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Objective: The efficacy of immunotherapy for cholangiocarcinoma (CCA) is

blocked by a high degree of tumor heterogeneity. Cell communication

contributes to heterogeneity in the tumor microenvironment. This study

aimed to explore critical cell signaling and biomarkers induced via cell

communication during immune exhaustion in CCA.

Methods: We constructed empirical Bayes and Markov random field models

eLBP to determine transcription factors, interacting genes, and associated

signaling pathways involved in cell-cell communication using single-cell

RNAseq data. We then analyzed the mechanism of immune exhaustion

during CCA progression.

Results: We found that VEGFA-positive macrophages with high levels of

LGALS9 could interact with HAVCR2 to promote the exhaustion of CD8+

T cells in CCA. Transcription factors SPI1 and IRF1 can upregulate the

expression of LGALS9 in VEGFA-positive macrophages. Subsequently, we

obtained a panel containing 54 genes through the model, which identified

subtype S2 with high expression of immune checkpoint genes that are suitable
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for immunotherapy. Moreover, we found that patients with subtype S2 with a

higher mutation ratio of MUC16 had immune-exhausted genes, such as

HAVCR2 and TIGIT. Finally, we constructed a nine-gene eLBP-LASSO-COX

risk model, which was designated the tumor microenvironment risk score

(TMRS).

Conclusion: Cell communication-related genes can be used as important

markers for predicting patient prognosis and immunotherapy responses. The

TMRS panel is a reliable tool for prognostic prediction and chemotherapeutic

decision-making in CCA.

KEYWORDS

cell communication, single cell RNAseq, transcript factor, cholangiocarcinoma,
immunotherapy

1 Introduction

Cholangiocarcinoma (CCA) is the second most common

form of liver malignancy with increasing diagnostic incidence

and mortality rates (Banales et al., 2020). Patients with CCA

are divided into two subtypes depending on their anatomical

site of origin: intrahepatic (iCCA or ICC), perihilar (pCCA),

and distal (dCCA) CCA (Bridgewater et al., 2014). Most

patients with CCA have lost the opportunity to undergo

surgical resection upon diagnosis (Brandi et al., 2020).

Recent studies have revealed that immunotherapies can

protect against tumor development and metastasis. Immune

checkpoint inhibitors (ICIs), chimeric antigen receptor

T-cells, and tumor vaccines are the main immunotherapies

used in clinical practice.

Tumor heterogeneity and stromal/immune cells in the tumor

immune microenvironment (TME) significantly influence the

effect of the immunotherapy (Tang et al., 2021). Tumors can be

categorized into inflamed, immune desert, or immune-excluded

phenotypes based on the spatial localization of immune cells in

the tumor and stromal compartments (Hegde and Chen, 2020).

Inflamed tumors are typically associated with a response to ICIs,

particularly PD-L1- and PD-1-directed antibodies (Jiang et al.,

2020). The clinical efficacy of PD-1/PD-L1 ICIs enhance the

cytotoxicity of CD8+ T cells. However, clinical experience has

shown that a large percentage of CCAs (>50%) do not respond to

ICIs (e.g., high tumor PD-L1 expression) (Hegde and Chen,

2020). Therefore, it is necessary to investigate the components of

TME to identify other immune checkpoints during CCA

immunotherapy.

Interactions between ligands and receptors in the TME and

tumor cells play a crucial role in tumor progression (Zhang et al.,

2020). It has been revealed that cancer-associated fibroblasts

(CAF) in ICC induced significant epigenetic alterations in ICC

cells via IL-6 secretion and subsequent upregulation of EZH2

through STAT3 activation (Zhang et al., 2020). In addition, PD-

L1+ TAMs in the TME facilitate CCA progression (Rizzo et al.,

2021a). However, the mechanism of cell interaction and

upstream and downstream signal transduction elements

influencing the CCA immunotherapy of remains unclear.

In the present study, we developed an eLBP algorithm by

integrating empirical Bayes with Markov random fields to infer

the intact intercellular communication pattern, including

interacting cell types and critical TFs that could promote cell

interactions simultaneously. We revealed a unique signaling

transduction model between tumor-associated macrophages

and exhausted CD8+ T cells that could influence

immunotherapy and novel immune checkpoint genes in CCA

patients. We also constructed a gene classifier to distinguish

inflamed tissue with high expression of immune checkpoint

genes (ICGs) from the immune desert subtype and predict the

immunotherapeutic effect in the two CCA subtypes.

2 Materials and methods

2.1 Bulk RNA-seq and single-cell datasets

CCA sequencing data were retrieved from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/). All the datasets used in this study are listed in

Supplementary Table S1.

2.2 Single-cell RNA-seq data processing

The single-cell datasets were downloaded from the GEO

database (Supplementary Table S1). The raw gene expression

matrix was imported and processed using the Seurat R package

(version 3.1.5) (Butler et al., 2018). Cells with unique molecular

identifier counts below 200 or mitochondrial content above 35%

were removed. Normalization and dimension-reduction

processes were performed using Seurat R package (3.1.5).

Clusters were computed using the FindClusters function

(resolution = 0.8) and visualized using uniform manifold

approximation and projection (UMAP), as implemented in
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Seurat. Differential expression between clusters was calculated

using a likelihood-ratio test for single-cell gene expression

implemented in Seurat, with a family-wise error rate of 5%.

Cell types were defined according to lineage-specific marker

genes.

2.3 Empirical bayes loopy belief
propagation algorithm

Interactions are frequent among TME cells depending on the

ligand and receptor pairs. We evaluated the contribution of cell-

interaction genes to cell communication by measuring the

importance of their participant-enriched pathways in each cell

type. Meanwhile, transcription factors can enhance cell signaling

by promoting the expression of interacting genes. The

importance and critical TF regulons were calculated using

empirical Bayes loopy belief propagation (eLBP). The cell

clustering results and differential genes in each cell type were

used as the input data for eLBP. The algorithm consists of the

following five steps based on cell interaction genes (CIGs).

2.3.1 Construction of interaction network of
CIGs

We first identified the differentially expressed genes (DEGs)

for each cell type. The pathways that were significantly enriched

(P.adj <0.05) in the KEGG, GO, and REACTOME datasets for

each cell type were selected. We obtained all potential interaction

gene pairs during cell communication from the CellChat

database (Jin et al., 2021). Next, we extracted the pathways

containing cell-communication genes in each cell type.

Subsequently, we conducted the protein interaction (Tohonen

et al., 2015) analysis of these pathway genes to produce a

potential gene interaction undirected graph for each cell type.

2.3.2 Construction of a Markov random field for
CIGs

After constructing the gene interaction undirected graph

for each cell type, we adopted an empirical Bayes Markov

random field (MRF) network to calculate the importance of

communication-related genes in each cell type. The network

was represented by Gk � {Vk, Ek} in where k ∈ {1, 2, . . . , N}
denotes the cell types obtained from a single-cell dataset, Vk

i �
∈ {Vk

1 , V
k
2 , . . . , V

k
M} denotes the gene nodes in the undirected

graph in the cell type k containing total M genes, and E �
{(Vk

i , V
k
j ), Vk

i , V
k
j ∈ V} represents the interaction intensity

between two genes Vi and Vj in the interaction network of

this cell type k. In addition, we set the dummy variable L �
{+1,−1} to denote a set of labels, in which +1 denotes the genes

that were present in the cell type k, while −1 indicates the genes

absent in the cell type k.

To construct a complete MRF model, we specified the node

potentials of the class labels of nodeVk
i , denoted as ψ(Vk

i ), which

are denoted as Vi, and Vj are denoted as ψ(Vk
i , V

k
j ). In this

formulation, we defined node potentials as the probabilities that

genes could occur in the cell type k, ψ(Vk
i ) � P(Vk

i ). Moreover,

we defined the cosine similarity, Co sin(Vk
i , V

k
j ), between two

adjacent nodes with labels Vk
i and Vk

j as the edge potential. We

define potential functions and calculated the joint distribution of

all indicator variables V can be denoted as Eq. 1 (Song You et al.,

2018).

p(V) � 1
Z

∏
Vk
i ∈V

ψ(Vk
i ) ∏

(Vk
i ,V

k
j )∈E

ψ(Vk
i , V

k
j )

(i, j ∈ {1, 2, . . . ,M}; k ∈ {1, 2, . . . ,N})
(1)

where, Z is the normalization constant. Next, we obtained the

eLBP, a widely adopted approximate inference algorithm for the

MRF. When the eLBP converges, the final belief node Vk
i can be

calculated using Eq. 2 (Tirosh et al., 2016).

S(Vk
i ) � 1

Z2
ψ(Vk

i ) ∏
Vk
j ∈Ni

mj→i(Vk
i )

(i, j ∈ {1, 2, . . . ,M}; k ∈ {1, 2, . . . ,N})
(2)

where Z2 is the normalization constant, and Ni denotes the

neighbor nodes connected with node Vi in cell type k.

2.3.3 Construction of positive and negative
reference cells and calculation of the prior
probability of each gene node in eLBP

The prior probabilities in Eqs 1, 2 are calculated using the

empirical Bayes method. The prior probability of node Vk
i in

the network indicates the probability of the gene i being

presented in a cell type k. To calculate the prior

probabilities of genes in cell-type k, we first constructed a

cell-type k positive and negative dataset. Here, we first

removed the genes whose expression levels were equal to

zero in more than 50% of the cells in each type. Then, we

randomly selected 200 or all the cells if the cell number

was <200 to obtain a positive dataset of cell type k, we

selected 200 cells that were not in cell type k to obtain the

corresponding negative dataset.

We then assumed that genes in the cell type k followed a

Poisson distribution with the parameter θ (Eq. 3).

P(V |θ) � e−θθv/v! (3)

where θ has a Gamma prior with unknown parameters α and β

(Eq. 4).

π(θ) � βα

Γ(α)e
−βθθα−1 (4)

Based on this assumption, under the observation vector XCN,

we calculated the posterior values of α and β via Eq. 5 by

randomly sampling 50% of the cells in XCN.
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E(x) � α

β
; Var(x) � α(1 + β)

β2
(5)

Subsequently, we calculated the posterior mean of θkiL using

Eq. 6, using the other data in XCN.

θkiL � E(xi + α

1 + β
)

(L ∈ {+1,−1}; k ∈ {1, 2, . . . ,N}; i ∈ {1, 2, . . . ,M})
(6)

where L denotes the cells from the positive (+1) or negative

datasets (−1). Next, we calculated the prior probability of node

Vk
i (ψ(Vk

i ) using Eq. 7.

ψ(Vk
i ) �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θkiL�+1
θkiL�+1 + θkiL�−1

, if Li � +1

θkiL�−1
θkiL�−1 + θkiL�+1

, if Li � −1

(k ∈ {1, 2, . . .N}; i ∈ {1, 2, . . . ,M})

(7)

Finally, we calculated the probability of occurrence of gene

nodes in the eLBP network using Eq. 2.

2.3.4 Calculation of cell interaction score
After obtaining the posterior probability of each gene node,

we obtained a simplified interaction network by trimming the

gene nodes whose posterior probability obtained from Eq. 2

was <0.7. We then calculated the connection strength among the

CIG pairs between cell types Ki and Kj (CGscore) using Eq. 8.

CGscoreKiKj
� S(Vk

i )*Co sin(Vk
i *V

k
j )*S(Vk

j ); k ∈ (1, N);
i, j ∈ (1, M)

(8)

And the cell type interaction strength CT score was calculated

using Eq. 9.

CTscoreij � mean(CGscoreKiKj
); k ∈ (1, N); i, j ∈ (1, M) (9)

whereKi andKj indicate different cell types. The highest CT score

indicates potentially interacting cell types.

2.3.5 Construction of transcription factor -cell
interaction signal transduction pathway

In addition to the cell interaction community, we

calculated the transcription factor (TF) regulons that could

enhance the critical cell-interaction genes in the eLBP model.

To achieve this, we first obtained the potential regulatory

networks of TFs by collating three transcription factor

databases: ENCODE, ChEA3, and TRANSFAC. Next, we

obtained the TFs whose target genes were significantly

enriched in the trimmed eLBP network obtained from step

4 in the three TF datasets (ChEA3, ENCODE, and

TRANSFAC, p < 0.05). Subsequently, we calculated the

contribution score of each TF using Eq. 10:

TFscoreq � mean(S(Vk
i )*Co sin(Vk

i , TFq));
k ∈ (1, N); i, j ∈ (1, M) (10)

whereVk
i indicates the gene node i in cell type k in eLBP and TFq,

and Co sin(Vk
i , TFq)represents the cosine similarity between

gene node Vi and TFq. Ultimately, we obtained the strongest

interactive cell types, important interactive gene pairs, and key

TF regulons that could promote CIGs.

2.4 THP-1 cell culture and macrophage
differentiation

Human leukemia monocytic THP-1 cells were cultured in

Gibco™ RPMI 1640 medium supplemented with 10% fetal

bovine serum (FBS), 100 units/ml penicillin, and 100 g/ml

streptomycin. THP-1 cells were seeded at a density of 6 × 105

cells/well into 24-well plates and treated with 200 ng/ml

phorbol12-myristate13-acetate (PMA; Sigma-Aldrich, St.

Louis, MO, United States) for 48 h. The cells were cultured at

37°C in a humidified atmosphere with 5% CO2, where THP-1

monocytes were differentiated into macrophages.

2.5 Small interfering RNA transfection

Small interfering RNA (siRNAs) against IRF1 and SPI1 were

used to validate the regulation of the expression of LAGLS9 in

THP-1 cells. IRF1 and SPI1 siRNAs were designed and

synthesized by GenePharma (Shanghai, China). THP-1 cells

were transfected with GP-transfect-Mate, according to the

manufacturer’s instructions. Briefly, THP-1 cells were seeded

at a density of 6 × 105 cells/well in 24-well plates and treated with

200 ng/ml for 48 h. GP-transfect-Mate was diluted in Opti-MEM

(50 ml; Invitrogen, Waltham, MA, United States) for 5 min

before mixing with an equal volume of Opti-MEM containing

siRNA (40 pmol). After 20 min of incubation, 100 μL of the

resulting GP-transfect-Mate/siRNA mixture was added

directly to the cells. After 24 h of incubation at 37°C in a 5%

CO2 atmosphere, cells were harvested for real-time PCR. The

sequences of the primers used were as follows: SPI1-siRNA: CAG

GCAGCAAGAAGAAGAUTT and AUCUUCUUCUUGCUG

CCUT. IRF1-siRNA: GGGCUCAUCUGGAUUAAUATT,

UAUUAAUCCAGAUGAGCCCTT.

2.6 RNA isolation and real-time PCR

Total RNA was isolated using TRIzol reagent (Sigma-

Aldrich), according to the manufacturer’s instructions. cDNA

was synthesized using 5× All-in-One RT-Master Mix (Abm,

Canada). Real-time PCR was performed in a LightCycler 96

using 2× chemQSYBR QPCR Master Mix (Vezyme, China),

Frontiers in Genetics frontiersin.org04

Wang et al. 10.3389/fgene.2022.981145

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.981145


according to the manufacturer’s instructions, in a total volume of

10 μL. The sequences of the primers used were SPI1-Fw and

GCGTGCAAAATGGAAG GGTTT. SPI1-Rev: GGTATCGAG

GACGTGCATCT. IRF1-Fw, GCTGGGACATCAACAAGGAT.

IRF1-Rev: CCTGCTCTGGTCTTTCACCT; LGALS9-Fw: AAG

GTGATGGTGAACGGGAT. LGALS9-Rev: ACTGTCTGGGTA

ATGGGAGC; CD68-Fw: TCCAGGGAAGCTGTGAGGGT.

CD68-Rev: AGCCGAGAATGTCCACTGTGC. CD163-Fw:

TTTGTCAACTTGAGTCCCTTCAC. CD163-Rev: TCCCGC

TACACTTGTTTTCAC. VEGFA-Fw: TCCTCACACCATTGA

AACCA. VEGFA-Rev: TTTTCTCTGCCTCCACAATG.

2.7 Identification of CCA subclasses

Genes from eLBP were selected for consistent clustering

using the R software package ConsensusClusterPlus to sort

the immune molecular CCA subtypes (Wilkerson & Hayes,

2010). Correlations between subtypes, clinical features,

immunity, and prognosis were analyzed.

2.8 Multi-omics data acquisition and
processing

The somatic mutation data of all patients with CCA was

obtained from the International Cancer Genome Consortium

(ICGC, https://dcc.icgc.org/). Mutations were analyzed and

visualized using maftools (Mayakonda et al., 2018). The

enrichment scores of the hallmark genes were evaluated through

single-sample GSEA (ssGSEA) using the “GSVA” R package

(Hänzelmann et al., 2013). Hallmark gene sets were obtained

from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/).

2.9 Differentially expressed gene analysis

The “limma” package was used to perform differentially

expressed gene (DEG) analysis. An empirical Bayesian method

was applied to estimate the DEGs between two clusters, which

were identified using a consistent clustering method based on

moderated t-tests (Ritchie et al., 2015). The adjusted p-value for

multiple testing was calculated using the Benjamini-Hochberg

correction. Genes with an absolute log2 (fold change) greater

than one and false discovery rate (FDR) < 0.05 were identified as

DEGs between the two subtypes.

2.10 Estimation of immune infiltration and
tumor purity

We downloaded the “CIBERSORT” scripts (https://cibersort.

stanford.edu/) to estimate the immune composition of patients

with CCA using a normalized express matrix (Chen et al., 2018).

Immune, stromal, and tumor purity scores were calculated using

the “estimate” R package (Yoshihara et al., 2013).

2.11 DNA methylation analysis

Differential DNA methylation analysis was conducted on

both normal and tumor tissues, as well as on the two tumor

subtypes. Data were pre-processed using the “minfi” package

(Aryee et al., 2014). Hypomethylation probes with β < 0.5 hypo-

methylation probes were used to conduct the analysis. We

considered CpG probes to be hypo-methylated if they met the

following criteria (Song You et al., 2018): β < 0.5 (Tirosh et al.,

2016); M-value was significantly different between the two

subtypes (q-value < 0.05); and (Stuart et al., 2019) mean β-
value difference (Δβ) of >0.2 between the two groups. Copy

number profiles were derived from the signal intensity values of

methylated and unmethylated probes using the “conumee”

package in R (http://bioconductor.org/packages/conumee).

Copy number variations (CNVs) were derived from the log2-

ratios of the tumor samples to the average value of matched

normal tissues.

2.12 Statistical analysis

All computational and statistical analyses were performed

using R software (https://www.r-project.org/). The unpaired

Student’s t-test was used to compare two groups with

normally distributed variables, while the Mann-Whitney

U-test was used to compare two groups with non-normally

distributed variables. Survival analysis was performed using

the Kaplan–Meier “survival” R package. The log-rank test was

used to determine whether the survival curves were significantly

different. A p-value < 0.05 was considered statistically significant.

2.13 Cox proportional hazards regression
analysis

We used the least absolute shrinkage and selection operator

(LASSO) method with 10-fold cross-validation and the Cox

proportional hazards model with Akaike information criterion

(AIC) selection criteria to build a nine-gene prognostic risk

model based on the 54 TF-CIGs using the “glmnet” R

package. The tumor mutation-burden-related signature

(TMBRS) was calculated using Eq. 11:

TMBRS � ∑(βi × EXPi) (11)

where βi can be derived from multivariate Cox analysis. The

prognostic accuracy of the classifiers in the training and testing
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FIGURE 1
The distinct composition and function of cell types in the tumor microenvironment of cholangiocarcinoma. (A) Overview of the study design.
We first analyzed distinct cell composition and function of the normal and cancer tissue in cholangiocarcinoma (CCA) single-cell RNAseq dataset
(GSE138709). Next, we developed a method integrating empirical Bayes and Markov random field models (eLBP) which could simultaneously
calculate transcription factors, interaction genes, and associated signaling pathways involved in cell-cell communication. We found that TFs
IRF1/SPI1 in VEGFA-positive macrophages could enhance the expression of LGALS9 and induce the exhaustion of CD8 T cells via LGALS9/HAVCR2
axis by eLBP method. Meanwhile, we obtained 54 genes involved in cell communication. The 54-gene panel could also group the CCA patients into
two subtypes, in which patients in S2 showed high expression level of immune related genes and had better prognosis. Finally, we constructed a
nine-gene eLBP-LASSO-COX risk model which was designated as tumor microenvironment risk score (TMRS). The TMRS panel was revealed to be a
reliable tool for prognostic prediction and chemotherapeutic decision-making in CCA. (B) Uniform manifold approximation and projection (UMAP)
plot showing the cell composition in normal. GSEA enrichment plot showing the function of macrophage subtypes CD68_S100A9 and CD8 T cell
subtype CD8_GZMA. NES: Normalized enrichment score. (C)UAMP plot showing the cell composition in cancer. GSEA enrichment plot showing the
function of macrophage subtypes VEGFA_MACRO and CD8 T cell subtype TIGIT_CD8. NES: Normalized enrichment scores.
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sets was evaluated using the Kaplan–Meier curve and log-

rank test.

2.14 Immunotherapeutic analysis

We predicted the IC50 values for the CCAs in GSE89749 via

OncoPredict software using the 54 genes obtained from the eLBP

algorithm (Maeser et al., 2021). In this step, we adopted the gene

expression matrix from Genomics of Drug Sensitivity in Cancer

(https://www.cancerrxgene.org/) and acquired drug sensitivity

scores for the two subtypes. Next, we conducted a differential

analysis of drugs between the two subtypes using the Wilcoxon

rank-sum test. Drugs with p-values < 0.001 and drug sensitivity

scores <1 were considered potential candidates.

3 Results

3.1 Distinct stromal cell compositions in
adjacent and CCA tissues

A schematic of the study design is shown in Figure 1A. To

investigate the composition of the TME in CCA, we reanalyzed

the single-cell data from GSE138709 (Zhang et al., 2020). We

deconstructed the cell types in tumors and adjacent tissues.

We observed evident differences between the two tissues. We

obtained 16 cell types in the adjacent tissues, including

CD8_GZMA, CD8_MKI67, and CD69-positive T cells, M1-

like macrophage subtypes (CD68_C1QC, CD68_S100A9), and

two DC subtypes (Figure 1B; Supplementary Figure S1A).

GSEA showed that cytokine production and inflammatory

responses were enriched in M1-like macrophage subtypes

(CD68_C1QC and CD68_S100A9). Additionally, T cell

activation and T cell-mediated immunity pathways were

enriched in CD8_GZMA cells (Figure 1B). In tumor tissues,

we obtained three T cell subtypes, including memory-like

T cells (CCR7+ and CCR7_T) and exhausted CD8 (TIGIT+

and TIGIT_CD8). We also obtained M2-like macrophages

(VEGFA+ and VEGFA_MACRO; Figure 1C; Supplementary

Figure S1A). GSEA results showed that pathways including

cell communication, cell motility, and response to stimulus

were enriched in VEGFA_MACRO, while leukocyte activation

and T cell differentiation were enriched in the

TIGIT_CD8 subtype (Figure 1C). Interestingly, the sample

distribution results showed that T cells and macrophages were

mostly from samples 23T and 24T. In contrast, the cells from

18T to 20T samples were almost all epithelial cells (Methods;

Supplementary Table S2). On this basis, the tumor samples in

this dataset were divided into high- and low-TIL tumor

subtypes. These results indicate that T cells and

macrophages perform different functions in tumor and

para-cancerous tissues.

3.2 Exploring the interacting cell type
community and critical transcript regulons
in tumor and paracancerous tissues using
the eLBP algorithm

To explore the mechanisms that induce the establishment

of different immune states between normal and tumor tissues,

we developed the eLBP algorithm to evaluate the correlation

among immune-infiltrating, storm, and epithelial cells in

normal and tumor single-cell data by calculating the

intensity scores among the cell types (Figure 2A; Methods).

First, we analyzed 7,071 activated cell type-specific pathways

in normal tissues and 8,096 pathways in tumor tissues, in

which 813 ligand or receptor genes in tumor tissues and 559 in

normal tissues were computed based on the CellChat dataset

(Supplementary Table S3). Second, we constructed protein-

protein interaction (PPI) networks and calculated the cosine

similarity between the PPI genes in each cell type. The degree

of ligand/receptor (L/R) genes in the network is shown in

Supplementary Figure S2A. The expression of ligand and

receptor genes in CAF, CD68_C1QC, DC_RAMP3, and

END was higher in normal tissues. T, 24T, TIGIT-CD8,

and VEGFA_MACRO had higher degrees in the tumor

tissues, indicating these cell types were in hyperactive status

in cell communication among the TME (Supplementary

Figure S2B). The levels of ligand and receptor genes

indicate that macrophages with high levels of VEGFA play

an important role in tumor tissues. Next, we used the eLBP

algorithm to calculate the interaction probability of each

ligand and receptor (Supplementary Table S3). Using this

probability, we obtained the interaction intensity scores for

each L/R pair among the cell types in the TME (Supplementary

Tables S4, S5). The results demonstrated significantly different

communities in tumors and normal tissues. In normal tissue,

cells from DC_RAM3 and CD68_C1QC interacted with

activated CD8 cells from CD8_GZMA according to

NAMPT and chemokines, respectively (Figure 2B). In

contrast, there were high levels of TIL infiltration in the

tumor tissues. In addition, CAF could interact with

memory-like T cells in CCR7_T, tumor cells in T_24T, and

macrophages from VEGFA_MACRO. Moreover,

VEGFA_MACRO interacted with exhausted CD8 + cells

from TIGIT_CD8 (Figure 2C). The interaction genes

between CAF and others are mainly related to cell

adhesion, such as glycoprotein CD44 and collagen genes

(Figure 2C). Meanwhile, VEGFA_MACRO, with a high

level of LGALS9, interacted with TIGIT and HAVCR2

(Figure 2C). These results illustrate that VEGFA_MACRO

plays an important role in CD8 exhaustion.

Subsequently, we analyzed the key TFs that promote the

expression of ligand genes in normal and cancerous tissues

using the eLBP algorithm (Methods). In normal tissues,

CD68_C1QC cells interacted with CD8_GZMA via
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CXCL12/CXCR4 (Figure 2B). We next obtained seven TFs

(STAT1, EGR1, KLF4, and JUND; Figure 2D; Supplementary

Table S6) from ENCODE and one TF (KLF2; Supplementary

Table S6) from ChEA3. Moreover, KLF4 and STAT1 regulated

the ligand gene CXCL12 (Figure 2D), which may promote the

expression of ligand genes and influence cell signaling. In

FIGURE 2
Algorithm framework of eLBP and the result calculated by eLBP. (A) Workflow of eLBP. Cell communication profile in the normal (B) (left) and
cancer tissue (C), in which line width was positive correlation with the cell interaction strength. Dot plot showing the interaction genes in the normal
(B) and cancer tissue (C), in which the row showing the interaction genes and the column showing the interaction cell types. The network showing
the critical transcription factor (TF) regulons in normal (D) and cancer tissue (E,F), in which red nodes were TFs and the other nodes were target
genes.
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addition, cells in DC_RAMP3 interact with those in

CD8_GZMA via CLEC1B/KLRB1 and TF STAT3 in

DC_RAMP3 could regulate CLEC1B (Supplementary Table

S6). Notably, in the tumor tissues, we found that only the

cells in VEGFA_MACRO interacted with those in

TIGIT_CD8 via LGALS9/HAVCR2 (Figure 2B). We then

obtained 18 TF regulons from the three datasets, in which

IRF1 was enriched in both ENCODE and TRANSFAC, and

SPI1 was enriched in both ENCODE and ChEA3

(Supplementary Table S6). Moreover, these two TFs also

regulated the ligand gene LGALS9 (Figures 2E,F). In

addition, the profiles of LGALS9, HAVCR2, IRF1, and SPI1

in CCA patients from another single-cell dataset

GSE151530 also verified their functions related to TAM and

exhausted T cells (Supplementary Figure S3) (Ma et al., 2021).

Moreover, immunohistochemical analysis further confirmed

the high expression of HAVCR2 in human CCA patients and

the co-expression of LGALS9 and these two genes (Figure 3A).

The significantly low expression of LGALS9 in siRNA-IRF1/

SPI1 VEGFA-positive macrophages further validated the

transcript regulon of SPI1/IRF1-LGALS9 (Figures 3B,C).

Finally, we derived the gene trimmed-PPI network from the

mutually connected cell types in which L/R genes participate in

normal and tumor tissues via eLBP (Supplementary Figure S4).

FIGURE 3
Validation of co-expression of LGALS9 andHAVCR2 and function of transcription factors IRF1/SPI1. (A) Immunohistochemical plot showing the
co-expression of LGALS9 and HAVCR2 in two CCA patients. Scale bars represent 50 μm. Bar plot showing that TFs IRF1 (B) and SPI1 (C) could
regulate the expression level of LGALS9 (***p < 0.001; **p < 0.01, t-test).
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FIGURE 4
Distinct function in the two subtypes of CCA. (A)Overall survival curves showing the prognosis result of the two subtypes (S1 and S2) obtained
from consensus clustering in CCA cohort (GSE89749) using the genes obtained from eLBP. Statistical significance was calculated using the log-rank
test. (B) Box plots showing the immune and tumor purity scores in the two distinct malignant subtypes (***p < 0.001). Pairwise comparison was
conducted by Wilcoxon rank sum test. (C) Box plots showing the 22 immune cell infiltrates ratio in the two distinct malignant subtypes in the
significant enrich patients. (*p < 0.05; **p < 0.01; ***p < 0.001; Wilcoxon rank sum test). (D) Comparisons of gene expression level of immune genes
in the two distinct malignant subtypes (**p < 0.01; ***p < 0.001; Wilcoxon rank sum test). For the boxplot, the centerline, median; box limits, upper
and lower quartiles. Each dot represents a sample.
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FIGURE 5
Investigation of themutation profile inter-tumor heterogeneity profiles in the two CCA subtypes. (A) The top tenmutated genes across the two
subtypes. The colors of rectangles in the body of the heat map indicate different types of somatic mutations and the key identifying each mutation
type is shown at the bottom below the color bar. The bar plot on the top shows the counts of mutations for each patient and the colors in the bar
plots correspond to the colors showing mutation types in the body of the heat map. The title of the heat map showing the mutation sample
number in each subtype including amplification, missense mutations, and deep deletions. The left number showing the gene mutation frequency in
the two subtypes. Heatmap and dot plot showing the differentially expressed genes and the significantly enriched pathways in normal (B) and cancer
tissue (C) in CCA. Color gradient blue to red indicates relative expression levels from low to high. Dot size represent enrichment scores. (D) Circos
plot showing the amplification and deletion regions in the two subtypes. The width of the plot indicated the CNVmutation regions numbers in each
subtype across the chromosomes. (E) Network showing enriched pathways of hypo-methylated genes that occur on chromosomes 6 and 8 in S2.
Dot size represents the enrichment scores.
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3.3 Cell communication genes obtained
from eLBP can be used to distinguish
inflammatory subtype from a
replicated one

Concerning the potential function of VEGFA_MACRO to

induce the expression of exhausted genes such as HAVCR2, we

further overlapped the genes in TF regulons with those in

ligand or receptor-interaction trimmed-networks from eLBP

from VEGFA_MACRO and obtained 54 genes

(Supplementary Figure S4C; Supplementary Table S7). We

then investigated the clinical features of patients with CCA

using these genes. We grouped patients into different subtypes

in two bulk RNA datasets using consistent clustering

(Methods; GSE89749; GSE76297; Supplementary Table S1)

(Chaisaingmongkol et al., 2017; Jusakul et al., 2017). Patients

in GSE89749 were grouped into two subtypes (S1 and S2;

Figure 4A; Supplementary Figure S5). Moreover, we found

that the samples from the S2 group had a significantly better

prognosis (p = 0.027; Figure 4A). Notably, the tumor purity

results showed that patients in S2 had higher infiltrative

immune and stromal scores, but lower tumor purity

(Figure 4B). The immune infiltration results showed that

patients in S2 had a higher ratio of CD8, activated memory

CD4, S1, and M2-like macrophage subtypes (Figure 4C). In

particular, CD8A, CD8B, CD68, HAVCR2, and LGALS9 were

highly expressed in S2 (Figure 4D). On this basis, S2 was

classified as the inflammatory “hot tumor” subtype and S1 as

the “cold tumor”. We further identified the clustering results

from other RNA sequencing datasets (GSE76297). The

patients in S2 from GSE76297 had higher expression levels

of LGALS9, IRF1, SPI1, and immune genes and similar TIL

profiles with the GSE89749 data (Supplementary Figure S6).

These results further confirmed the existence of high-TIL

tumor subtypes in CCA and indicated the exhaustion of

CD8 cells.

3.4 Inter-tumor heterogeneity between
inflammatory and replicated subtypes

Next, we analyzed the heterogeneity of somatic frequencies

across the two CCA subtypes. The results showed that the cell

replication genes TP53 and genes in the PI3K/Akt pathway, such

as BAP1, KRAS, EPHA2, ARID1A, and SMAD4, exhibited high

mutation ratios in the two subtypes (Figure 4A). S1 had high

ratios of ADAMTS20, KMT2C, and APC (Figure 5A, 13%, 13%,

and 11%, respectively). S2 had a higher mutation frequency of

IDH1 and MUC16 (Figure 5A, 14% and 12%, respectively).

Tumor cells with TP53 mutations are generally identified as

being more immunogenic (Chasov et al., 2020), and we found

that immune genes, such as CD3D and HAVCR2, were highly

expressed in the MUC16 mutated group. Subsequently, we

investigated the heterogeneity of methylation profiles between

normal tissues and tumors. We obtained 15,520 differential

probes between normal and tumor tissues, including

5,219 downregulated and 10, 321 upregulated probes

(Methods, Figure 5B). In normal tissues, hypomethylated

genes were mainly enriched in pathways such as T cell

differentiation, cell adhesion, and inflammatory response,

which were also enriched in normal single-cell datasets

(Figure 5B). This indicated a high immune infiltration and

activated immune status of the normal. Among the two CCA

subtypes, we obtained 697 downregulated probes and

1,115 upregulated probes in S2. In addition, there were

684 downregulated hypomethylated probes enriched in

271 genes in S2. These genes were enriched in MAPK,

CAMP, cGMP-PKG, and PI3K-AKT pathways (Figure 5C).

We then conducted CNV analysis using the methylation data.

The results showed that significant CNV signaling occurred

across chromosomes 1, 6, and 8 in both subtypes (Figure 5D).

Interestingly, we found that S2 had more CNV regions on

chromosomes 6 and 8 (Figure 5D). We then analyzed the

hypomethylated genes on chromosomes 6 and 8 in S2. These

genes were enriched in antigen presentation and immune-toxic

suppression, as well as T cell differentiation and G

protein-coupled receptor-associated signaling pathways

(Figure 5E).

3.5 Construct an eLBP-COX risk model to
distinguish between inflammatory and
replicated subtypes

LASSO-COX regression was used to construct the eLBP-

COX TME risk score (TMRS) using the following formula in

dataset GSE89749: TMRS = −0.03085 × IRF1 − 1.03491 × RHOA

+ 0.5868 × PLAUR − 0.2188 ×NCF2 − 0.2273×CXCR4 − 0.1201 ×

HCK − 0.1773 × LYZ − 0.1244 × RGS1 + 0.2259 × VCAN

(Methods; Supplementary Figure S7). We found that patients

with low TMRS had a better prognosis with higher immune

scores and presented with IRF1, LGALS9, and other immune

genes in GSE89749 (Figures 6A,B), indicating an effective

indicator of RS score in prognostic risk prediction.

Furthermore, we verified the RS model in two other datasets

(EMTAB-6389; GSE107943 Supplementary Table S1; Methods;

Figure 6A) (Ahn et al., 2019). Meanwhile, a nomogram was

drawn to visualize the results of the eLBP-COX regression

analysis (Figure 6C). Subsequently, we conducted drug

susceptibility analysis and explored seven drugs (AZD7762, BI

2536, CDK9 5576, gemcitabine, mitoxantrone, teniposide, and

topotecan) with IC50 values that were significantly lower in

S2 than in S1 (Methods; Figure 6D). Specifically, BI 2536,

teniposide, and mitoxantrone were used as potential

therapeutic drugs for HCC that could be used in the

treatment of CCA.
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FIGURE 6
Distinct functions in different level of tumor microenvironment risk scores. (A) Overall survival curves showing the prognosis results with
different level of tumor microenvironment risk score (TMRS) in the two CCA cohorts using the genes obtained from eLBP-LASSO. Statistical
significance was calculated using the log-rank test. (B) Box plots showing the immune and the exhausted related genes in high and low risk group
(**p < 0.01; ***p < 0.001; Wilcoxon rank sum test). (C) Nomogram plot showing the predicted 3- and 5-year survival possibilities of individual
CCA patients. (D) Bar plot showing the drug sensitivity in S2 subtype.
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4 Discussion

Most patients with CCA are usually diagnosed at advanced

stages and are not eligible for curative resection, with an overall

survival (OS) of less than 1 year from the time of diagnosis. In the

last decade, several novel therapeutic interventions and agents

have improved the clinical outcomes of patients with CCAs. For

example, radiofrequency ablation and mFOLFOX plus active

symptom control (ASC) could significantly improve OS after

progression on cisplatin-gemcitabine combination therapy

compared to ASC alone (Rizzo et al., 2020). Multi-omics

studies have revealed that FGFR2 fusions and rearrangements,

IDH-1 mutations, and BRAF mutations are frequently found in

patients with CCA. Targeted therapies such as the

FGFR2 inhibitor pemigatinib and IDH1 inhibitor ivosidenib

potentiate the treatment of CCAs harboring these mutations

(Brandi et al., 2020). However, polyclonal mutations can also

induce resistance to target drugs. Novel therapeutic strategies,

such as immunotherapy, are needed, and immunotherapy is

emerging as an important approach to cancer treatment.

However, its efficacy varies greatly among cancer patients

(Murciano-Goroff et al., 2020). CCA possesses a special TME

that can be classified as either immune “hot” or “cold”. Of these,

immune “hot” tumors have a better response to

immunotherapies (Loeuillard et al., 2019). ICIs represent a

revolutionary milestone in the field of immuno-oncology

(Darvin et al., 2018). The most common ICIs currently in

clinical trials are PD-1/PD-L1 and CTLA4 (Rizzo et al.,

2021b). The response rates to ICIs vary owing to the complex

composition of the TME (Yao and Gong, 2021). Therefore, we

systematically investigated the composition of the TME to

explore the critical interactions between cell types and signal

transduction in CCAs.

First, we analyzed the TME composition of patients with

CCAs using single-cell sequencing data. We found that

activated CD8 cells and M1-like macrophages infiltrated

normal tissues but exhausted CD8 cells in tumors. We

further explored the critical elements in the signaling

transduction pathways among CCA TMEs, such as the

most frequently interacting cell types, the corresponding

activated interaction gene pairs, the key transcription

factors, and the gene regulons, by integrating L/R

interactions with intracellular signaling via the Markov

Random Fields model and developed an eLBP algorithm.

We adopted the algorithm and found that macrophages

with high expression levels of LGALS9 could interact with

exhausted CD8 T cells expressing high levels of HAVCR2 in

tumor tissues in CCAs. It is reported that galectin-9 (LGALS9)

could interact with PD-1 and TIM-3 (HAVCR2) to regulate

T cell death in multi-cell lines (Yang et al., 2021). Meanwhile,

we first found that TFs, such as IRF1 and SPI1, may promote

the expression of LGALS9 and verified their expression

through multiple datasets and immunohistochemical

staining in CCA tissues. It has been reported to IRF1

inhibits antitumor immunity through upregulation of PD-

L1 in MC38 and CT26 colon cancer and B16 melanoma mouse

models (Shao et al., 2019). It has been demonstrated that Spi1

is required for myeloid-specific expression of Lgals9 in

zebrafish (Zakrzewska et al., 2010). However, their function

in CCAs merits further investigation.

Second, eLBP provided a gene classifier consisting of 54 genes

that dominated the signal transduction between macrophages

and exhausted CD8 T cells. This classifier can group CCA

patients into replicated subtypes S1 and S2. Interestingly,

patients with the inflammatory subtype S2 with high levels of

LGALS9 and HAVCR2 had a better prognosis. Meanwhile, a

higher mutation ratio ofMUC16 in S2 was positive for immune-

exhausted genes, such as HAVCR2 and TIGIT. Recent studies

have demonstrated that MUC16 mutations are associated with

better survival outcomes and immune responses in gastric and

endometrial cancers (Wang et al., 2020).

Pathological confirmation of the diagnosis is necessary

before any nonsurgical treatment but is challenging in CCA

therapy. Endoscopic imaging and tissue sampling are useful;

however, biopsy samples are often inadequate for molecular

profiling. Tissue sampling is reported to be highly specific but

has low sensitivity in the diagnosis of malignant biliary

strictures. Liquid biopsy can capture and monitor the

tumor genetic profile or response to therapy in real time.

For example, high mutation rates of AR1D1A, FGFR2,

PIK3CA, and TP53 proteins, high levels of microRNAs

such as miR-21, and high levels of proteins and cytokines

such as CK-19, MMP-7, osteopontin, periostin, and IL-6 have

been found in CCA patient serum (Rompianesi, et al., 2021).

These protein and microRNA markers can serve as prognostic

and therapeutic markers. In this study, we set up a 54-gene

panel to screen or predict patients that are suitable for

immunotherapy and finally constructed a nine-gene eLBP-

LASSO-COX risk model. From this model, we found that IRF1

was positively associated with low risk, while PLAUR and

VCAN were positively associated with a high-risk score in

tumorigenesis of CCAs. It has been reported that PLAUR

overexpression correlates with poor prognosis in HCC

(Woo et al., 2008). Glioma patients with higher PLAUR

expression are infiltrated with fewer CD8 T cells (Zeng

et al., 2021). VCAN has been used as an immune exclusion

marker (Emmerich et al., 2020). To facilitate clinical

TABLE 1 Resource identification initiative information.

Name Categorization Supplier Cat no.

CD68 Protein CST 76437T

LGALS9 Protein Abcam ab153673

HAVCR2 Protein Abcam ab153673
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application, we will further investigate their expression levels

in serum and exosomes and their capacity for the early

screening of CCAs.

5 Permission to reuse and copyright

Figures, tables, and images will be published under a

Creative Commons CC-BY licence and permission must be

obtained for use of copyrighted material from other sources

(including re-published/adapted/modified/partial figures and

images from the internet). It is the responsibility of the authors

to acquire the licenses, to follow any citation instructions

requested by third-party rights holders, and cover any

supplementary charges.

6 Nomenclature

6.1 Resource identification initiative

To take part in the Resource Identification Initiative, the

corresponding catalogue numbers were listed in Table 1.
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