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Ovarian cancer is the second most common gynecologic cancer and remains

the leading cause of death of all gynecologic oncologic disease. Therefore,

understanding the molecular mechanisms underlying the disease, and the

identification of effective and predictive biomarkers are invaluable for the

development of diagnostic and treatment strategies. In the present study, a

differential co-expression network analysis was performed viameta-analysis of

three transcriptome datasets of serous ovarian adenocarcinoma to identify

novel candidate biomarker signatures, i.e. genes and miRNAs. We identified

439 common differentially expressed genes (DEGs), and reconstructed

differential co-expression networks using common DEGs and considering

two conditions, i.e. healthy ovarian surface epithelia samples and serous

ovarian adenocarcinoma epithelia samples. The modular analyses of the

constructed networks indicated a co-expressed gene module consisting of

17 genes. A total of 11 biomarker candidates were determined through receiver

operating characteristic (ROC) curves of gene expression of module genes, and

miRNAs targeting these genes were identified. As a result, six genes (CDT1,

CNIH4, CRLS1, LIMCH1, POC1A, and SNX13), and two miRNAs (mir-147a, and

mir-103a-3p) were suggested as novel candidate prognostic biomarkers for

ovarian cancer. Further experimental and clinical validation of the proposed

biomarkers could help future development of potential diagnostic and

therapeutic innovations in ovarian cancer.

KEYWORDS

ovarian cancer, transcriptome profiling, differential gene co-expression network,
prognostic gene module, biomarkers

Introduction

Ovarian cancer is the second most common gynecologic cancer and remains the

leading cause of death of all gynecologic oncologic disease (Didžiapetriene et al., 2014;

Madden et al., 2014). High-grade serous ovarian cancer, which accounts for 70% of the

patients, is the most aggressive type with low survival rate (Coscia et al., 2016) due to late

stage diagnosis of the disease (Egan et al., 2011). The mortality rate can be reduced with

early diagnosis and personalized treatments. Thereby, the elucidation of molecular

mechanisms of serous ovarian cancer pathogenesis and the identification of

alternative diagnostic methodologies, particularly effective, reliable and predictive
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biomarkers still remain a high priority, and would be vital to

provide new insights on the disease.

The high-throughput microarray profiling has been

extensively used for years to understand the underlying

mechanisms of human diseases at molecular level. These

studies revealed hundreds of genes that were significantly

expressed in complex diseases, including cancers. The

identification of transcriptionally dysregulated genes and

altered molecular mechanisms in the presence of cancer

provides information on tumor’s biological state and the

patients’ survival (Otálora-Otálora et al., 2019). Therefore, the

integration of these set of genes with biological information at

different levels continues to be an effective method to discover

molecular targets that may serve as diagnostic and prognostic

tools, and help to develop and therapeutic strategies (Gov and

Arga, 2017; Venkataramanan and Mathavan, 2020).

A system-based approach is needed to gain a comprehensive

view of cancer, and the power of differential co-expression

networks was previously shown in cancer research (Gov and

Arga, 2017). The construction and analysis of differential co-

expression networks have been widely used to discover gene

modules and hub genes in various cancers, including

retinoblastoma (Mao et al., 2020), pituitary adenoma (Aydin

and Arga, 2019), ovarian (Gov and Arga, 2017; Gov, 2020), lung

(Liao et al., 2020), and cervical cancers (Kori et al., 2019).

The aim of the present study was to provide further insight to

the genetic and molecular underpinnings of ovarian cancer

pathogenesis and to identify associated molecular signatures.

For this purpose, three independent gene expression datasets

of serous ovarian adenocarcinoma were comparatively analyzed

and 439 common DEGs were identified. The differential co-

expression networks were reconstructed in the diseased and

healthy states by using common DEGs, and functional

modular organizations of the reconstructed networks were

examined. A novel gene module consisting of 17 genes that

was differentially co-expressed in ovarian cancer, but not

preserved in healthy state, was identified. ROC curve analysis

indicated high diagnostic performances of 11 module genes that

might serve as potential biomarkers. Moreover, miRNAs

targeting these 11 genes were screened to identify regulatory

signatures of the disease. As a result, six genes (CDT1, CNIH4,

CRLS1, LIMCH1, POC1A, and SNX13) and two miRNAs (mir-

147a, and mir-103a-3p) were determined as novel biomarker

candidates and putative therapeutic targets that would be

invaluable for future studies.

Materials and methods

Gene expression data collection

The gene expression datasets associated with serous ovarian

adenocarcinoma from three independent studies [GSE10971

(Tone et al., 2011), GSE14407 (Bowen et al., 2009), and

GSE18520 (Mok et al., 2009)] were obtained from Gene

Expression Omnibus (GEO) database (Table 1). The studies

that used the platform GPL570 (Affymetrix Human Genome

U133 Plus 2.0 arrays) were selected to avoid altered gene

expressions due to microarray differences.

GSE10971 contained gene expression profiles of laser capture

micro-dissected non-malignant distal fallopian tube epithelium

from 12 BRCA1/2-mutation carriers and 12 control women

during the luteal and follicular phase, and 13 high grade tubal

and ovarian serous carcinomas. Samples of BRCA1/2-mutation

carriers were excluded from this dataset. GSE14407 was consisted

of 12 healthy ovarian surface epithelia samples and 12 laser-

capture micro-dissected papillary serous ovarian

adenocarcinoma epithelia samples. GSE18520 contained

53 micro-dissected late stage, high-grade primary papillary

serous ovarian adenocarcinoma and 10 normal ovarian

surface epithelia samples.

Identification of differentially expressed
genes

DEGs were identified using the GEO2R tool (http://www.

ncbi.nlm.nih.gov/geo/geo2r/), which uses LIMMA (Smyth, 2004)

as the statistical test. Benjamini–Hochberg’s method was used to

control the false discovery rate (FDR). The statistical significance

and expression patterns (up- or down-regulation) of DEGs were

determined by an adjusted p-value threshold and fold-change

(FC), respectively. An adjusted p-value threshold of 0.01 and FC

cut-off of two were used to identify significant DEGs.

Pathway enrichment and gene-disease
association analyses

Pathway enrichment analyses were carried out by Metascape

(Zhou et al., 2019) (https://metascape.org/gp/index.html#/main/

step1) to identify significant KEGG (Kanehisa and Goto, 2000)

pathways associated with DEGs. The p-values were obtained via

hypergeometric test and corrected using Benjamini–Hochberg

algorithm. An adjusted p-value threshold of 0.05 was used to

identify the statistical significance of the identified pathways.

Significant disease associations of DEGs were determined using

TABLE 1 Gene expression data sets used in this study.

GEO Control Disease Array References

GSE10971 12 13 GPL570 Tone et al. (2011)

GSE14407 12 12 GPL570 Bowen et al. (2009)

GSE18520 10 53 GPL570 Mok et al. (2009)
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DisGeNet database (Piñero et al., 2020) via R (R Core Team,

2020) with a p-value threshold of 0.05.

Construction of differential gene co-
expression networks and modular analysis

The differential co-expression networks were constructed for

the diseased and healthy states separately considering common

DEGs in three datasets. Two expression datasets were obtained

by separating the expression values of common DEGs in healthy

and diseased states. The mean expression values were used for

repetitive DEGs. The healthy and disease datasets were composed

of 34 and 78 samples, respectively. Both datasets were normalized

via quantile normalization performed by RMA (Bolstad et al.,

2003). The correlations between the expression profiles of

common DEGs were determined by Pearson correlation

coefficients (PCCs) computed between each gene pair in both

datasets, and the statistical significance of pairwise correlations

were determined via asymptotic p-values approximated by using

the t-distribution. An absolute PCC cut-off of 0.8 and an

asymptotic p-value threshold of 0.05 were maintained to

identify the statistically significant correlations. PCC >0.8 and

PCC < −0.8 were defined as positive and negative correlations

among gene pairs, respectively. The differential gene co-

expression networks, i.e., disease network (OC), and control

network (non-OC), were constructed around the significantly

co-expressed gene pairs in the diseased, and healthy states,

respectively.

Constructed networks were visualized via Cytoscape (v3.7.2)

(Shannon et al., 2003), and CytoHubba (Chin et al., 2014) was

used to compute node scores. Genes were ranked based on degree

and 5% of the genes with the highest degree scores were

determined as hub genes.

Highly connected subgroups within the gene co-expression

networks were identified via MCODE (Bader and Hogue, 2003)

plug-in of Cytoscape. In MCODE, network scores were

computed by excluding the loops. Modules were identified

setting the degree threshold, node score threshold, K-core

threshold, and maximum depth to 2, 0.2, 2 and 100,

respectively. The fluff parameter was turned off and the hair-

cut parameter was turned on. The most densely connected

regions (the top-scoring modules) of both networks were

taken into consideration for further analysis.

Diagnostic performances of module
genes

The gene expression profiles of OC module (OCM) genes

were extracted from the three datasets, and receiver operating

characteristic (ROC) curves were plotted. Area under the curve

(AUC) representing sensitivity (the proportion of positive test

results in patients) and specificity (the proportion of negative test

results in healthy individuals) was used to evaluate the diagnostic

performance of the genes.

Nucleosome organization analysis

The nucleosome positioning patterns of ovarian cancer

associated co-expressed genes were screened using NucMap

database (Zhao et al., 2019), which contains 798 experimental

data from 477 samples across 15 species. The enrichment

analyses of nucleosome occupancy were carried out using

normalized raw reads across four different cell lines

representing chronic myelogenous leukemia (K-562), skin

melanoma (COLO829), cervical carcinoma (HeLa), and

breast adenocarcinoma (MCF-7). The nucleosome

enrichment around transcription start sites (TSSs) were

visualized.

Construction of miRNA-target gene
regulatory network

The miRNA-target gene regulatory network was constructed

by mapping prognostic module genes to the respective miRNAs.

ThemiRNet 2.0 database (Chang et al., 2020) was used to identify

miRNA-gene interactions with a degree cut-off of 3, and to

visualize the constructed network.

Results

Differentially expressed genes in ovarian
cancer

Genome-wide response of ovarian epithelia cells to the

presence of serous ovarian adenocarcinoma at the

transcriptional level revealed numerous genes that were

significantly and differentially expressed. The individual

analysis of gene expression datasets resulted in the

identification of 4,263 up-regulated and 4,313 down-

regulated DEGs (Figure 1A). A total of 1,536 up- and

1,514 down-regulated genes in GSE10971, 1,319 up- and

1,358 down-regulated genes in GSE14407, and 2,581 up- and

2,634 down-regulated genes in GSE18520 were determined

(Figure 1B). Although the numbers of DEGs among datasets

varied, comparative analysis revealed 439 common DEGs

(Figure 1C). The pathway enrichment analyses of common

DEGs revealed cell cycle, oocyte meiosis, Fanconi anemia

pathway, and several cancer-associated pathways as

significant pathways (Figure 2A). Moreover, the gene-disease

association analyses indicated a significant relation between

common DEGs and several cancers (Figure 2B).
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Differential co-expression networks in
ovarian cancer

The co-expression patterns of common DEGs were analyzed

in the diseased state and healthy state separately to construct

diseased and control co-expression networks, respectively. The

employment of PCC’s resulted in a total of 3,375 significant

correlations among 271 genes. OC, constructed around the

significantly co-expressed gene pairs in the diseased state,

contained 522 associations among 113 DEGs (Figure 3A), and

non-OC, constructed around the significantly co-expressed gene

pairs in healthy state, consisted of 3,044 associations among

250 DEGs (Figure 3B). The topological analysis indicated that

both networks had the same density (%10), although the number

of genes showing significant pairwise correlations was 2.2-fold

lower in OC when compared to non-OC.

A total of 8 and 16 genes were determined to be hub genes in

OC, and non-OC, respectively. CNIH4, PRKD3, CRLS1, USP53,

and PYGL were found to be specific to OC. ALDH1A2, POLI,

CYBRD1, RSPH3, SRI, EFEMP1, GPSM2, LSM4, PRKCI,

SEMA5B, LRP2, NEFH, GRAMD2A were identified as specific

hub genes for non-OC. Comparative analysis revealed FANCD2,

MYEF2, and STK38 as the mutual hub genes (Figures 3C,D).

Co-expressed gene module of ovarian
cancer

The most densely connected regions of OC and non-OC were

identified by MCODE. OCM contained 125 interactions between

17 genes (Figure 3E), whereas non-OC module (non-OCM)

consisted of 1,149 interactions between 51 genes (Figure 3F).

Comparative analysis of the modules indicated that only three

genes (FANCD2, MYEF2, and STK38), which were also mutual

hub genes of OC and non-OC, were found to be common in OCM

and non-OCM. To assess the prognostic capability of OCM genes in

ovarian cancer, we evaluated whether OCM was preserved in

healthy state. The preservation analysis was carried out by

comparing the significant correlations among OCM genes with

their correlations in healthy samples. PCC values that show the

correlations between OCM genes in diseased and healthy samples

are presented in Supplementary Table S1. Only 33 associations

among 13 OCM genes were found to be significant among healthy

samples (Figure 4). The module density, which was 0.919 in the

diseased state, was found to be 2.2-fold lower (0.423) in healthy state.

Since OCM genes were highly correlated in the diseased state, but

not in healthy state, this module was considered as a prognostic

module in ovarian cancer. B2M, CDT1, CNIH4, CRLS1, EIF5,

FIGURE 1
Differentially expressed genes (DEGs) in ovarian cancer. (A) The volcano plots of gene expression datasets; red and blue dots represent the up-
and down-regulated DEGs at an adjusted p-value threshold of 0.01, respectively. (B) The distribution of up- and down-regulated DEGs (adjusted
p-value < 0.01). (C) Venn diagram representation of DEGs across gene expression datasets.
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FANCD2, H3-3A, LIMCH1,MYEF2, PIF1, POC1A, PRKD3, PYGL,

SLC38A10, SNX13, STK38, and VWA3A were the correlated DEGs

in OCM. Interestingly seven genes had the highest degree that

corresponds to interactions with 16 genes in the module. These

genes were CNIH4, CRLS1, FANCD2, MYEF2, PRKD3, PYGL, and

SNX13, and they were positively correlated with each other, while all

of themwere negatively correlated with four genes, including CDT1,

POC1A, SLC38A10, and VWA3A. CDT1 had the least number of

interacting partners (a degree of 10) in the module.

The descriptions and functions of OCM genes are presented

in Table 2. Functional enrichment analysis of OCM showed that

the prognostic module genes were not significantly associated

with any KEGG pathways, but they were significantly enriched

with regulation of chromosome organization, negative regulation

of cellular component organization, and DNA metabolic process

GO biological processes.

ROC curve analysis indicated that 11 module genes (B2M,

CDT1, CNIH4, CRLS1, EIF5, LIMCH1, POC1A, PRKD3, PYGL,

SLC38A10, and SNX13) showed high performances (AUC ≥0.7) in
discriminating diseased patients from healthy controls (Figure 5).

Establishment of miRNA-target gene
regulatory network

miRNAs have major roles in the regulation of gene

expression. A total of 26 miRNAs targeting 11 prognostic

module genes were identified using miRNet 2.0. Only

miRNAs having a degree higher than three were presented

(Figure 6A). When miRNA-target gene interactions were

analyzed, miR-1-3p, miR-147a, miR-103a-3p, and miR-124–3p

came into prominence by regulating at least seven genes

(Figure 6B). Two genes, CDT1 and POC1A, were found to be

commonly regulated by the top four miRNAs (Figure 6C). The

analysis revealed that the majority (91%) of prognostic module

genes were regulated by miR-1-3p, and miR-147a.

Nucleosome positioning at transcription
start sites of ovarian cancer associated
genes

The prognostic module, OCM, contained genes that were

already reported to be associated with ovarian cancer together

with novel candidates, such as CDT1, CNIH4, CRLS1, LIMCH1,

POC1A, and SNX13. The nucleosome enrichment analyses of

novel candidate genes were carried out across samples including

breast adenocarcinoma, chronic myelogenous leukemia, skin

melanoma, and cervical carcinoma cell lines to enlighten the

nucleosome distribution around TSSs. Although the nucleosome

distribution around TSSs did not show a common pattern across

samples, the enrichment scores were found to be higher in skin

melanoma, and cervical cancer cells when compared to chronic

myelogenous leukemia, and breast adenocarcinoma cells for all

genes (Figure 7). Low nucleosome occupancy that corresponds to

large nucleosome-free regions were detected at TSSs of CDT1,

FIGURE 2
(A) GOChord plot of significantly enriched KEGG pathways. (B) Significantly associated diseases of common DEGs in ovarian cancer.
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CRLS1, and SNX13 in chronic myelogenous leukemia cells, and at

TSSs of POC1A, and CRLS1in breast adenocarcinoma cells. In all

samples the nucleosomes were found to be enriched at the

downstream of TSS for CRLS1 (Figure 7).

Discussion

Ovarian cancer is the leading cause of cancer associated

deaths among all gynecological cancers (Bowen et al., 2009).

Due to its lethality, the identification of predictive and effective

biomarkers with high prognosis is still an issue. The

interpretation of omics data is needed to enlighten the

complex molecular mechanisms behind disease pathogenesis.

Microarray technology has been extensively used in clinical

applications and integrative analysis of multiple gene

expression datasets has been performed for the identification

of significant biomarkers (Yang et al., 2019).

Differential co-expression network analysis can serve as a

tool for the identification of correlated molecular targets as

potential predictive markers. The elucidation of the alterations

in the co-expression patterns of genes in the diseased, and

healthy states not only increase our understanding in the

pathogenesis of the disease, but also provide valuable

information for biomarker discovery. Therefore, in this study,

a differential co-expression network analysis was performed to

determine ovarian cancer genes and their expression patterns.

Comparative analysis of the co-expression networks in the

diseased, and healthy states revealed a novel co-expressed

gene module that may be regarded as molecular targets

offering future development of predictive prognostic

biomarkers, and therapeutic strategies in ovarian cancer.

Specifically, we carried out a meta-analysis of three

transcriptome datasets, and identified 439 common DEGs.

The pairwise correlations amongst common DEGs were

determined and the significantly correlated gene pairs were

used to construct the differential co-expression networks in

the diseased, and healthy states (OC and non-OC,

respectively) separately. The modular analyses of the resultant

networks exhibited densely connected and functionally related

FIGURE 3
(A) OC, constructed around the significantly co-expressed gene pairs in the diseased state. (B) non-OC, constructed around the significantly
co-expressed gene pairs in healthy state. (C) Hub genes of OC. (D) Hub genes of non-OC. (E) Top-scoring module of OC module (OCM). (F) Top-
scoring module of non-OC. Size and colors of nodes were determined according to node degrees.
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FIGURE 4
Correlations of OCM (A) in the diseased state, and (B) in healthy state. The areas of circles show the absolute values of corresponding PCC’s.

TABLE 2 The descriptions of genes in OCM.

Gene Description Function

B2M beta-2-microglobulin It encodes a serum protein found in association with the major histocompatibility complex (MHC) class I
heavy chain on the surface of nearly all nucleated cells

CDT1 chromatin licensing and DNA replication
factor 1

It is required for both DNA replication and mitosis

CNIH4 cornichon family AMPA receptor auxiliary
protein 4

It is involved in G protein-coupled receptors (GPCRs) trafficking from the endoplasmic reticulum to the cell
surface

CRLS1 cardiolipin synthase 1 It catalyzes the synthesis of cardiolipin which is a key phospholipid in mitochondrial membranes and plays
important roles in maintaining the functional integrity and dynamics of mitochondria under both optimal and
stress conditions

EIF5 eukaryotic translation initiation factor 5 The related pathways of this gene are activation of the mRNA upon binding of the cap-binding complex and
eIFs, and subsequent binding to 43S and viral mRNA translation

FANCD2 FA complementation group D2 It is required for maintenance of chromosomal stability, promotes accurate and efficient pairing of homologs
during meiosis, and involved in the repair of DNA double-strand breaks. It is associated with Fanconi anemia

H3-3A H3.3 histone A The related pathways of this gene are transcriptional misregulation in cancer and signaling by GPCR

LIMCH1 LIM and calponin homology domains 1 It positively regulates actin stress fibers assembly and stabilizes focal adhesions, and therefore negatively
regulates cell spreading and cell migration

MYEF2 myelin expression factor 2 It is a transcriptional repressor of the gene encoding myelin basic protein

PIF1 PIF1 5′-to-3′ DNA helicase It is required for the maintenance of both mitochondrial and nuclear genome stability. It is associated with
diseases including uterine adnexa cancer and Fanconi anemia

POC1A POC1 centriolar protein A It plays an important role in basal body and cilia formation

PRKD3 protein kinase D3 It encodes a protein that has several functions including negative regulation of human airway epithelial barrier
formation, growth regulation of breast and prostate cancer cells, and vesicle trafficking

PYGL glycogen phosphorylase L It encodes a glycogen phosphorylase that is required to release glucose-1-phosphate from liver glycogen stores

SLC38A10 solute carrier family 38 member 10 It is involved in amino acid transmembrane transporter activity

SNX13 sorting nexin 13 It encodes a protein that is the regulator of G protein signaling (RGS) family and may link heterotrimeric G
protein signaling and vesicular trafficking

STK38 serine/threonine kinase 38 It has functions in cell cycle and apoptosis

VWA3A von Willebrand factor A domain containing 3A It is a protein coding gene
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gene groups in both conditions and the comparative analyses of

OC and non-OC modules resulted in a prognostic module,

namely OCM, composed of 17 genes. The connectedness of

the OCM genes was found to be significantly lower in healthy

state, which inferred an increased active communication among

these genes during the occurrence and/or the development of the

disease. Moreover, 11 OCM genes (B2M, CDT1, CNIH4, CRLS1,

EIF5, LIMCH1, POC1A, PRKD3, PYGL, SLC38A10, and SNX13)

showed high diagnostic performance. Hence this set of genes

were considered as potential prognostic markers.

The candidate prognostic gene set contained genes that were

already shown to be associated with ovarian cancer together with

novel candidates. B2M is the regulator of immune system and its

significantly higher expression was observed in the presence of

ovarian tumor. In vitro analysis using SKOV3 ovarian cancer cell

line emphasized that B2M knock-down resulted in a decreased

cell proliferation, migration and invasion, and an antibody

against B2M induced apoptosis. Moreover, it was reported

that B2M was regulated by TGF-β signaling pathway. (Sun

et al., 2016). The protein expression of EIF5A1 was induced

in epithelial ovarian cancer and high levels of this protein

predicted poor survival (Zhang et al., 2018). PRKD3 belongs

to the family of protein kinases, whose members include many

oncogenes and growth factor receptors. Some protein kinases

were involved in the pathogenesis and progression of breast

cancer, and PRKD3 was linked to prostate cancer, however, very

rare mutations of PRKD3 was observed in ovarian cancer (Liu

et al., 2015). On the other hand, the analysis of

phosphoproteomic data indicated that the protein abundance

of PRKD3 was correlated with poor overall survival of patients

with high-grade serous ovarian cancer (Tong et al., 2019). The

proteomic analysis exhibited the expression of PYGL, the liver

isoform of glycogen phosphorylase, in SKOV3ip1 and TYK-nu

ovarian cancer cell lines (Coscia et al., 2016; Curtis et al., 2019). In

another study, it was found that PYGL was up-regulated in

cisplatin-resistant human ovarian carcinoma cell line SKOV3/

DDP when compared to cisplatin-sensitive human ovarian

carcinoma cell line SKOV3 (Xu et al., 2018). A study

investigating the role of solute carrier family of membrane

transporters in ovarian cancer revealed the down-regulation of

SLC38A10 in ovarian cancer tissues when compared to normal

ovarian tissues (Sun et al., 2020).

Among candidate gene set, POC1A and SNX13 have limited

information on their association with ovarian cancer. POC1A

that takes part in the formation of centrioles, and plays a role in

ciliogenesis, was found to be correlated with lymphatic metastasis

in gastric cancer (Lu et al., 2020). POC1A was identified as a hub

gene in high grade serous ovarian cancer through network

FIGURE 5
ROC curves of OCM genes.
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analysis (Wu et al., 2020). In one study, SNX13 was linked to

resistance to chemotherapy in ovarian cancer (Lloyd et al., 2015)

In addition, SNX13was reported to be related to colorectal cancer

migration, invasion, and metastasis (Du et al., 2020).

Furthermore, LIMCH1, CRLS1, CDT1, and CNIH4 were found

to be associated with various cancer types, but their roles in

ovarian cancer have not been identified yet. LIMCH1 that

regulates non-muscle myosin-II activity and suppresses cell

migration, (Lin et al., 2017), was previously proposed in lung

(Zhang et al., 2019), breast (Bersini et al., 2020), and endometrial

cancers (Bell, 2014). Moreover, LIMCH1 was identified as a gene

signature with high prognostic power in aggressive cervical

cancer (Halle et al., 2021). Multiple LIM domain genes, such

as LMX1B and PDLIM4 contributed to the tumorigenesis of

ovarian cancer. LMX1B (LIM homeobox transcription factor

1 beta) was reported as an oncogene in human ovarian cancer

based on the correlation between its increased expressions with

poor outcome (He et al., 2014). The down-regulation of PDLIM4

(PDZ and LIM domain 4) was shown to be correlated with short

overall survival of ovarian cancer patients (Jia et al., 2019).

However, the association of LIMCH1 with ovarian cancer has

not been identified yet.

CRLS1, is responsible for cardiolipin production. Reduced

expression of cardiolipin was associated with increased apoptosis

(Egan et al., 2011). A study of cardiolipin metabolism suggested

the tumor suppressor activity of CRLS1 in non-small cell lung

cancer, and hepatocellular carcinoma (Ahmadpour et al., 2020).

Moreover, increased cardiolipin levels were observed in cells

expressing cytoglobin involved in cancer progression (Thorne

et al., 2021). However, there is a limited information with regard

to its involvement in ovarian cancer.

Cell cycle regulation and DNA damage response contribute to

genome stability and integrity. CDT1 is a central cell cycle regulator,

and links the cell cycle regulation and DNA damage response

pathways (Kanellou et al., 2020). CDT1 might be a novel target

in ovarian cancer due to its relationship with other cancers, and with

the proteins that were reported to be involved in the progression of

the disease. CDT1 was proposed as a potential biomarker in

hepatocellular carcinoma through the analysis of gene expression

profiles, and its role was validated in vitro (Cai et al., 2021). The high

expression of CRL4, encoding an E3 ligase, in human ovarian cancer

tissues was shown and the repression of CRL4 mimicked the

genotoxic effects of an anticancer agent MLN4924. The

regulation of cell proliferation by CLR4CDT2 ubiquitin ligase was

due to the degradation of its important substrates, such as CDT1,

p21, and SET8. The depletion of CLR4CDT2 led to the accumulation

of CDT1 and MLN4924 induced apoptotic death was partially

rescued by the depletion of CDT1, indicating a role to CDT1 as a

FIGURE 6
(A) miRNA-target gene regulatory network; the blue squares, and pink circles represent miRNAs, and genes, respectively. (B) Bar plot
representing the distribution of miRNAs regulating genes with high diagnostic performance. (C) Venn diagram representing genes regulated by top
four miRNAs.
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possible target in ovarian cancer development and treatment (Pan

et al., 2013; Wu et al., 2021).

CNIH4, which was also a hub gene that played a pivotal role

in the flow of information within OC network, has no reported

association with ovarian cancer. CNIH4 was found to be

associated with colon cancer (Mishra et al., 2019) and

hepatocellular carcinoma (Wang H. et al., 2021). CNIH4

interacts with GPCRs (Sauvageau et al., 2014). A number of

GPCRs have been implicated in cancer progression. They are not

only contributed to tumor cell growth, but also have several

functions in metastasis. Despite the identification of a number of

GPCRs with altered expressions due to tumor development, only

a few drugs targeting GPCRs were successful. One of the strategy

in drug discovery is to target the specific interactions between

GPCRs and their ligands (Arakaki et al., 2018; Usman et al.,

2020). Therefore, CNIH4 might be suggested as a novel

therapeutic target due to its topological importance in the

network and its role in GPCR trafficking. Although LIMCH1,

CRLS1, CDT1, CNIH4 have been associated with various cancers,

their relationship with ovarian cancer has been proposed in this

study for the first time to the best of our knowledge.

Nucleosome organization plays an important role in

regulatory activities that determines the biological function

(Beshnova et al., 2014). The distribution of nucleosomes and

the presence of nucleosome-free regions at TSS is strongly

associated with transcription initiation. Larger nucleosome-

free regions at TSS was reported for highly expressed genes

(Chen et al., 2021). No common pattern for nucleosome

distribution around TSSs could be observed across samples

through the analysis of nucleosome enrichment maps of

CDT1, CNIH4, CRLS1, LIMCH1, POC1A, and SNX13.

However, the nucleosome occupancy of CRLS1 at the TSS was

lower when compared to other genes for all samples. Further

experimental analysis should be carried out to uncover

nucleosome organization around TSSs of these highly co-

expressed genes in ovarian cancer samples.

FIGURE 7
Nucleosome enrichment maps of novel candidate genes at K-562 (hsNuc0260501), COLO829 (hsNuc0020101), HeLa (hsNuc0170101), and
MCF-7 (hsNuc0090101) cells.
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The alterations in the expressions ofmiRNAs have been reported

to be associatedwith invasion andmetastasis of ovarian cancer (Chen

et al., 2019). Here, fourmiRNAs (miR-1-3p,miR-147a,miR-103a-3p,

andmiR-124–3p) came to the fore. Of the significant miRNAs, miR-

1-3p showed a decreased expression in ovarian cancer tissues and cell

lines, and suppressed the growth and metastasis of ovarian cancer

cells (Zhu et al., 2020). miR-124–3p regulates tumorigenesis and

progression in several cancers, including ovarian, breast, gastric,

bladder cancers, leukemia, and hepatocellular carcinoma (Li et al.,

2021). Although previous studies showed the association of miR-

147a and miR-103a-3p with various cancers, their roles in ovarian

cancer have not been identified yet. miR-147 plays important roles in

cell proliferation, apoptosis, and migration, and its expression was

reported to be significantly altered in various cancers or carcinomas,

including gastric cancer, colon cancer, and hepatocellular carcinoma

(Lin and Hu, 2021). miR-147a is involved in the regulation of cancer

malignancy (Lee et al., 2021), and was previously proposed as a

potential prognostic factor for non-small cell lung cancer (Lu and

Luan, 2019). miR-103a-3p has been reported to be associated with

cisplatin resistance in non-small cell lung cancer (Wang Z. et al.,

2021), and docetaxel resistance in prostate cancer (Yi et al., 2022).

miR-103a was also reported as a new regulator of Wnt signaling

pathway in colorectal carcinoma (Fasihi et al., 2018).

The current lack of robust diagnostic and prognostic

biomarkers owing to the complex nature of the disease,

together with the high mortality rate, necessitate new

approaches for the discovery of novel biomarkers. Within the

framework of this study, the transcriptional response of ovarian

epithelia samples to the presence of serous ovarian

adenocarcinoma was analyzed. We presented a novel

prognostic gene module that was differentially co-expressed in

ovarian cancer. Together with the genes that were already known

to be associated with the disease (i.e., B2M, EIF5, PRKD3, PYGL,

SLC38A10), some novel candidates were identified. Our findings

suggested six genes (CDT1, CNIH4, CRLS1, LIMCH1, POC1A,

and SNX13), and two miRNAs (mir-147a, and mir-103a-3p) to

serve as novel potential biomarkers that permit future

development of diagnostic and therapeutic innovations.

However, further experimental and clinical studies should be

performed to validate the proposed biomarkers and extend our

findings to develop effective clinical strategies for diagnostic and

therapeutic purposes.
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