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Background: Colon adenocarcinoma (COAD) is a common aggressive malignant
tumor. Heterogeneity in tumorigenesis and therapy response leads to an
unsatisfactory overall survival of colon adenocarcinoma patients. Our study aimed
to identify tools for a better prediction of colon adenocarcinoma prognosis,
bolstering the development of a better personalized treatment and management.

Method: We used the least absolute shrinkage and selection operator (LASSO)
Cox model to analyze the prognosis-related gene datasets from the Gene
Expression Omnibus (GEO) database and verified them using The Cancer
Genome Atlas (TCGA) database. The area under the curve (AUC) was
calculated using the receiver operating characteristic (ROC) curve to evaluate
the predictive ability of the risk scoremodel. Gene Set Enrichment Analysis (GSEA)
was used to identify the significantly enriched and depleted biological processes.
The tumor immune dysfunction and exclusion (TIDE) algorithm was taken to
explore the relationship between the risk score and immunotherapy. The
observations collectively helped us construct a nomogram to predict
prognosis. Finally, the correlation between drug sensitivity and prognostic
gene sets was conducted based on the Cancer Therapeutics Response Portal
(CTRP) analyses.

Results: We constructed a scoring model to assess the significance of the
prognosis risk-related gene signatures, which was relative to common tumor
characteristics and tumor mutational burdens. Patients with a high-risk score had
higher tumor stage and poor prognosis (p< 0.05). Moreover, the expressions of
these genes were in correlation with changes in the tumor microenvironment
(TME). The risk score is an independent prognostic factor for COAD (p< 0.05). The
accuracy of the novel nomogram model with a risk score and TNM-stage
prediction prognosis in the predicting prognosis was higher than that of the
TNM stage. Further analysis showed that a high-risk score was associated with
tumor immune rejection. Patients with a low-risk score have a better prognosis
with chemotherapy than those with a high-risk score. Compared to patients in
the high-risk group, patients in the low-risk group had a significant survival
advantage after receiving chemotherapy. In addition, the prognostic gene sets
aid the assessment of drug sensitivity.

Conclusion: This study establishes a new prognostic model to better predict the
clinical outcome and TME characteristics of colon adenocarcinoma. We believe, our
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model also serves as a useful clinical tool to strengthen the functioning of
chemotherapy, immunotherapy, and targeted drugs.
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Introduction

Colon adenocarcinoma (COAD) is the main pathological type of
colon cancer and the second leading cause of cancer deaths worldwide
(Yoshino et al., 2018; Keum and Giovannucci, 2019). Approximately
900,000 COAD patients die each year from this malignancy due to its
late clinical diagnosis (Dekker et al., 2019). Moreover, the incidence
and mortality rates of COAD have been continuously growing, owing
to the unsatisfactory prognosis of advanced COAD cases. The poor
prognosis of COAD may also be due to its tumor recurrence and
metastasis, characteristic of the disease. The 5-year and 10-year
survival rates of most patients with metastatic COAD are 40% and
20%, respectively (Zhou et al., 2022). Treatment decisions are
primarily based on assessing the tumor node metastasis (TNM)
staging system (Amin et al., 2017). COAD is a heterogeneous

cancer with genetic and clinicopathologic features regulating its
occurrence and development (Gu et al., 2020). However, TNM
staging fails to reveal its biological heterogeneity (Zhou et al.,
2021). Moreover, an accurate prediction of the survival duration of
COAD patients is helpful for clinical decision-making, warranting an
urgent need to find more precise prognosis-predictive tools.

Currently, the standard treatment modalities for patients with
COAD include surgery, adjuvant chemotherapy, and radiotherapy. It
is challenging to remove all the cancer cells via surgery, causing
advanced COAD patients to receive further treatment with
adjuvant chemotherapy and radiotherapy (Ganesh et al., 2019).
Chemotherapeutic drugs are non-specific and cytotoxic in nature
with many side effects to any normal growing and dividing cell of
the body. Notably, immunotherapy is one of the novel and current
alternative treatments for COAD patients. Immune checkpoint

FIGURE 1
Risk-scoring model construction and validation. (A) Illustration for the LASSO coefficient spectrum of prognostic genes. (B) Adjusted parameters of the
LASSO regressionmodel. (C) Kaplan–Meier curve analysis of OS in high-risk and low-risk groups based on the GEO database. (D) Kaplan–Meier curve analysis
of OS in high-risk and low-risk groups based on the TCGA database. (E) ROC curve of risk scores in the GEO database. (F) ROC curve of risk scores in TCGA
database. (G,H)Overview of the survival time and distribution of risk scores of the GEO database. (I,J)Overview of the survival time and distribution of risk
scores of TCGA database.
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therapy, which received a regulatory approval in 2017, primarily treats
severely mutated COAD patients with deficient mismatch repair
(dMMR) or high levels of microsatellite instability (MSI-H) (Picard
et al., 2020). However, COAD patients, upon receiving adjuvant
immunotherapy, may exhibit an immune exclusion response (Fan
et al., 2021). Moreover, different chemotherapy drugs elicit variable
prognoses for different types of COAD patients. However, choosing a
personalized treatment plan still remains challenging and confusing.
Hence, the need of the hour is to identify a prognostic model to predict
the survival outcomes of COAD patients. The aim was to use this
model to clinically guide COAD treatment decisions.

In this study, large data from a cohort of COAD patients from
TCGA database were screened for differentially expressed prognostic
risk-associated genes. These genes were chosen from the GEO
database and verified using TCGA expression data. Herein, we
aimed to construct a novel prognostic risk scoring method for
COAD that could lead to the administration of a better
personalized treatment and management.

Materials and methods

Data collection and preprocessing

The expression profiles were downloaded from two platforms: the
GSE39582 dataset from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/), and transcriptome profiling
(TCGA-COAD-RNAseq) and single-nucleotide variant (TCGA-
COAD-SNV) datasets from The Cancer Genome Atlas (TCGA)
database (https://www.tcga.org). Single-nucleotide variant (SNV)

datasets from TCGA. TCGA-COAD-RNAseq contains 515 samples,
including 473 tumor tissue samples and 41 normal solid tissue
samples. TCGA-COAD-SNV contains 896 samples, including
448 tumor tissue samples and 448 normal samples.
GSE39582 contains 585 samples, containing 566 tumor tissue samples
and 19 normal tissue samples. We carried out quantile normalization for
expression profiles with the preprocessCore package. Then, we carried out
survival analysis and univariate Cox regression analysis for every gene in
GSE39582 to obtain the overlap genes as prognostic genes (with the cutoff
p-value<0.05) with survival packages. Using the Human Protein Atlas
(HPA) database (https://www.proteinatlas.org), by immunohistochemical
(IHC) staining, we tested normal intestinal tissue and performed
prognosis in COAD organization gene expression differences in the
protein level (Asplund et al., 2012).

Construction and external validation of the
risk-scoring model

We took GSE39582 as the training dataset to construct a risk-
scoring model based on these prognostic genes; the robust prognosis
risk-related genes were selected from all prognostic genes via a risk
score evaluated by the LASSO regression model. To validate the effect
of predictive ability of the robust prognosis risk-related genes, the
ROC curve was applied to calculate the area under the curve (AUC) on
the foundation of the risk score model. The risk-scoring model
obtained from GSE39582 was validated by TCGA data via
Kaplan–Meier survival analysis and ROC curves. Taking the
median risk score as the cut-off point, the survival analysis was
carried out.

FIGURE 2
(A,B)Heatmap clustering of the risk score and immune signatures in the training cohort. (C,D)Heatmap clustering of the risk score and tumor signatures
in the validation cohort.
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Comprehensive analysis about prognostic
gene sets

To analyze the biological process based on the risk score group, we
carried out Gene Set Enrichment Analysis (GSEA) with the
clusterProfiler package. Seven gene sets (GO_ACTIVATION_OF_
IMMUNE_RESPONSE, GO_IMMUNE_RESPONSE_TO_TUMOR_
CELL, GO_MACROPHAGE_ACTIVATION_INVOLVED_IN_
IMMUNE_RESPONSE,GO_NATURAL_KILLER_CELL_MEDIATED_
IMMUNE_RESPONSE_TO_TUMOR_CELL, GO_POSITIVE_
REGULATION_OF_CYTOKINE_PRODUCTION_INVOLVED_

IN_IMMUNE_RESPONSE, GO_POSITIVE_REGULATION_OF_
NATURAL_KILLER_CELL_MEDIATED_IMMUNE_RESPONSE_
TO_TUMOR_CELL, and GO_T_CELL_MEDIATED_IMMUNE_
RESPONSE_TO_TUMOR_CELL) were obtained from GSEA
(http://www.gsea-msigdb.org/gsea/index.jsp). Moreover, 14 gene
sets (angiogenesis, apoptosis, cell cycle, differentiation, DNA
damage, DNA repair, EMT, hypoxia, inflammation, invasion,
metastasis, proliferation, quiescence, and stemness) were
obtained from CancerSEA (http://biocc.hrbmu.edu.cn/
CancerSEA/). We performed a gene set variation analysis about
immune signatures and tumor signatures and analyzed the

FIGURE 3
GSEA plot of the biological process based on the risk score GSEA analysis in GSE39582 (A,C,E) and GSEA analysis in TCGA (B,D,F–H).
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relationship between the risk score and GSVA score. Also, we
analyzed immune infiltration with different tools to know about the
status of immune filtration in different risk groups. Combining the
clinical information, we explored the difference between high-risk
and low-risk groups in the TNM stage and drug reaction. Apart
from these, we combined the TCGA-COAD-RNAseq dataset and
the TCGA-COAD-SNV dataset to analyze the genetic background
behind the two groups with the maftools package.

The clinical value analysis of prognostic gene
sets

We investigated the therapeutic value of genes associated with a
robust prognostic risk. The tumor immune dysfunction and exclusion
(TIDE) algorithm was used to explore the relationship between the
risk score and immunotherapy. We also analyzed the relationship
between the risk score and chemotherapy. Moreover, we combined the
risk score and TNM stage to construct a novel nomogram model with
the rms package to improve the model value in predicting prognosis.

Drug sensitivity data analysis

We collected the corresponding mRNA gene expression from the
genomics of the Cancer Therapeutics Response Portal (CTRP) and
merged the mRNA expression and drug sensitivity data. Pearson
correlation analysis was performed to obtain the correlation
between mRNA expression and drug IC50 values. An FDR-adjusted
p-value was used in all the analyses (Liu et al., 2018).

Results

Construction and validation of the prognostic
model

Survival analyses helped obtain the prognosis-related gene
expression profile for COAD patients. Moreover, Cox regression
analysis in the GEO dataset, which was verified by TCGA dataset,
also helped in the process. The analysis identified a total of 76 prognosis-
related genes. In the LASSO regression model, 33 genes were identified
as robust prognosis risk-related genes (Figures 1A, B). The 33 genes
selected for the model included ATOH1, C4orf47, CPA4, DNASE1L1,
ERFE, F2RL2, FBXO39, FZD3, HPCAL4, ICOS, INHBB, ITLN1, KIF7,
KLHL26, LINC00629, LRRC29, MMP12, MYL6B, NPM3, PCBD1,
PLEC, POLR2F, POU5F1P4, PRRX2, PTPRU, PTTG3P, RNF112,
SERPINB7, SLCO1A2, TH, TMEM39B, TRDV3, and ZDHHC1. The
detailed characteristics of these prognostic genes in this study are given
in Supplementary Table S1. Most prognostic genes were differentially
expressed between COAD and normal tissues (Supplementary Figure
S1). ATOH1, HPCAL4, ITLN1, POLR2F, RNF112, SERPINB7,
SLCO1A2, TH, and TMEM39B were significantly downregulated in
COAD tissues (p < 0.05) compared to those in normal tissues. C4orf47,
CPA4, DNASE1L1, ERFE, F2RL2, FBXO39, FZD3, INHBB, KLHL26,
LRRC29, MMP12, MYL6B, NPM3, PCBD1, POU5F1P4, PRRX2,
PTPRU, PTTG3P, TRDV3, and ZDHHC1 were significantly
upregulated in COAD samples (p < 0.05) compared to those in
normal tissues. Here, we also used the Human Protein Atlas (HPA)

database to validate the expression of these prognostic genes at the
protein level (Supplementary Figure S2).

The risk score was evaluated by the coefficient of each of these
genes. The formula for the risk score model is as follows:
risk score � ∑n

i�1coefi*expri. The median risk score was the cut-
off point for dividing the patients. The Kaplan–Meier survival analysis
showed that the OS in the low-risk group was significantly higher than
that in the high-risk group (p < 0.0001, Figure 1C) in the GEO
datasets. The ROC curve showed that the AUC values of the 1-, 3-, and
5-year OS were 0.73, 0.75, and 0.76, respectively, in the GEO dataset
(Figure 1D). Moreover, TCGA datasets were used for further
validation; the OS in the low-risk group was significantly higher
than that in the high-risk group (p < 0.0001, Figure 1E). The ROC
curve indicated that the AUC values of the 1-, 3-, and 5-year OS were
0.6, 0.64, and 0.62, respectively (Figure 1F). Moreover, the low-risk
score group has a better outcome of prognosis (Figures 1G, H).
Similarly, the risk score group also showed a better outcome
(Figures 1I, J) in the validation cohort. The heatmap depicts the
expression pattern of prognosis risk-related genes between the high-
and low-risk groups in the training and validation cohorts
(Supplementary Figure S3). These results collectively indicated that
these 33 genes, making up a prognostic gene set, can be used to
construct a novel risk model to accurately predict the prognosis of
COAD patients.

Roles of the prognostic gene sets in
regulating the tumor immune
microenvironment and tumor signatures

Furthermore, we studied the relationships between the prognostic
gene sets, tumor immune microenvironment, and tumor signatures.
The heatmap in Figures 2A, B shows the proportions of tumor-
infiltrating natural killer (NK) cells, T cells, neutrophils, and
macrophages in the TME. It also indicates that the immune
response to the tumor corroborated our prognostic risk score
(p <0.05). Moreover, the heatmap in Figures 2C, D shows that the
proportions of the cell cycle, DNA damage, DNA repair, angiogenesis,
metastasis, proliferation, differentiation, stemness, apoptosis, hypoxia,
EMT, invasion, inflammation, and quiescence are significantly related to
our prognostic risk score (p < 0.05). Also, we carried out a GSEA to
analyze the enriched biological processes based on the risk score
group. The GSEA showed enrichment of the GO biological processes
like cell cycle (ES = −0.406262963; p = 2.12225E-07), DNA replication
(ES = −0.630453442; p = 1.14446E-06), ECM–receptor interaction (ES =
0.469097377; p = 0.007446704), neutrophil extracellular trap formation
(ES = −0.270429508; p = 0.001829776), and necroptosis
(ES = −0.274747076; p = 0.002473474) in TCGA dataset when
comparing the high-risk group with the low-risk group (Figure 3).
GSEA of the GSE39582 dataset revealed that a higher risk score was
closely related to the enrichment of gene sets related to the cell cycle
(SE = −0.639800523; p = 1E-10), DNA replication (SE = −0.814175806;
p = 1E-10), and ECM–receptor interactions (ES = 0.670497773; p = 1E-
10) (Figure 3). The risk score is closely correlated with tumor signatures,
including cell cycle, DNA damage, DNA repair, angiogenesis,
metastasis, proliferation, differentiation, stemness, apoptosis, hypoxia,
EMT, invasion, inflammation, and quiescence (Figure 4). A p-value cut-
off of <0.05 revealed that the high-risk score group had a higher GSVA
score in the aforementioned 14 tumor signatures.

Frontiers in Genetics frontiersin.org05

Zhou et al. 10.3389/fgene.2022.975404

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.975404


Correlation of a mutation landscape within
the prognostic gene sets

We further analyzed the tumor mutational burden between the
high- and low-risk groups. Figures 5A, B show how the mutation
frequency andmutation spectrumof themutated genes are higher in the
high-risk group. TTN was the most significantly mutated gene in the
high-risk group, while APC was the most significantly mutated gene in
the low-risk group. Supplementary Figure S4A shows that the co-
occurrence and mutually exclusive mutations were investigated and

were observed in the high- and low-risk groups. In the high-risk group,
SYNE1, MUC16, OBSCN, and DNAH5 mutations almost co-occurred
with TTNmutations (p < 0.01), while ZFHX4 co-mutated withOBSCN,
FAT4, MUC16, and DNAH5 (p < 0.01). Moreover, TP53 and MUC16
mutations were almost mutually exclusive in the low-risk group (p <
0.01), which had a higher tumor mutational burden (TMB) than the
low-risk group (p = 0.041) (Supplementary Figure S4B). In addition,
BRAFmutations showed higher scores in the prognostic gene sets than
the wild-type mutations (p = 0.011) (Supplementary Figure S4C).
Moreover, macrophages, NK cells, DC cells, and CD8+T cells were

FIGURE 4
Relationships between the compositions of the risk scores and the tumor signatures.
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increased in the mutant type, compared to the wild type, while the
natural killer T cells (NKT), neutrophils, and naive CD8+ T cells
decreased (Figure 6A). Moreover, the immune cells in the mutant
were utterly exhausted. The genome rearrangement-driven copy
number variation (CNV) generally refers to an increase or decrease
in the copy number of a large genome segment, usually more than 1 KB
in length (Lye and Purugganan, 2019). The number of NK cells in the
mutant group was significantly reduced compared to the wild-type
group (Figure 6B). When the copy number decreases, CD8 T cells, NK
cells, and Th1 cells decrease, while NKT cells and CD4 T cells increase.

Furthermore, differences in prognostic gene sets regarding tumor
copy number variation and patient prognosis were also investigated.
CNVs in ICOS, TRDV3, PTPRU, PCBD1, NPM3, LINC00629, KLHL26,
ITLN1, INHBB, HPCAL4, ERFE, DNASE1L1, and C4orf47 were

associated with a disease-free interval (DFI). Patients may change the
disease-free survival (DFS) when PRRX2, ZDHHC1, PTPRU, and
LRRC29 have copy number variations. In addition, CNVs in PRRX2
and ICOS change the OS of patients. CNVs in ICOS, ZDHHC1,
TMEM39B, PTPRU, POLR2F, LRRC29, KLHL26, HPCAL4, F2RL2,
and ATOH1 genes were associated with a progression-free survival.

Correlation of clinical features with
prognostic gene sets

Patients with higher risk scores generally have bigger tumor
sizes (T), more tumor nodes (N), and higher tumor node metastasis
(M) stages (Figures 7A–C). In TCGA and GSE39582 data, the mean

FIGURE 5
Landscape of mutations between high-risk groups and low-risk groups. (A) Heatmap illustrates the co-occurrence and mutually exclusive mutations in
high-risk groups. (B) Heatmap illustrates the co-occurrence and mutually exclusive mutations in low-risk groups.
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risk score for patients with T1, T2, T3, and T4 stages increased
sequentially (Supplementary Table S2). The risk score is also
related to the disease type and tumor location. The risk score is
an independent prognostic factor associated with OS (p = 0.007), as
determined by TCGA analysis (Figure 7D). Moreover, in
GSE39582, the risk score also acted as a prognostic indicator of

COAD (p< 0.001) (Figure 7G). Adenomas and adenocarcinomas
had lower risk scores than mucinous and serous neoplasms (p =
0.0022) (Figure 7E). The risk score of patients with proximal
COAD was higher than distal COAD (p < 0.05) (Figure 7F).
Together, these results strongly demonstrated the correlation
between prognostic gene sets and tumor clinical features.

FIGURE 6
(A)Differences in immune cell abundance betweenmutant andWT groups. (B)Differences in immune cell abundance between CNV andWT groups. (C)
Survival difference between CNV groups.
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The nomogram based on the prognostic gene
sets and clinical attributes

Furthermore, a nomogram integrating the genetic risk score
(high risk vs. low risk) and TNM stage was constructed to
provide quantitative methods to predict a patient’s probability of
OS to the clinician (Figures 8A, B). The total points were calculated
by adding the risk score and TNM-stage points. To evaluate the effect
of the nomogram model, we also calculated its C-index. The C-index
for the TNM stage with the risk score was higher than that for the
TNM stage, indicating that this model is a valuable indicator for
prognostic prediction (Figures 8C, E). The calibration curve for
predicting a 1-, 3-, and 5-year DFS indicated that the nomogram-
predicted survival closely corresponded with actual survival
outcomes in GSE39582 (Figures 8D, G, H). In TCGA, the
calibration curve for predicting the 1-, 3-, and 5-year DFS
indicated that the nomogram-predicted survival closely
corresponded with actual survival outcomes (Figures 8F, I, J).
These results showed that the prognostic model accurately
predicted a patient’s OS probability.

Correlation of the prognostic gene sets with
adjuvant chemotherapy

The survival time of patients receiving adjuvant chemotherapy
was statistically significant in the high-risk group compared to the

low-risk group (p < 0.0001), as the same in patients without adjuvant
chemotherapy (Figure 9A). In addition, adjuvant chemotherapy with
5-fluorouracil, FOLFOX (folinic acid, 5-fluorouracil, and
oxaliplatin), FOLFIRI (5-fluorouracil, folinic acid, and irinotecan),
or FUFOL (5-fluorouracil and folinic acid) was associated with a
better prognosis in both the low-risk groups than in the high-risk
group (Figure 9B). The results of multiple comparative analyses of
survival curves showed that patients receiving FOLFIRI
chemotherapy had the worst prognosis (Figure 9C). Through
further analysis, patients receiving FOLFIRI chemotherapy also
had the highest risk score (Supplementary Figure S5). These
results suggest that the risk score can predict the prognosis of
patients treated with chemotherapy.

Correlation of the prognostic gene sets with
immunotherapy

The risk score model might reflect the tumor immune
microenvironment status in COAD patients, implying that the
prognostic gene set also closely correlates with immunotherapy.
The risk score positively correlated with the cancer-associated
fibroblasts (CAF) (p < 0.0001) (Figure 9D). Patients with high-risk
scores have a higher probability of immune exclusion than those with
low-risk scores (p = 0.028) (Figure 9E). Subsequently, we found that
the content of neutrophils and macrophages was significantly higher
in a high-risk group than that in a low-risk group (p < 0.05)

FIGURE 7
Association between the risk score and the patient’s clinical characteristics. (A–C) Association between the tumor size (T), tumor node (N), tumor
metastasis (M), and risk score in TCGA cohort and GSE39582. (D)Univariate analysis of factors influencing patient prognosis in TCGA cohort. (G)Multifactorial
analysis of factors influencing GSE39582 patient prognosis. (E) Relationship between the disease type and risk score. (F) Relationship between the tumor
location and risk score.
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(Figure 10). These results collectively suggested that patients with a
low-risk score may be better suited to undergo immunotherapy.

Correlation between drug sensitivity and
prognostic gene sets

We analyzed the correlation between drug sensitivity and
predictive gene sets to further explore the value of prognostic

gene sets in a clinical treatment. Most of the genes in the
prognostic gene set had correlations between gene expression
levels and drug sensitivity (Figure 11). The high expression levels
of POLR2F, KLHL26, ICOS, ITLN1, HPCAL4, NPM3, TMEM39B,
TH, SLCO1A2, FZD3, and ATOH1 genes were resistant to drugs. The
high expression of PLEC, CPA4, SERPINB7, DNASE1L1, KIF7,
C4orf47, F2RL2, and PCBD1 genes with an elevated expression
was more sensitive to drugs. PLEC, CPA4, SERPINB7, DNASE1L1,
C4orf47, KIF7, and F2RL2 were prognostic genes positively

FIGURE 8
Survival nomogram. (A)Nomogram for the overall survival was developed in the primary cohort with three prognostic factors: pthologic M, pthologic N,
and pthologic T. (B) Compared with the TNM and TNM + risk, the novel nomogram exhibited a better powerful capacity for survival prediction. (C–E)
Nomogram predicting the 1-, 3-, and 5-year overall survival of COAD patients in GSE39582.
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associated with the classical antitumor drug fluorouracil. In contrast,
ATOH1, FZD3, SLCO1A2, TH, TMEM39B, and NPM3 were
prognostic genes negatively related to fluorouracil (p <0.001). The
expressions of PLEC, CPA4, and SERPINB7 positively correlated
with belinostat sensitivity (p <0.001). The expressions of FZD3,
TMEM39B, and NPM3 negatively correlated with narciclasine
sensitivity (p <0.001). The higher the expression of PTPRU, the
lower the drug sensitivity of afatinib and PD153035 is (p <0.001).
Thus, the prognostic gene set is a useful clinical tool for guiding
drug use.

Discussion

COAD is a common aggressive malignant tumor, with a high
mortality rate worldwide (Biller and Schrag, 2021). The etiology
and pathology of COAD are highly variable within individuals. For
patients with COAD, the current standard treatment includes early
surgical resection, following which, patients usually would receive
immunotherapy and adjunct chemotherapy, thereby improving the
overall survival rate. Even then, there are still many COAD patients
who suffer a relapse and would die due to disease recurrence and
distant metastasis (Goldstein et al., 2014). So far, the specific
underlying molecular pathogenesis of COAD remains largely

unclear. Considering COAD’s poor prognosis, the need of the
hour is to develop a model to predict survival outcomes of
COAD patients based on prognosis risk-related gene expression
profiling. Currently, COAD patients are diagnosed by the
pathophysiological evaluation of prognostic molecular markers
(Dekker and Rex, 2018). However, the current biomarkers of
COAD are inadequate to predict patients’ survival accurately. A
single biomarker may not be suitable for the treatment of every
patient. Due to individual patient-specific differences, the
expression of biomarkers is usually not the same. These
biomarkers also fail to predict which patients will benefit from
the treatments.

In this study, we used a bioinformatically developed and validated
novel prognostic gene set that was significantly associated with OS in
COAD patients. A risk score model was also constructed to divide
COAD patients into high- and low-risk groups. The Kaplan–Meier
survival analysis with the log-rank test and ROC was used to establish
the prognostic ability of the model. More importantly, by establishing
a validation set, we further verified the reliability of this risk score
model.

Moreover, the novel prognostic gene set is closely correlated with
pro-tumorigenic signatures, including the cell cycle, DNA damage,
DNA repair, angiogenesis, metastasis, proliferation, differentiation,
stemness, apoptosis, hypoxia, EMT, invasion, inflammation, and

FIGURE 9
Association between the risk score and the adjuvant chemotherapy and immunotherapy response of PD-1. (A,B) Kaplan–Meier curves stratified by
quartiles of risk scores and the usage of adjuvant chemotherapy. (C) Correlation of the risk score with a chemotherapy drug. (D,E) Risk score positively
correlated with CAF and immune exclusion.
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quiescence. Many studies showed that these hallmarks of cancer and
the immune microenvironment dictate the disease prognosis in
COAD. Furthermore, the correlation between the risk score
model and gene mutation was also illustrated. The gene mutation
probability was significantly higher in a high-risk group than in a
low-risk group, which to the best of our knowledge, substantially
contributes to cancer progression. Further investigations are
necessary to determine the potential functional mechanisms
underlying these prognosis risk-related genes. Collectively, our
risk score model might be reliable in predicting the prognosis of
COAD based on these results.

COAD patients treated with 5-fluorouracil, oxaliplatin, irinotecan,
and folinic acid (used sequentially or together upfront) have a better

objective response and survival outcome (Wang et al., 2018). 5-
Fluorouracil is the most widely used drug and has a low impact on
the survival rate (Golfinopoulos et al., 2007). As a result, FOLFOX,
FOLFIRI, and FUFOL were in a clinical practice and substantially
affected the survival rate (Harada et al., 2019). Higher toxicity renders
significant side effects from chemotherapy, warranting careful
evaluation before the complete use, limiting it to a small group of
patients. Using this scoring model to predict the effect of
chemotherapy in COAD patients, the survival advantage in the
low-risk group was significant among patients who received
chemotherapy. According to our analysis, chemotherapy treatments
with FOLFIRI have a higher risk score than 5-fluorouracil, which may
deteriorate the survival rate. The scoring model based on prognostic

FIGURE 10
Correlation analysis between the risk score and immune cell infiltration. Box plots of immune cells with significant difference in high- and low-risk
groups.
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gene sets can efficiently predict the chemotherapy effect of COAD
patients.

In addition to adjuvant chemotherapy, immunotherapy is one of
the most common treatments for patients with COAD with or
without metastasis. The immune microenvironment dictates the
efficacy of immune drugs. Hence, patients who use the same
therapy during the same phase may have different therapeutic
effects. Immune infiltrating cells play essential roles in the
progression of COAD (Huang et al., 2019). The prognosis of
patients with COAD is mainly related to immunity. Recent
studies have demonstrated that a higher density of CD4 naive
T cells, regulatory T cells, and M2 macrophages is closely
associated with a worse clinical prognosis in many malignant
tumors, including COAD (Komohara et al., 2016; Speiser et al.,
2016; Labanieh et al., 2018). In contrast, naive B cells, CD8 T cells,
and CD4 memory-activated T cells were the protective factors of
patients (Yang et al., 2019). Moreover, CAF promotes cancer
progression by inducing an immunosuppressive tumor
microenvironment, rendering resistance to immunotherapy
(Miyai et al., 2020; Abuwarwar et al., 2021). Therefore, studying
tumor immune infiltration helped analyze the patient’s prognosis
and develop new cancer diagnosis and treatment methods. The risk
score positively correlated with the CAF and immune exclusion.
Therefore, immunotherapy may be less effective in patients with
high-risk scores than in patients with low-risk scores—these risk
scores guide immunotherapy decision-making.

Previous studies have also built prognostic models for COAD.
Wang et al. developed and validated a novel stem-related

prognostic model (AUC = 0.705) for COAD cancer (Wang
et al., 2021). Li et al. established a COAD resistance prediction
model (AUC = 0.659), which provides therapeutic targets for
COAD (Li et al., 2022). The AUC values of our prognostic
model at 1, 3, and 5 years in the training set were 0.73, 0.75,
and 0.76, respectively, which were all higher than the
aforementioned AUC values. In addition, through further
verification, it is found that our prognosis model also has a
medium accuracy for predicting the survival of COAD patients
with 1, 3, and 5 years in the verification set, further confirming the
enhanced performance of our prognostic model, hypothesizing
that it may likely become a new type of COAD prognostic
index. Our study also analyzed the relationship between
predictive gene sets and anticancer drug susceptibility, providing
novel insights into the search for selecting a more effective
anticancer drug therapy and avoiding tumor resistance.
Univariate and multivariate independent prognostic analyses
showed that the predictive gene set and TNM stage were
critical, independent predictors of COAD OS.

Furthermore, we generated a nomogram to quantify the risk
assessment and survival probability. Compared to TNM, the nomogram
exhibited the highest accuracy and discrimination in OS prediction. In
addition, the new prognostic gene set can guide the clinical application of
chemotherapy, immunotherapy, and targeted drugs. Therefore, our
predictive model may help avoid unnecessary overtreatment of indolent
disease and select the best management strategy. However, there are still
some limitations to this study. Pure bioinformatics analysis is the main
drawback of this study. Second, the interaction between genes in the

FIGURE 11
Correlation between CTRP drug sensitivity and mRNA expression.
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prognostic gene set should be investigated better to understand the
molecular mechanism of COAD occurrence and progression.

Conclusion

Our study profiled a novel risk score model based on 33 genes
for predicting the overall survival in COAD patients. More
importantly, the risk score model is significantly associated with
the unfavorable clinical outcome of COAD and might monitor its
development to provide more effective personalized therapeutic
decision-making. A nomogram model might aid in identifying
high-risk COAD patients and selecting appropriate clinical
follow-up plans accordingly.
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