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Accurate and robust somatic mutation detection is essential for cancer

treatment, diagnostics and research. Various analysis pipelines give different

results and thus should be systematically evaluated. In this study, we

benchmarked 5 commonly-used somatic mutation calling pipelines

(VarScan, VarDictJava, Mutect2, Strelka2 and FANSe) for their precision,

recall and speed, using standard benchmarking datasets based on a series of

real-world whole-exome sequencing datasets. All the 5 pipelines showed very

high precision in all cases, and high recall rate inmutation rates higher than 10%.

However, for the low frequency mutations, these pipelines showed large

difference. FANSe showed the highest accuracy (especially the sensitivity) in

all cases, and VarScan and VarDictJava outperformed Mutect2 and Strelka2 in

low frequency mutations at all sequencing depths. The flaws in filter was the

major cause of the low sensitivity of the four pipelines other than FANSe.

Concerning the speed, FANSe pipeline was 8.8~19x faster than the other

pipelines. Our benchmarking results demonstrated performance of the

somatic calling pipelines and provided a reference for a proper choice of

such pipelines in cancer applications.
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Introduction

Somatic mutation is a key to provide insights and treatment of cancer. Most targeted

cancer therapies are targeting specific somatic mutations, such as EGFR, BRAF, VEGF

and BRCA mutations in various cancers (Gerlinger et al., 2012; Hirsch et al., 2017).

Somatic mutation of circulating tumor DNA (ctDNA) may also serve as an indicator of

cancer and its progression (Rolfo et al., 2021). Recently, the somatic mutation-derived

cancer neoantigens become potential targets for immunotherapy (Ma et al., 2022).

Therefore, accurate detection using next-generation sequencing (NGS) at genome-

wide scale is crucial in cancer clinical applications. Although many analysis pipelines
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have been developed, the accuracy of somatic mutation detection

is still a great problem. For example, a study showed zero

sensitivity in finding pathogenic mutations using whole exome

sequencing of 57 patients (Park et al., 2015). The mutation of

40 ctDNA samples, sequenced by two individual companies,

showed only 12% congruence (Torga and Pienta, 2018). Such a

low reproducibility illustrated the well-known “alarming

reproducibility crisis” (Nekrutenko and Taylor, 2012).

When the specimen collection and experimental processes

are standardized and quality-controlled, getting high quality

sequencing raw data is expected. However, different

computational pipelines can produce significantly different

results. Many studies exhibited low concordance of variant-

calling pipelines (Park et al., 2015; O’Rawe et al., 2013). The

analysis pipeline normally contains two steps: mapping and

somatic mutation calling. There are many algorithms available

for each step. Users often randomly choose tools for analysis,

creating a chaos in the field. Most benchmarking efforts used

simulated datasets to test various pipelines (Wang et al., 2013;

Ewing et al., 2015; Kroigard et al., 2016), but their conclusions

hardly match, probably because the features of the simulated

datasets vary. This also indicated that their performance in the

simulated datasets may not necessarily reflect the performance in

real-world applications. A few approaches used datasets of

clinical samples (Alioto et al., 2015). However, it is almost

impossible to yield true set for somatic mutations at genome-

wide scale. In another aspect, with the rapid decreasing NGS

experimental cost, the computational cost becomes a major part.

The more and more sophisticated variant-calling algorithms

often implements multiple filter steps, leading to prolonged

running time. However, the clinical applications usually need

the analysis as fast as possible. Therefore, it is also important to

investigate how to accelerate the analysis when ensuring the

accuracy.

Various somatic mutation detection pipelines have been

developed, such as VarScan (Koboldt et al., 2012), VarDictJava

(Lai et al., 2016), Mutect2 (in GATK (McKenna et al., 2010)),

Strelka2 (Kim et al., 2018) and FANSe (Zhang et al., 2021). All

these pipelines have been successfully used in clinical cases to

detect specific cancermutation, especially driver mutations (Welch

et al., 2012; Desai et al., 2018; Lin et al., 2020; Mathioudaki et al.,

2020; Farswan et al., 2021). Although single mutations can be

experimentally validated by other methods, the accuracy of

genome-wide mutation detections needs to be systematically

evaluated using standard benchmarking datasets with known

mutation results (“true set”). Chen et al. generated somatic

mutation benchmarking datasets using real-world data (Chen

et al., 2020). They mixed the whole-exome sequencing (WES)

datasets of two normal human cell lines together to generate test

datasets, and provided somatic mutation true sets using the

germline variations, which is relatively easy to get. Therefore,

such benchmarking datasets are representative. In this study,

we evaluated the abovementioned 5 somatic mutation detection

pipelines for their accuracy (precision and recall) and speed, at

various mutation rates and sequencing depths.

Materials and methods

Datasets and true sets

Standard somatic mutation benchmarking files were taken

from Chen et al. (Chen et al., 2020). Sequencing depth: 100 ×,

200 ×, 300 ×, 500 ×, 800 ×. Mutation rates: 1%, 5%, 10%, 20%,

30%, and 40%. For each configuration (depth and mutation rate),

three independent files were used. The true sets for each dataset

were also taken from Chen et al. (Chen et al., 2020)

Hardware

For the speed test, all analyses were run in a workstation with

AMD Threadripper 1950X CPU (16 cores, 32 threads) and

128GB RAM.

Calling somatic mutations

BWA-MEM (Li and Durbin, 2009) and FANSe3 (Zhang

et al., 2021) were used to map raw reads to the human reference

genome hg19. The BWA-MEM were set to default parameters,

and FANSe3 was set to “5% error tolerance, indel detection on,

unique mapped reads only”.

In the SNV (single nucleotide variation) detection stage, the

major parameters of the pipelines were set as follows:

VarDictJava(v1.8.3): “-f 0.01” was both set when runing

VarDict program and var2vcf_paired.pl script including in

VarDictJava.

VarScan(v2.4.2): “--min-coverage 1 --min-reads2 1 --min-

var-freq 0.001” was set when running pileup2snp subprogram

to call SNV, then “--min-coverage-tumor 3 --min-coverage

3 --min-coverage-normal 3 --min-var-freq 0.001 --somatic-p-

value 1” was set when running somatic subprogram to call

somatic variants.

Mutect2(v4.1.0.0, v4.1.5.0, v4.2.0.0, v4.2.5.0): parameter

“disable-read-filter” was set to

“MateOnSameContigOrNoMappedMateReadFilter”.

Strelka2(2.9.10): parameter “--exome” was set.

FANSe3 (v3.12, commercial version): minimum coverage

was set to 3.

The detailed workflow of somatic mutation is illustrated

in Figure 1.

Somatic mutations exported by all 5 pipelines were then

compared to the true mutation set. The precision, recall and
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F-score were defined as Chen et al. (Chen et al., 2020) In brief,

Precision rate, recall rate and F-score were defined as TP/(TP +

FP), TP/(TP + FN) and 2*recall*precision/(recall + precision),

respectively, where TP = true positives, FP = false positives, FN =

false negatives.

Results

Running speed of the pipelines

In clinical practice, hundreds of cancer samples can be

sequenced in one batch due to the capability of modern next-

generation sequencers, creating massive computational

workloads. Therefore, running speed can be a limiting factor

of the entire pipeline. In general, the analysis time comprises

three major parts: network transfer/decompression time,

mapping time and SNV calling time.

Due to the large file size, transferring and decompressing the

FASTQ files from storage server to the analysis server requires

considerable time (Figure 2A). The mapping was performed

using the BWA-MEM and FANSe3 algorithms, respectively.

The speed of FANSe3 was almost 8 times faster than BWA-

MEM (Figure 2B). In the SNV-calling stage, Mutect2, Strelka2,

Varscan and VarDictJava accepted the .bam files from BWA-

MEM, while FANSe needs its specific SNV module to call SNVs

due to its special output format (Figure 2C). There are enormous

differences between the speed of these pipelines. Strelka2 used

~20 min to finish the SNV calling for the 800 × WES dataset,

which was 20 times faster than Varscan, Mutect2 and

VarDictJava. However, FANSe SNV module used only less

than 3 min to finish the SNV calling, 6.7 times faster than the

Strelka2 and 131 times faster than Mutect2. When summing all

the running times together, the FANSe solution showed great

advantage in speed (Figure 2D). When deployed in cloud-

computing infrastructure, FANSe can be configured to do the

mapping when the file transfer is going on. This would further

save the time of transfer and thus decrease the total time of

processing (Figure 2D).

Recall and precision of the pipelines

Previous study showed that the Mutect2 and

Strelka2 pipelines could not effectively detect the low

frequency somatic mutations even at 800x sequencing depth

(Chen et al., 2020), which prohibited them from clinical practice.

However, after excluding the PCR duplicates (e.g., using UMI), a

specific nucleotide mutation should be detectable given high

enough sequencing depths. Theoretically, at sequencing depth of

800 × and 0.5% sequencing error, 1% mutation rate should be

significantly detected (p = 0.021, Fisher exact test). Therefore, we

believe that there should be algorithms that can reliably detect

most of the 1% somatic mutations at high sequencing depth.

Indeed, the recall rate of FANSe, VarDictJava and VarScan was

overwhelming against Mutect2 and Strelka2 (Figure 3A). For

800 × datasets, FANSe reached ~87% recall rate, and VarDictJava

and VarScan reached 81% and 79% in average, respectively. This

FIGURE 1
Workflow of 5 somatic mutation pipelines.
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performance was already informative. In contrast, Mutect2 and

Strelka2 reached 26% and 23%, respectively, even lower than the

recall rate of FANSe at 100 × sequencing depth (28%). This

validated our hypothesis that proper algorithm can effectively

detect low frequency somatic mutations.

At all sequencing depths and mutation rates, FANSe’s recall

rate was higher than VarDictJava and VarScan. For example, for

1% and 5% mutation rates, FANSe at 200 × depth was

comparable to VarDictJava and VarScan at 300 ×. This

indicated that using FANSe lowers the need of sequencing

throughput, i.e., reduces the sequencing cost.

The precision of all pipelines were quite high (Figure 3B). At

1% mutation rate, the precision of all pipelines were greater than

95%, and in higher mutation rates, the precision were all greater

than 99% except VarDictJava. At 1% mutation rate, FANSe

showed the best recall rate but slightly lower precision than

VarDictJava and VarScan. However, the precision of FANSe

rapidly increased when the mutation rate was higher. When

mutation rate was higher than 5%, Mutect2 and VarDictJava

showed remarkable disadvantage in precision and recall. When

assessed by the criteria F-score (Figure 3C), FANSe was the best

in all cases, and the VarScan ranked the second. VarDictJava

performed quite well at 1% and 5% mutation rates, but was

surpassed by Mutect2 and Strelka2 at higher mutation rates.

Version advances cause remarkable
difference in results

It has been noted since decade that the different version of the

same software can generate totally different results when

analyzing the same NGS dataset, contributing to the

“reproducibility crisis”. In the 5 pipelines tested in this study,

Mutect2 was constantly updated for newer versions. We tested

the Mutect2 versions 4.1.0, 4.1.5, 4.2.0 and 4.2.5 on the

benchmarking datasets. The v4.1.5 showed a remarkable drop

in both recall rate and precision (Figure 4A). Newer version did

not necessarily provide better recall and precision. For higher

sequencing throughput and/or higher mutation rate (≥5%), the

version-dependent variation was in general smaller. Assessed

using the F-score, not a single version was the best in all cases

(Figure 4B). For example, v4.1.0 had the best F-score at 30–40%

FIGURE 2
The speed of the 5 pipelines tested on an AMD Threadripper 1950X computer with 128G RAM. (A) Transfer (gigabit LAN) and decompression
time of the datasets. (B) Themapping time of FANSe3 and BWA-MEM algorithms. (C) The SNV calling time. (D) The sumof running time of 5 pipelines.
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mutation rates and 200–300 × depth, and had a large advantage

against all later versions at 1% mutation rate and 800 × depth.

The newest v4.2.5 was not the best at all mutation rates and 800 ×

depth. Moreover, the somatic mutations called by different

versions differ largely. As an example, for a dataset of 1%

mutation rate and 100x depth, v4.2.0 and v4.2.5 screened

FIGURE 3
Accuracy of the 5 pipelines. All detailed numbers are listed in Supplementary Table S1. (A) The recall rate of the 5 pipelines at different
sequencing depths andmutation rates. For eachmutation rate and sequencing depth, the data points for the 3 datasets were all shown, and the lines
illustrate their mean values. (B) The precision-recall diagram of the 5 pipelines. Color indicates the pipeline, and the dot size indicates the sequencing
depths. (C) The F-scores of the 5 pipelines.
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115 and 114 somatic mutations, respectively. 93% of them

overlap. However, the consistency of the v4.2.5 and v4.1.0 was

only 64% (Figure 4C). Although algorithmic improvements may

be implemented during the version iterations, such a high

inconsistency set a warning that the users must be aware the

discrepancy caused by the software versions.

Filtering is a key of SNV detection

The somatic mutations detected by the 5 pipelines showed

very little consistency. For a dataset of 1% mutation rate and

100 × depth, only 69 somatic mutations were identified by all

5 pipelines (Figure 5A). FANSe identified many more somatic

FIGURE 4
Comparison of four versions of the Mutect2. Detailed numbers were listed in Supplementary Table S1. (A) The precision-recall diagram of
Mutect2 v4.1.0 to v4.2.5. The size of dots indicates the version, and the color indicates the sequencing depths. For each sequencing depth and each
mutation rate, only one dataset was chosen to make the diagram for visibility. (B) The F-scores of the four versions of the Mutect2. (C) The Venn
diagram of the somatic mutations detected by four versions of the Mutect2.
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mutations than the other pipelines, and the mutations identified

by the other pipelines were almost covered by FANSe

(Figure 5B). Considering the high precision of FANSe, the

mutations that were solely identified by FANSe were almost

all true. It is an interesting question why the other pipelines

missed so many mutations. After comparison, we found that

11 mutations were missed by other pipelines because the BWA-

MEM failed to map the mismatch-containing reads to the

reference genome (Figure 5C, details listed in Supplementary

Table S2). Most of such reads contained multiple mismatches

against the reference sequences (an example was illustrated in

Figure 5D), indicating that the BWA-MEM mapping algorithm

is not robust enough to map such reads. The rest 439~811

(>97.5%) missed mutations were detected by the SNV-calling

algorithms but were missed because the algorithms filtered them

out (Figure 5C). Obviously, these filters need to be improved.

However, the details of these filters were not clear in the

literatures, prohibiting us to raise suggestions to improve.

Discussion

Taking the advantage of the standard benchmarking WES

datasets, we can assess the performance of any somatic mutation

FIGURE 5
Comparison of the somatic mutations identified by 5 pipelines on the dataset #1 of 1% mutation rate, 100x sequencing depth. (A) The Venn
diagram of the somatic mutations identified by the 5 pipelines. (B) The somatic mutations identified by FANSe pipeline and the other pipelines,
respectively. (C) The reason of the missed mutations by the other 4 pipelines compared to FANSe. (D) An example of mutation site (chr11, position
60531346), where the mismatch-containing reads were not mapped by BWA-MEM. Four mismatch-containing reads were mapped by FANSe
and piled on the reference sequence. The read #1~#3 were mapped to the forward strand and the read #4 was mapped to the reverse strand
(illustrated as reverse-complement). Red bases illustrated the mismatches against the reference sequences.
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detection pipelines. Chen et al. compared the Mutect2 and

Strelka2 pipelines. They concluded that the sensitivity at low

mutation frequency is inacceptable, and cannot be compensated

by the elevation of sequencing depth. However, we found that

many other pipelines like VarDictJava, VarScan and FANSe,

showed several times higher sensitivity than Mutect2 and

Strelka2. This indicated that there are many more sensitive

algorithms available; however, most researchers, especially

those who are not professional in bioinformatics, did not

choose a proper analysis pipeline based on real-world data

benchmarking. This algorithm blind pick may generate

misleading results that confuse further investigations, and

causes inconsistent conclusions, intensifying the “alarming

reproducibility crisis”.

The good news from our study is the very high precision of all

5 tested pipelines: at 1% mutation frequency, the precision is

above 95%, and at higher mutation frequency, the precision is

nearly perfect. This means that the somatic mutations called by

these pipelines were nearly true. However, the sensitivity is a

major challenge, i.e., most pipelines missed a considerable

fraction of somatic mutations. Considering only the

computational analysis, flaws in two steps contribute to the

loss of sensitivity: 1) The miss of the mapping algorithms.

The insufficient robustness and error tolerance of the

mapping algorithms failed to map some mismatch-containing

reads to the reference genomes, especially when these reads also

contains some germline mutations. In this study, we found that

1~2.5% of the somatic mutations were missed by this reason,

which is relatively minor. 2) The improper filter. Each SNV-

calling algorithm has its distinguished statistical model, but is

rarely publicized in detail. Therefore, it is hard for the users to

suggest improvements of the model. In addition, the filter criteria

are often changed during the version upgrade, leading to

considerable inconsistency over the versions. We

demonstrated such inconsistency in Mutect2. The researchers

need to be aware of this. Some algorithms like Mutect2 contain

many filter steps, creating complexity that might reduce

robustness when compared to simpler models like VarScan.

FANSe pipeline showed distinct advantage in both accuracy

and speed. It has the best F-score in all cases, especially at low

mutation frequency and low sequencing depth. At 1% mutation

rate, its sensitivity reached 87% for 800 × sequencing depth,

which is quite useful in clinical practice. At 5% mutation rate, its

sensitivity reached 95% for 300 × depth; increasing the

sequencing depth to 800 × only slightly increased the

sensitivity to 97%. At 10% mutation rate, 200 × depth almost

reaches the stationary level of sensitivity, and more throughput

hardly benefits. This means that the sensitive and accurate

somatic mutation detection can be achieved at relatively low

sequencing cost. Also, its speed is 8.8 times faster than the

Strelka2, and 19 times faster than VarScan, which showed a

great advantage in the computational efficiency–and cost. It may

be the optimal solution for somatic mutation detection in the

precision medicine era.
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