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Mutations of the Regulatory Factor X5 (RFX5) have been associated with the

autosomal recessivemajor histocompatibility class II (MHC-II) deficiency, which

is a severe immunodeficiency characterized by constitutive and interferon-

gamma inducedMHC II expression disorder and leads to the absence of cellular

and humoral T-cell response to antigen challenge. The compound

heterozygous splicing mutations of RFX5: c.353 + 6T>G (maternally

inherited) and c.757 + 1G>A (paternally inherited) were identified in an infant

diagnosed severe immunodeficiency. Themutation c.757 + 1G>Awas classified

as likely pathogenic while c.353 + 6T>Gwas classified as the variant of uncertain

significance according to American College of Medical Genetics and Genomics

(ACMG). To investigate the pathogenicity of RFX5: c.353 + 6T>G, reverse

transcription PCR (RT-PCR) was conducted with the mother’s peripheral

blood. An insertion of 191-bp intronic sequence (intron 6) was found in the

transcripts, and this resulted in a frameshift and premature truncation of the

protein, especially reduced the DNA-binding domain (DBD) of the RFX5 protein.

Our data expanded the spectrum of pathogenicmutations in MHC-II deficiency

and put new insights into the genetic counseling, prenatal diagnosis and

preimplantation genetic testing (PGT) for the disease.
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Introduction

Regulatory factor X-5 (RFX5) is essential for the regulation of major

histocompatibility class II (MHC II) gene expression (Villard et al., 1997; Djidjik

et al., 2012). RFX5 contains highly conserved DNA-binding domains (DBDs), located

in the 90–166 residues and 407–614 residues, which bind the X box of MHC II before

transcription (Clarridge et al., 2016; Farrokhi et al., 2018).

Mutations in RFX5 have been associated with the MHC-II deficiency, also named as

the Bare Lymphocyte Syndrome (BLS) (OMIM:209,920) (Reith and Mach, 2001; Nekrep

et al., 2002). MHC-II deficiency, a rare autosomal recessive disease, is characterized by

constitutive and interferon-gamma induced MHC II expression disorder, and results in
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the absence of cellular and humoral T-cell response to antigen

challenge, hypogammaglobulinemia and impaired antibody

production (Garvie et al., 2007; Hanna and Etzioni, 2014).

Over 200 cases have been reported and the prevalence varies

significantly in different regions based on previous published

data. Around two-thirds of the patients come from North Africa

while less than 10 cases have been reported in East Asia (Djidjik

et al., 2012; El Hawary et al., 2019). Children with MHC-II

deficiency are extremely susceptible to a broad range of viral,

bacterial and fungal, among which Pneumocystis jirovecii,

Salmonella, cytomegalovirus (CMV), Cryptosporidium species

and herpes simplex virus (HPV) are the most common

pathogens (Hanna and Etzioni, 2014). Therefore, these

patients are mainly characterized by severe and recurrent

infections within the first year of life, especially involving the

respiratory and gastrointestinal tract. What’s worse, the infection

may be lethal (Reith and Mach, 2001; Farrokhi et al., 2018).

In the current investigation, we described a Chinese infant

with MHC II deficiency caused by two novel splicing mutations,

c.353 + 6T>G (maternally inherited) and c.757 + 1G>A
(paternally inherited) in the RFX5 gene.

Methods

Subject

A 30-year-old healthy woman who delivered an infant (the

proband) diagnosed severe immunodeficiency was referred to the

Department of Reproductive Genetics, Women’s Hospital,

School of Medicine Zhejiang University. Her infant presented

recurrent pneumonia, reduced CD3 and CD4 positive leucocyte

cell ratio, inverted CD4/CD8 ratio and reduced serum

immunoglobulins levels (concentrations of IgG, IgA, and IgM)

at 6 months of her age (Table 1). The infant died at 22 months of

her age due to severe respiratory infection and respiratory failure.

Severe immunodeficiency was diagnosed with unknown cause.

The infant was born at full term to healthy un-consanguineous

Chinese parents without family history of any genetic disorders.

The use of medical records of this family is was approved by

the Institutional Review Board of the Women’s Hospital, School

of Medicine, Zhejiang University and the participants provided

their written informed consents.

WES and bioinformatic analysis

To determine the cause for severe immunodeficiency, the

whole exome sequencing (WES) was provided. Genomic DNA

from all the family members was extracted by a QIAamp DNA

blood midi kit (Qiagen, Hilden, Germany) according to the

manufacturer’s protocol and then was fragmented by Covaris

LE220 (Massachusetts, United States) to generate a paired-end

library (200–250 bp). All amplified libraries were performed on

the BGISEQ-500 platform (BGI, Shenzhen, China), the single-

strand DNA was mixed with MGIEasy™ DNA Library Prep Kit

V1 (BGI, Shenzhen, China) and then sequenced using 100SR

chemistry with BGISEQ-500RS high-throughput sequencing Kit

(BGI, Shenzhen, China).

Splice AI (https://spliceailookup.broadinstitute.org/) was

used to predict the effect of variants. Pathogenic variants are

assessed according to the protocol issued by the American

College of Medical Genetics and Genomics (ACMG)

(Richards et al., 2015). DECIPHER (http://decipher.sanger.ac.

uk), OMIM (http://omim.org/), PubMed (http://www.ncbi.nlm.

nih.gov/pubmed), ClinVar (https://www.ncbi.nlm.nih.gov/

clinvar/), and HGMD (http://www. hgmd. cf.ac.uk/ac/index.

php) databases were used to investigate the clinical relevance

of the mutations.

Sanger sequencing validation

Sanger sequencing was carried out to confirm the variants

in RFX5 gene. The primers used for c.757 + 1G>A were as

follows: RFX5-E9F, TAGCTGAGGCAGAGGATGAAGA;

and RFX5-E9R, GGTGAGGAGGAAACTGAGGAAT. The

primers used for c.353 + 6T>G were as follows: RFX5-E5F,

GTTAGGGTCTTAGTAATGCTTGTTCC; and RFX5-E5R,

CCTTCGAGCTTTGATGTCAGG. The primers were

designed using Oligo Primer Designer (Rychlik 2007). The

DNA was amplified using the following procedure: 94°C for

10 min; 35 cycles at 94°C for 30 s, 60°C for 30 s, 72°C for 30 s;

72°C for 10 min. Sequencing was performed by an ABI 3130

DNA analyzer.

TABLE 1 Abnormal immunological findings of the infant with the
associated normal range.

Patient data Normal range Unit

Cell count

White Blood Cell 17.81 4–10 109/L

Lymphocyte 2.91 0.8–4 109/L

Monocyte 0.74 0.12–1.2 109/L

Platelet 351 100–300 109/L

Immunophenotyping

CD3 38 55–84 %

CD4 11 31–60 %

CD8 26 13–41 %

CD4/CD8 ratio 0.44 0.8–2.8

Ig concentration

IgG 0.41 5.2–16 g/L

IgA 0.02 0.24–3.3 g/L

IgM 0.22 0.5–2.2 g/L
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RNA extraction, real time-PCR, and
sequencing

Total RNAs of the mother’s peripheral blood cells was extracted

using TRIzol (Takara, Japan). Extracted total RNAs was reverse-

transcribed using RT Kit (Takara, Japan) following the

manufacturer’s instructions. RT-PCR was performed using

GoldStar Best Master Mix (CWBIO, Beijing). Sequences of

primers used were as follows: RFX5-spF, GAAGATGAGCCT

GATGCTAAGAG; and RFX5-spR, GGCGACCTCAACGATGGA

AC. The procedure of the PCR was as follows: 94°C for 10 min

followed by 35 cycles at 94°C for 30 s, 60°C for 30 s, 72°C for 30 s, and

a final extension step at 72°C for 10 min. Sequencing was performed

by an ABI 3130 DNA analyzer.

Results

Identification of the compound
heterozygous mutations in RFX5

Compound heterozygous splicing mutations in RFX5:

c.353 + 6 T>G and c.757 + 1 G>A were identified by WES

and confirmed by Sanger sequencing (Figure 1). These

mutations have never been reported in any database

(gnomAD, ClinVar or HGMD) or literature. Splice AI was

used to predict the effects of the RFX5: c.353 + 6T>G and

c.757 + 1G>A on splicing. The delta score of donor loss were

0.79 and 0.85, respectively. The result indicates that both of

the mutations affect the splicing. The mutation RFX5: c.757 +

1G>A was inherited from her father and classified as likely

pathogenic, while the mutation RFX5: c.353 + 6T>G was

maternally inherited and classified as variant of

uncertain significance (VUS) according to ACMG

recommendations.

Pathogenicity of RFX5: c.353 + 6T>G

Based on the genotype–phenotype correlation, we

hypothesized that RFX5: c.353 + 6T>G may affect the

splicing. To confirm this hypothesis, mRNA was extracted

from the women’s peripheral blood cells. RT-PCR was

performed with the primers (RFX5-spF/RFX5-spR)

designed to amplify exons three to nine of RFX5. It was

found that the woman (I1) and the controls (C1 and C2)

shared the band of PCR products at 675 bp, while I1 had

another bigger band of 866 bp (Figure 2A). The Sanger

sequencing of the bigger band (866 bp) showed that 191-

bp intron six sequences were retained from the transcripts of

the mother, compared with the 675 bp band (Figures 2B,C).

The mutation (c.353 + 6T>G) introduced an insertion of 191-

bp intron six sequences, which may cause a truncated

RFX5 protein by a frameshift and creation of a premature

stop codon. As is showed in Figure 2D, wild-type deduced

RFX5 protein has three domains, among which two domains

are DNA-binding domains (DBDs). However, the deduced

RFX5 protein of c.353 + 6T>G splicing mutation only has one

truncated DBD. The truncated DBD may damage the ability

of RFX5 to bind X box of the MHC II promoter and then

reduce the expression of MHC II molecular at the

transcriptional level.

FIGURE 1
Pedigree of the family and Sanger sequence analysis. (A) II1(proband) have two compound splicing variants in RFX5 gene. One variant
(c.353+6T > G) is from I1 (mother) and the other (c.757+1G > A) is from I2 (father). Chromatograms of (B) c.353+6T > G and (C) c.757+1G > A are
identified by Sanger sequencing, respectively. The top chromatograms are from the infant, the middle two are from the father, and the bottom two
are from the mother (red arrows indicate the mutation).
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Discussion

In the current investigation, we described a Chinese infant

with MHC class II deficiency due to the compound heterozygous

splicing mutations of the RFX5 gene for the first time. The

paternally inherited mutation c.757 + 1G>A of RFX5 was

likely pathogenic and the maternally inherited mutation c.353

+ 6T>G was proved to affect splicing, which may result in

frameshift and truncation of the protein. Both of the

mutations have never been reported in any database or

literature, indicating our findings expand the spectrum of the

diagnose for the MHC II deficiency and provide insight and

information for genetic counseling.

Major histocompatibility complex (MHC) II deficiency is a

primary immunodeficiency with an autosomal recessive

inheritance pattern and is characterized by the early onset of

FIGURE 2
Analysis of c. 353 + 6T>G splicing mutation in RFX5. (A): RT-PCR analysis of RFX5 cDNA from peripheral blood samples. Agarose gel (1.5%)
electrophoresis of RT-PCR products generated from I1 (mother), C1 andC2 (normal controls). Amplicons resulting from aberrantly splicedmRNA and
normal spliced mRNA are marked by red and blue arrowheads, respectively. (B): Schematic representation of exon three to nine and intron six
organization in RFX5. (C): Sequence analysis of the RT-PCR products from the mother. The arrows indicate the position of the c. 353 + 6T>G
mutation. (D): The structure with domains of wild-type and c. 353 + 6T>G splicing mutation RFX5 protein. Wild-type RFX5 protein consists of three
domains, among which domain two and domain three are the important DBDs while the splicing mutation leads to the premature of the protein and
significantly damages the protein structure.
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severe and recurrent respiratory and gastrointestinal infections,

developmental delay, and death in early life (Plaeger-Marshall

et al., 1988; Lum et al., 2020). Almost all of the patients suffer

from recurrent pneumonia and prolonged diarrhea (Clement,

1990; Ben-Mustapha et al., 2013). In the present study, the infant

presented typically clinical and immunological features, like

severe pneumonia, reduced CD3 and CD4 positive leucocyte

cell ratio, inverse CD4/CD8 ratio and reduced serum

immunoglobulin levels (concentrations of IgG, IgA, and IgM).

The infant eventually died at 22 months of age due to acute

respiratory infection and respiratory failure.

The underlying cause of MHC class II deficiency lies in the

absence or reduced expression of MHC class II molecules which are

regulated by MHC II enhanceosome (a cell-specific multiprotein

complex) (Masternak et al., 2000; Hanna and Etzioni, 2014). The

MHC class IImolecules, also referred to as human leukocyte antigens

(HLAs), are multigenic and highly polymorphic glycoproteins that

aggregate to form heterodimers of a and β chains (Hanna and

Etzioni, 2014). Moreover, HLAs are usually divided into three

molecules, HLA-DR, -DP, and -DQ, which are located on the

surface of antigen-presenting cells (APCs) such as dendritic cells

and macrophages (Waldburger et al., 2000). HLAs present antigens

endocytosed byAPCs to the receptor of CD4+ helper T cells, directing

the T cell activation, differentiation, and proliferation (Villard et al.,

2000). It is reported thatMHC class II genemutationsmight damage

cellular and humoral immunity by affecting CD4 T-cell development

and reducing the Th-cell-dependent antibody production

(Nonoyama et al., 1998; Sage et al., 2014; Aluri et al., 2018). Class

II transactivator (CIITA), RFX-associated protein (RFXAP),

regulatory factor X-5 (RFX5), and RFXAP-containing ankyrin

repeat (RFXANK) are widely recognized key enhanceosome of

MHC class II molecules so far. Accordingly, based on the four

different transcript factors, MHC II deficiency is divided into four

groups from group A to D, which are summarized by the deficiency

of CIITA, RFXANK, RFX5, and RFXAP, respectively (Steimle et al.,

1995; Scholl et al., 1997). In our study, two splicing mutations (c.

757 + 1G>A and c. 353 + 6T>G) in RFX5 gene were found in the

proband, who belongs to group C. The former mutation was located

at the classical splicing site, and the lattermutationwas proven to lead

to a stop codon after amino acid 126, leading to a loss of more than

50% of the protein including the highly conserved DBD. Therefore,

the ability ofRFX5 to bindX box could be affected and the expression

of MHC II molecular reduced. Taken together, the compound

heterozygous mutations in proband might explain the cause for

immune deficiency.

Up to now, 19 pathogenic/uncertain significance mutations have

been reported in RFX5(HGMD Professional 2022.2). Among them,

are five missense mutations (two pathogenic mutations and three

uncertain significance mutations), four nonsense mutations (all

pathogenic mutations), five splicing mutations (all pathogenic

mutations), four small deletions mutations (three pathogenic

mutations and one uncertain significance mutation) and one

small insertions mutation (pathogenic mutation). The five splicing

mutations are c.116 + 1G>A, c.151-1G>A, c.234-1G>A,
c.556–2A>G and c.116 + 5G>A, respectively. Four of them are of

the classical splice site variants, the last one (c.116 + 5 G>A) is a point
mutation in a splice donor site, which results in 10 nucleotide

upstream in exon two deletion in RFX5 mRNA (Villard et al.,

1997). The splicing mutations reported in this study are novel.

Hematopoietic stem cell transplantation (HSCT) is currently the

only available curative treatment for MHC-II deficiency. However,

the success rate is reported to be poor in MHC class II-deficient

patients (Small et al., 2013; Posovszky et al., 2019). On the basis of a

previous study, two patients did not survive although they underwent

HSCT after diagnosis. One patient died of diarrhea and Gram-

negative sepsis within 8 days of transplant procedure and the other

died post-HSCT due to lung damage and systemic candidiasis (Aluri

et al., 2018). Even though the patients withMHC II deficiency do not

express MHC II required for the rejection process, the residual host

immunity is sufficient to cause rejection even with

immunosuppression. In a recent study, it was suggested that the

low survival rate in these patientsmay lie in the presentation of donor

antigens by donor antigen-presenting cells to recipient Th cells

leading to graft rejection. (Kallen and Pullarkat, 2015). Apart from

poor engraftment, a high rate of post-HSCT death can be caused by

diagnosis and/or treatment delays, multiorgan failure and persistent

viral infections. More importantly, pregnant women with

immunodeficiency fetuses mostly experience normal prenatal

examination in imaging (ultrasound or MRI) and laboratory tests,

like themother in our study. Therefore, it is of great value to carry out

prenatal diagnosis or PGD in such families.

In summary, we reported two novel splicing mutations (c.353

+ 6T>G and c.757 + 1G>A) in RFX5 which are associated with

MHC class II deficiency. The mutations were predicted to affect

the RFX5 protein translation and even result in the premature of

the protein. In addition, our study validates that the RT-PCR is

necessary if the genotype–phenotype correlation was very

consistent while only one classical splicing site gene mutation

of autosomal recessive disease was detected. It contributed to a

new genetic foundation for prenatal diagnosis and prenatal

diagnosis of MHC class II deficiency.
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