, C., andWeigman, V. J. (2016). Abstract
5276: Impact of duplicate removal on low frequency ngs somatic variant calling.
Cancer Res. 76 (14 Suppl. ment), 5276. doi:10.1158/1538-7445.am2016-5276

Sudmant, P. H., Rausch, T., Gardner, E. J., Handsaker, R. E., Bashir, A.,
Huddleston, J., et al. (2015). An integrated map of structural variation in 2,
504 human genomes. Nature 526 (7571), 75–81. doi:10.1038/nature15394

Tang, H., Qiao, J., and Fu, Y. X. (2016). Immunotherapy and tumor
microenvironment. Cancer Lett. 370 (1), 85–90. doi:10.1016/j.canlet.2015.10.009

Viola, Ravasio, Marco, Ritelli, Andrea, Legati, and Edoardo, Giacopuzzi (2018).
Garfield-ngs: Genomic variants filtering by deep learning models in ngs.
Bioinformatics 34 (17), 3038–3040. doi:10.1093/bioinformatics/bty303

XiaoRen, W., Chen, L., and Zhong Fang, e. a. (2021). Towards best practice in
cancer mutation detection with whole-genome and whole-exome sequencing. Nat.
Biotechnol. 9, 1141–1150.

Ye, K., Schulz, M., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel: A pattern
growth approach to detect break points of large deletions and medium sized
insertions from paired-end short reads. Bioinformatics 25 (28), 2865–2871.
doi:10.1093/bioinformatics/btp394

Zheng, T., Zhu, X., Zhang, X., Zhao, Z., Yi, X., Wang, J., et al. (2020). A machine
learning framework for genotyping the structural variations with copy number
variant. BMC Med. Genomics 13 (Suppl. 6), 79. doi:10.1186/s12920-020-00733-w

Frontiers in Genetics frontiersin.org14

Zheng 10.3389/fgene.2022.981269

https://doi.org/10.1038/nbt.2514
https://doi.org/10.1038/nbt.2514
https://doi.org/10.1038/nprot.2016.150
https://doi.org/10.1101/115717
https://doi.org/10.1016/j.cels.2019.06.006
https://arxiv.org/abs/1207.3907
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1093/bioinformatics/btv440
https://doi.org/10.1038/s41576-019-0180-9
https://doi.org/10.1093/nar/gks003
https://doi.org/10.1038/s41598-019-39891-y
https://doi.org/10.1186/gb-2014-15-6-r84
https://doi.org/10.1186/gb-2014-15-6-r84
https://doi.org/10.1200/jco.2017.35.15_suppl.11543
https://doi.org/10.1200/jco.2017.35.15_suppl.11543
https://doi.org/10.1109/tgrs.2014.2377785
https://doi.org/10.1109/TPAMI.2007.70822
https://doi.org/10.1038/ncomms9018
https://doi.org/10.1109/tkde.2009.191
https://doi.org/10.1093/bioinformatics/bts378
https://doi.org/10.1158/2326-6066.CIR-17-0201
https://doi.org/10.1158/2326-6066.CIR-17-0201
https://doi.org/10.1158/1538-7445.am2016-5276
https://doi.org/10.1038/nature15394
https://doi.org/10.1016/j.canlet.2015.10.009
https://doi.org/10.1093/bioinformatics/bty303
https://doi.org/10.1093/bioinformatics/btp394
https://doi.org/10.1186/s12920-020-00733-w
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.981269

	TLsub: A transfer learning based enhancement to accurately detect mutations with wide-spectrum sub-clonal proportion
	1 Introduction
	2 Results
	2.1 Performance on simulated data
	2.1.1 Method comparison on mixed-proportion simulated datasets
	2.1.2 Quantifying the effect of the proposed stage I
	2.1.3 Quantifying the sensitivity to parameters
	2.1.3.1 The dimensionalities of the latent spaces
	2.1.3.2 n_estimators
	2.1.3.3 max_features
	2.1.3.5 min_samples_split
	2.1.3.6 min_samples_leaf
	2.1.4 Quantifying the boundary of the proposed method

	2.2 Performance on real data
	2.2.1 The experiments on the panel datasets
	2.2.2 The experiments on the WES datasets


	3 Materials and methods
	3.1 Stage I: Transfer component analysis
	3.2 Stage II: Extra tree classifier
	3.3 Stage III: The Boyer-Moore majority vote algorithm

	4 Conclusion and discussion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


