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Chaperonin containing TCP1 subunit 2 (CCT2) is essential in various

neurodegenerative diseases, albeit its role in the pathogenesis of Alzheimer’s

disease (AD) remains elusive. This study aimed to evaluate the role of CCT2 in

Alzheimer’s disease. First, bioinformatics database analysis revealed that CCT2

was significantly downregulated in patients with Alzheimer’s disease and

associated with autophagic clearance of β-amyloid. The 789 differentially

expressed genes overlapped in AD-group and CCT2-low/high group, and

the CCT2-high-associated genes screened by Pearson coefficients were

enriched in protein folding, autophagy, and messenger RNA stability

regulation pathways. These results suggest that CCT2 is significantly and

positively associated with multiple pathways linked to autophagy and

negatively associated with neuronal death. The logistic prediction model

with 13 key genes, such as CCT2, screened in this study better predicts

Alzheimer’s disease occurrence (AUC = 0.9671) and is a favorable candidate

for predicting potential biological targets of Alzheimer’s disease. Additionally,

this study predicts reciprocal micro RNAs and small molecule drugs for hub

genes. Our findings suggest that low CCT2 expression may be responsible for

the autophagy suppression in Alzheimer’s disease, providing an accurate

explanation for its pathogenesis and new targets and small molecule

inhibitors for its treatment.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease responsible for 60–80% of

dementia cases, which is characterized by memory loss and reduced cognitive function

(Liu et al., 2020). This report indicates that neuronal fibrous tangles caused by Tau

hyperphosphorylation in neurons, sedimentation of amyloid beta (Aβ) plaques (Ma et al.,

2022), apoptosis of numerous neurons, and loss of neural synapses all contribute to AD.

Drugs approved by the FDA for AD are designed to improve the quality of life of patients

with the disease albeit may not play an effective therapeutic role in the treatment of AD
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(2020 AD facts and figures, 2020). AD-related therapeutic drugs

based on Aβ starch spot and Tau protein have not made

significant progress (Kopeikina et al., 2011); thus, the

development of the specific pathogenesis of AD requires

further research and exploration. It has been reported that the

chaperonin containing TCP1 subunit 2 (CCT2) is poorly

expressed in AD; however, the relationship between CCT2

and AD remains elusive (Yuan et al., 2019), implying that

there is some link between CCT2 gene expression and the

occurrence of AD.

Aggrephagy, a process in which autophagy selectively degrades

protein aggregates, is important for removing intracellular toxic

protein aggregates and is a key target for the treatment of aggregate-

related diseases such as neurodegenerative diseases. Several studies

have reported that autophagy deficiency occurs in the early stages of

AD (Vaillant-Beuchot L et al., 2021; Roca-Agujetas V et al., 2021).

Autophagy is important in the production and metabolism of Aβ,
and its dysfunction may contribute to the progression of AD (Li

et al., 2017). Traditional ubiquitin-binding receptors (P62, NBR1,

and TAX1BP1) can mediate aggrephagy and other types of

ubiquitin-related selective autophagy (Zellner S et al., 2021). The

novel ubiquitin-binding receptor, CCT2, promotes autophagic

clearance of various toxic protein aggregates associated with

neurodegenerative diseases (Zhang and Klionsky., 2022). Similar

to the conventional ubiquitin-binding receptors, CCT2 binds to

LC3 and protein aggregates. CCT2 binds protein aggregates in a

ubiquitin-independentmanner through its apical domain, laying the

groundwork for CCT2-specific aggregate recognition. Research has

indicated that conventional autophagy receptors degrade liquid

aggregates whereas CCT2 degrades solid aggregates (Ma et al.,

2022). Consequently, CCT2 is more likely than autophagy

receptors to function and become an AD drug target in

pathological states. CCT2 mediates aggrephagy as a monomer,

exposing the VLIR domain of the binding site to LC3. The

presence of aggregates inhibits the formation of the Chaperonin

complex, thus, releasing more CCT2 monomers to promote

aggregate clearance (Khaminets et al., 2016; Johansen and

Lamark, 2020; Gatica et al., 2018). Full-length tau protein has

been reported to preferentially be degraded by macrophage

whereas caspase-cleaved tau, tauΔC, which is more likely than

natural proteins to aggregate and cause neurotoxicity, is

preferentially degraded by autophagy and can turnover faster

than the full-length tau. Thus, the autophagy degradation

pathway is important in inhibiting the formation of pathological

manifestations of AD and has the potential to be a novel target for its

treatment (Zare-Shahabadi et al., 2015).

Therefore, this study aimed to investigate the changes in the

expression level of CCT2 in patients with AD and its possible

pathway involved in autophagy and predict the possible micro

RNA targets. Our study may help researchers investigate how

CCT2 affects AD via autophagy, contributing to the

understanding of disease causes, mechanisms, and treatments.

Materials and methods

Data acquisition

All the datasets used in this study were obtained from the

Gene Expression Omnibus database (https://www.ncbi.nlm.

nih.gov/geo/) (Barrett et al., 2013). The AD transcriptome

datasets screened from the database included brain tissue

sequencing samples, GSE33000, GSE44768, GSE44770, and

GSE44771, based on the GPL 4372 platform, peripheral

blood samples of patients with AD, GSE140829, based on

GPL5988 platform, and serum microRNA (miRNA)

sequencing samples, GSE120584, based on the

GPL21263 platform. GSE33000, which included 310 patients

with AD and 157 controls, was used to explore the potential role

of CCT2 in AD. GSE44768, GSE44770, and GSE44771 were

obtained from the cerebellum, frontal cortex, and visual cortex,

respectively, and included 129 patients with AD and

101 controls. GSE140829 included 204 patients with AD and

249 controls to validate the model and explore CCT2 expression

in different tissues. GSE120584 included 1,021 patients with AD

and 288 controls and was used to probe the possible messenger

RNA (mRNA)-miRNA interaction networks. Component

differences were observed using principal component

analysis (PCA) plots drawn by the FactoMineR and

factoextra packages. The data in GSE33000 was normalized

using the normalizeBetweenArrays function in the Limma

package (Ritchie et al., 2015), and the first group was

retained for duplicated genes in the sequencing data.

Screening of differential genes (DEGs) and
associated genes

LmFit, eBayes from the limma package, and the topTable

function were used to identify differentially expressed genes

DEGs between AD-con and CCT2-low/high expression

groups. According to the false discovery rate (FDR), p ≤
0.05 was statistically significant, and log2fold change (FC) was

used to comprehensively analyze the upregulated and

downregulated genes.

For the AD-con group, we selected the first 30% genes with

larger |logFC| under the p ≤ 0.05 condition as the DEGs. Further,

we divided all patients with AD into high-and low-expression

groups based on the median of CCT2, and under the p ≤
0.05 condition, |logFC| the larger top 10% genes were selected

as DEGs in the CCT2-low/high group. DEGs were intersected

between AD-con and CCT2-low/high groups for further analysis.

Cor function was used for the raw data, and Pearson

correlation analysis was performed between CCT2 and other

genes. If p-value was ≤0.05 and the gene was positively associated
with CCT2, it was selected as the related gene.
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Functional enrichment analysis

CCT2 and 460 genes with the strongest positive correlation

with CCT2 were uploaded to the online Fdatabase—Database for

Annotation, Visualization, and Integrated Discovery, 2021

(Sherman et al., 2022; Huang et al., 2009)—for analysis. The

official gene symbol was selected as the identifier, and the species

was Homo sapiens. This was followed by Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis. The top eight pathway are

displayed in ascending order of p-value (p ≤ 0.05).

Gene set enrichment analysis (GSEA)

The differential expression analysis results of the limma package

were analyzed byGSEA using the gseKEGG and gseGO functions of

the clusterProfiler package in R (Wu et al., 2021), and biological

process (BP) GO terms and KEGG pathways that may be related to

AD and CCT2 expression were explored. p ≤ 0.05 and |

NES| >1 indicated significant differences.

Gene set variation analysis (GSVA)

Gene sets related to autophagy and protein folding were

obtained from the GSEA website (http://www.gsea-msigdb.org/

gsea/index.jsp) (Subramanian et al., 2005; Mootha et al., 2003).

Before standardization, theGSVApackage in Rwas used to calculate

the functional enrichment scores of all AD groups in the

GSE33000 dataset, and the parameters were set as default

(Hänzelmann et al., 2013). Results were visualized by drawing

heatmaps using the pheatmap package in R, and Pearson

correlation analysis was used to determine the correlation

between CCT2 and autophagy and protein folding processes.

Further, the top ten genes with the strongest positive and

negative correlation with CCT2 were drawn to exhibit their

correlation with CCT2 using data from the HADb database

(http://www.autophagy.lu/index.Autopophagy-related gene sets of

html) (Moussay et al., 2011) and circos package (Krzywinski et al.,

2009). Relevant gene sets from different stages of autophagy were

selected for GSVA analysis; Pearson correlation analysis was used to

calculate its correlation coefficient; the corrgrampackagewas used to

construct matrix plots.

Construction of the protein-protein
interaction (PPI) network and
identification of the hub genes

The DEGs from the AD-con groups intersected with the CCT2

low-high groups, and 295 upregulated and 494 downregulated genes

were removed as co-DEGs and uploaded to the online database

(STRING version 11.0, https://cn.string-db.org/) (Szklarczyk et al.,

2021) to predict the PPI network, with the default parameters. The

PPI interaction network was further drawn using Cytoscape, and

36 hub genes associated with CCT2 were removed using the

MCODE plugin.

Logistic model construction and receiver
operating characteristic (ROC) curve
analysis

The least absolute shrinkage and selection operator (LASSO) is a

compression estimation method that has a strong factor screening

ability (Tibshirani,1997; Zou et al., 2019). The hub genes were

intersected using Pearson’s analysis results (|r|≥0.65, p ≤0.05) to

obtain 26 genes, and the expression profiles of these genes were used

to construct the LASSO model, with 13 genes whose regression

coefficient was not zero. These geneswere used to construct a logistic

regression model using the glmnet package. This model had the

following formula: index = EXGene1×Coef1 + EXGene2×Coef2 +

EXGene3×Coef3+. . .. . . (Coef was the regression coefficient,

derived from the logistic regression (Domínguez-Almendros

et al., 2011); EXGene was the gene expression level).

Further, data from the GSE33000 dataset were randomly

assigned to the test set (30%) and validated with those of the

GSE44768, GSE44770, GSE44771, and GSE140829 datasets, and

the ROC curve was drawn using the pROC package.

CCT2 expression and single-cell
correlation analysis in different brain
tissues

Using the online database, AlzDate (http://www.alzdata.org/)

(Xu et al., 2018; Zhang et al., 2019) and the Single Cell Expression

tool, CCT2 expression in single cells was obtained. Using the

Differential Expression tool, the differential expression of CCT2

in multiple databases was obtained.

MicroRNA-mRNA interaction network
analysis

MicroRNA is a type of single-stranded RNA molecule that is

encoded by endogenous genes and binds to mRNA inside cells to

inhibit protein translation. Exploring the interaction between

miRNA and its target genes can provide a reference for

investigating the disease causes and therapeutic methods.

Databases for predicting gene-miRNA interactions include

MiRDB, miRWalk, RNA22, and RNAInter (Chen and Wang,

2020; Dweep et al., 2011; Miranda et al., 2006; Lin et al., 2020).

They were used to predict the miRNA interactions with hub

genes, and the results were cross-checked to improve prediction
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accuracy. Simultaneously, serum miRNA sequencing samples

(GSE120584) were analyzed for differential expression using the

limma package, and miRNAs with p ≤ 0.05 were considered

differentially expressed. Additionally, the differentially expressed

miRNAs that interacted with hub genes were visualized using the

Cytoscape software.

Related drug prediction
Drug development has always prioritized research on drugs for

AD. Numerous effective drugs are ineffective in AD treatment as

they cannot cross the blood-brain barrier (BBB) whereas small-

molecule drugs have natural advantages in crossing the BBB.

CCT2 has been reported to be used as a target of small-

molecule drugs in the treatment of neurodegenerative diseases.

Consequently, the prediction of CCT2-related DEGs serves as a

reference for AD therapy. The Drug Signatures database

(DSigDB) on the Enrichr website was used in this study to

identify relevant targeted drugs for DEGs (Chen EY et al.,

2013; Kuleshov et al.,., 2016; Xie Z et al., 2021). The results

were reviewed and displayed (Kuleshov et al., 2016).

FIGURE 1
Differential expression analysis. (A) Principal component analysis (PCA) plot demonstrating differences among groups, with Alzheimer’s disease
(AD) in red and con in green. (B) Boxchart before and after standardization—the upper figure is before standardization; the following figure is after
standardization. (C) Chaperonin containing TCP1 subunit 2 (CCT2) was downregulated in AD (p = 1.26e-22, logFC = -0.07632). (D) Heatmap of the
top 50 upregulated and downregulated genes between AD and control. (E) Volcano plot of AD-con, with upregulated genes in red and
downregulated genes in blue. (F) Volcano plot of CCT2-low/high, with upregulated genes in red and downregulated genes in blue.
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Results

Identification of the DEGs in AD

To investigate the differences in gene transcriptome

between AD and normal controls, we conducted the

following analysis. First, the PCA chart demonstrated that

there are significant differences between AD and con groups in

GSE33000, allowing for subsequent analysis (Figure 1A).

Boxchart displayed standardized data, eliminating intra-

group differences (Figure 1B). Second, we observed that

CCT2 was significantly downregulated in AD, p = -1.26e-

22 and logFC = -0.07632 (Figure 1C), which suggested that

the low CCT2 expression is associated with AD. There were

4,381 DEGs in AD, with 2,152 upregulated and

2,229 downregulated genes (Figure 1E), among which the

top 50 upregulated and 50 downregulated genes are

indicated in the heatmap (Figure 1D). However, the CCT2-

low group had 1,273 DEGs compared with the CCT2-high

group, of which 561 were upregulated and 712 were

downregulated (Figure 1F). A total of 789 genes were either

upregulated or downregulated in the AD-con and CCT2 low-

high groups, which may be associated with both CCT2

expression and AD.

FIGURE 2
Chaperonin containing TCP1 subunit 2 (CCT2) was closely related to the process of β-amyloid formation and clearance in AD. (A–C) Biological
processes (BP), cellular components (CC), and molecular functions (MF) were enriched in gene sets that were positively associated with CCT2 in
Pearson’s test, whose credibility gradually increases from blue to red, and the size of the circle exhibits the number of genes contained in the
corresponding pathway. (D) The signaling pathways (Kyoto Encyclopedia of Genes and Genomes (KEGG)) were enriched in the gene set that
was positively associated with CCT2 in Pearson’s test, whose credibility gradually increased from blue to red, and the size of the circle exhibits the
number of genes contained in the corresponding pathway.
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CCT2 downregulation was linked to
protein misfolding and neurodegenerative
diseases

Four hundred and sixty genes with the strongest positive

correlation with CCT2 were selected using Pearson correlation

analysis to explore the relevant biological functions of CCT2. GO

and KEGG analyses were performed according to the above-

mentioned gene sets. Genes associated with CCT2 in biological

processes (BP) are primarily enriched in protein folding

pathways, regulation of telomere protein localization related to

the Cajal body, and regulation of mRNA stability (Figure 2A).

FIGURE 3
Correlation of Chaperonin containing TCP1 subunit 2 (CCT2) expression with autophagy and other gene sets. (A) Biological processes (BP) of
Alzheimer’s disease (AD) enrichment. (B) BP of CCT2-low enrichment. (C) The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
enriched in AD. (D) The KEGG pathway enriched in CCT2-low. (E) Heatmaps display the enrichment scores for CCT2 expression and related
pathways in GSE33000; samples are arranged in CCT2 ascending order, and bar and line plots on the right indicate the analyzed R and p-values.
(F) Autophagy-related genes positively associated with CCT2, as indicated in red. (G) Autophagy-related genes negatively associated with CCT2, as
indicated in blue. (H) Correlation of CCT2 with autophagy-related gene sets, the correlation coefficient is presented in the lower left and
simultaneously in the upper right, red for positive correlation and green for the negative correlation.
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Additionally, the most relevant cellular components (CC) of

CCT2 and its related genes included cell cytoplasm and T

complex proteins (Figure 2B) and were related to exosomes

(Figure 2C), whose molecular function (MF) was protein

binding and folding, RNA binding, and ribosome

composition. Moreover, the most related signaling pathway

(KEGG) was mainly associated with various

neurodegenerative diseases, including AD, and autophagy

(Figure 2D). These findings indicated that downregulating

CCT2 in patients with AD may be significant for snRNP

formation, mRNA splicing, protein folding, and clearance of

misfolded proteins by autophagy. Thus, CCT2 was associated

with the production and clearance of amyloid proteins, and a

possible cause of AD was CCT2 downregulation.

CCT2 positively regulates the occurrence
of multiple autophagy and reduces
neuronal death

The transcriptomic data was analyzed using GSEA and

GSVA. In GSEA, the Janus kinase (JAK)-signal transducer

and activator of transcription (STAT) signaling pathway

and the Notch signaling pathway were significantly enriched

in the AD group compared to the con group; however, there

was a contrasting observation in proteasome and animal

autophagy (Figure 3A). Meanwhile, there was a similar trend

in the CCT2-low/high group (Figure 3B). Additionally,

compared with the con group, glial cell development and

differentiation and angiogenesis-related pathways were

significantly enriched in AD, opposing the observation in

protein catabolism and neuronal development (Figure 3C),

with a similar trend in the CCT2-low/high group (Figure 3D).

This suggests that the downregulation of CCT2may be a cause of

AD. It has been proven that the accumulation of amyloid protein

can affect the production of angiogenic factors (Skaaraas et al.,

2021).

In AD progression, CCT2 may alleviate amyloid aggregation

by promoting normal protein folding and autophagy. Thus, the

method used by the study was GSVA for calculating the

enrichment score of CCT2 expression levels for several

pathway and BP. These include neuronal death regulation,

mitochondrial autophagy, chaperone-mediated autophagy,

peroxisomal autophagy, and other related pathway. BP such

as protein folding and its decomposition. The enrichment

score indicated that CCT2 was positively correlated with

most autophagy-related BP and protein folding; however,

it was reversed in the negative regulation of neuronal

death and the negative regulation of mitochondrial autophagy.

(Figure 3E). These results indicate that high CCT2 expression

can inhibit neuronal death while enhancing mitophagy,

which is considered to be the target of AD treatment (Xie

et al., 2022).

Since CCT2 was observed to be involved in AD, we

investigated its relationship with the expression levels of some

important autophagy-related genes. The results indicated that

CCT2 expression was positively correlated withMAPK8, HSPA8,

NCKAP1, RAB11A, and RAB1A (Figure 3F), and negatively

associated with BAX, MAPK3, ITGB4, ATG16L2, and ERBB2

(Figure 3G). Using the Pearson matrix diagram (Figure 3H), high

CCT2 expression revealed a significant and positive correlation

with autophagy formation, macroautophagy, and autophagy

mediated by molecular chaperones and a negative correlation

with the mTOR pathway. This validates that CCT2

downregulation affects normal autophagy for clearing Tau and

Aβ, thus, causing AD.

The logistic model was constructed for AD
prediction

Through ppi network analysis, we screened 36 hub genes

from co-DEGs, including CCT2, ACTR2, CLTA et al. Using the

results obtained from the PPI network analysis (Supplementary

Figure one to two), we extracted the expression profiles of the hub

genes to construct a predictive model. Using LASSO regression,

12 genes were selected with non-zero regression coefficients and

value of lambda. min = 0.003690707 (Figures 4A,B). CCT2 was

further used to construct logistic regression prediction models as

follows: risk score = (4.0041× ARAF- 1.9746× ACTR2- 5.8043×

ATP5F1+ 15.7535× ATP6V1A+ 9.4168× ATP6V1C1- 15.9159×

CA10–1.8964× GNG11 + 4.0073× NRXN1- 10.1124× PPFIA2+

4.2734× PPP1R1B- 11.3482× PPP2CA- 4.1251× RAN+ 2.2023×

CCT2). The heatmap indicated the relationship between

prediction score and disease, age, and related genes

(Figure 4C). The ROC curve indicates that the area under

curve (AUC) is 0.9671 and 0.9700 (Figure 4D,E) in the

training and validation sets, respectively. In the external

validation set (GSE44768, GSE44770, GSE44771, and

GSE140829), AUC values were 0.9681, 0.9724, 0.923, and

0.6342 for prefrontal samples, hippocampal samples, cerebellar

samples, and whole blood samples, respectively (Figure 4F),

indicating that the model has high accuracy in AD prediction.

Additionally, CCT2 was expressed in all cell types in the

human brain (Figure 4G) and significantly downregulated in

various brain regions (Figure 4H), indicating that CCT2 and its

related genes are significantly correlated with AD and have broad

prospects as a biomarker.

Transcriptome was combined with micro
RNA omics analysis

There are several studies suggesting that miRNA acts on

target genes through exosomes and thus affects

neurodegenerative diseases (Lydie et al., 2013; Jiang et al.,
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2019). We used four miRNA databases for joint prediction

(Figure 5A), among which three were predicted for CCT2,

including miR-196b-3p, miR-4778–3p, and miR-6740–3p,

where miR-6740–3p was significantly different in blood

samples (Figure 5B). Thus, miR-6740–3p may inhibit CCT2

translation by binding to its transcript, which may be a

potential cause of AD. We analyzed all 36 hub genes in the

same way, and the mRNA-miRNA interaction network

revealed that the majority of the miRNAs corresponding to

the downregulated genes in AD were upregulated, confirming

FIGURE 4
A logistic model for identifying Alzheimer’s disease (AD) and the expression of Chaperonin containing TCP1 subunit 2 (CCT2) in different tissues
and cells. (A–B) Least absolute shrinkage and selection operator (LASSO) model. (C) Heatmap demonstrates changes in category, age, and gene
expression as predictive scores rise. (D) Receiver operating characteristic (ROC) curve analysis of the training set (GSE33000). (E) ROC curve analysis
of the validation set (GSE33000). (F) The ROC curve analysis of the external validation set (GSE44768, GSE44770, GSE44771, and GSE140829).
(G) CCT2 expression observed in various cells of the brain. (H) CCT2 was significantly downregulated in various brain regions of patients with AD.

Frontiers in Genetics frontiersin.org08

Ma et al. 10.3389/fgene.2022.967730

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.967730


that the interaction network had a good predictive value

(Figure 5C).

Small-molecule drug prediction based on
the hub genes

CCT2 may be a novel target for AD therapy, thus, the

protein-drug interactions must be predicted. Since

macromolecular drugs are difficult to cross the blood-brain

barrier, we used the DSingDB database for model gene

prediction to identify ten viable small molecule drugs.

Additionally, they were sorted and displayed based on the

p-value (Table 1).

Some studies have shown that Amantadine may have a new

beneficial effect on axial symptoms of Parkinson’s disease (PD)

patients with subthalamic nucleus deep brain stimulation (Chan

et al., 2013). Additionally, Reserpine is an antihypertensive agent

FIGURE 5
The mRNA-miRNA interaction network. (A) Four databases—miRDB, miRWalk, RNA22, and RNAInter—were combined for CCT2-targeting
miRNA prediction. (B) The boxplot demonstrates the expression level of miR-6740–3p in the serum samples (GSE120584) (logFC = 0.38540845, p =
2.34E-16). (C) The interaction network presents the hub genes and their corresponding miRNA, with octagon nodes representing genes and other
shapes representing miRNA. Upregulation is indicated in red; downregulation is indicated in green.
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TABLE 1 List of drugs recommended for treating AD by targeting CCT2

Name p-value Chemical formula Structure

Amantadine HL60 3.55E-05 C10H17N

Flupentixol HL60 7.71E-05 C23H25F3N2OS

Flunixin HL60 4.36E-04 C14H11F3N2O2

Cefotiam PC3 4.88E-04 C18H23N9O4S3

Primidone PC3 0.001139 C12H14N2O2

Clopamide HL60 0.00128 C14H20ClN3O3S

Hesperidin PC3 0.001862 C28H34O15

Reserpine TTD 0.014852 C33H40N2O9

Enkephalin 0.016133 C28H37N5O7

Caffeic acid PC3 0.018692 C9H8O4
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whose action is attributed to its ability to inhibit the vesicle

monoamine transporter VMAT, thereby reducing the level of

bioamine neurotransmitters in synaptic vesicles. One study

found that reserpine improves Aβ toxicity in caenorhabditis

elegans model of AD (Arya et al., 2009). Similarly, several

small-molecule drugs seem to be associated with AD. Elevated

enkephalins cause neuronal and behavioral disorders in

transgenic mouse models of AD (Meilandt et al., 2008).

Caffeic acid slows the development of AD by increasing

cognitive function, alleviating brain damage, and inhibiting

the AD-induced increase in AChE activity and nitrite

production (Wang et al., 2016).

Discussion

AD has gradually grown to be one of the most significant

diseases of this century as a typical neurodegenerative

condition affecting the elderly. Over 50 million people

worldwide currently suffer from dementia, with AD

accounting for 60–80% of all dementia cases (Porsteinsson

et al., 2021). Acetylcholinesterase inhibitor (AChEI) is a

common drug for the treatment of AD; however, it can

only treat its symptoms and have some side effects (Lane

et al., 2018). Studies have reported that AD is caused by

abnormal folding of Aβ protein, and the neurofibrillary

tangles are caused by excessive phosphorylation of Tau

(Kozlov et al., 2017), which is accompanied by neuronal

apoptosis, which is irreversible. Therefore, the onset of AD

is usually irreversible (Ganzer, 2007).

Previous studies have demonstrated the eukaryotic

chaperone tailless complex polypeptide one ring complex

and its eight subunits can prevent the formation of protein

aggregates (Behrends et al., 2006; Noormohammadi et al.,

2016). A recently published paper has demonstrated that

CCT2 binds to protein aggregates, recruits autophagosomes

to endocytose, and degrades Tau (Ma et al., 2022). Therefore,

our study used the transcriptome sequencing dataset of AD

prefrontal cells to explore the regulatory mechanism of CCT2

in AD. We observed that CCT2 was significantly

downregulated in patients with AD, suggesting that the

CCT2 downregulation may be a contributing factor for AD.

By considering the intersection of AD-con and CCT2-low/

high, we identified the common DEGs. Further, using PPI

network analysis, 36 hub genes of co-DEGs were screened out,

including CCT2, ACTR2, and TCIRG1. Among them, MYT1L

was observed to induce cell reprogramming into cholinergic

neurons and provide a strategy for treating AD (Liang et al.,

2018). ATP6V1A is involved in AD via the synaptic vesicle

cycle, phagosome, and oxidative phosphorylation

downregulation (Zhou et al., 2021). Additionally, VDAC1

has been observed to impact AD occurrence by regulating

mitochondrial function (Shoshan-Barmatz et al., 2018).

This indicates a strong correlation between hub genes

and AD occurrence. Since CCT2 is also closely related

to these genes, it may play an important role in the

regulation of hub genes, providing a reference for future

research.

However, functional enrichment analysis revealed that the

genes positively correlated with CCT2, selected by Pearson

correlation coefficient, were associated with telomerase, Cajal

body positioning, mRNA splicing, protein folding, and MAPK

activity, indicating that the genes highly associated with CCT2

are involved in the entire process of transcription and

translation. This is also consistent with the mechanism of

co-regulation of protein homeostasis by a molecular

chaperone and aggregate autophagy reported in a study by

Ma et al. (Ma et al., 2022). Meanwhile, the MAPK signaling

pathway is believed to function during the early stages of AD

(Johnson and Bailey, 2003), and the pathway enrichment

analysis revealed that it is related to multiple

neurodegenerative diseases and autophagy in animals

whereas autophagic deficiency is a widely recognized cause

of AD (Reddy and Oliver, 2019; Fang et al., 2019).

Meanwhile, GSEA analysis of the DEGs and GSVA

analysis of the CCT2-related genes revealed that CCT2

affects autophagy. GSEA analysis demonstrated that the

JAK-STAT pathway, the Notch signaling pathway,

angiogenesis, and development and differentiation of glial

cells were enriched in AD-con. At the same time, CCT2-

low/high groups whereas proteasome, animal autophagy,

protein breakdown, and neuronal development were not

enriched. Several pathways have been reported to correlate

with AD occurrence. For example, the JAK-STAT signaling

pathway has been reported to play a potential role in the

molecular mechanism regulating cellular autophagy (Chen

et al., 2021). The Notch pathway is linked to autophagy (Ko

et al., 2020), and angiogenesis is also believed to promote AD

(Vagnucci and Li, 2003). Additionally, there is evidence that

the AD and the CCT2-low expression groups can clear Aβ and
Tau by inhibiting proteasomes and autophagy (Bonet-Costa

et al., 2016). In contrast, GSVA revealed that the expression

level of CCT2 was negatively associated with neuronal death,

suggesting that high CCT2 expression can inhibit neuronal

death. Furthermore, the CCT2 expression level was

significantly and positively correlated with mitophagy,

macroautophagy, pexophagy, protein folding, and protein

metabolism; however, the R-value for mitophagy was

relatively low, possibly since CCT2 does not directly affect

mitophagy. This is consistent with the first report of CCT2-

mediated aggregate elimination and indicates that CCT2 can

regulate the levels of Aβ and Tau by regulating protein folding

and promoting autophagy. Increasing evidence suggests that

autophagy plays a role in scavenging abnormal proteins, thus,

affecting the clearance of Aβ and Tau when autophagy

activation is hampered (Dou et al., 2020). Hence, autophagy
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dysfunction plays a crucial role in the pathological process of

AD (Li et al., 2010).

We also analyzed the correlation between CCT2 and

autophagy-related genes, and top ten autophagy genes with

the strongest positive correlation included BNIP3,HSPA8, and

MAPK8 etc. Whereas those with the strongest negative

correlation included ATG16L2, ATG9B, and BAX etc. This

indicates that CCT2 may affect autophagy by interacting with

genes that are highly associated with autophagy. The

autophagy gene set correlation analysis revealed that CCT2

is positively correlated with the initiation stage of autophagy,

macroautophagy, and chaperone-mediated autophagy, which

also suggested that CCT2 may affect the occurrence of

autophagy via some mechanism. We also observed the

inhibition of the mammalian target of the rapamycin

(mTOR) pathway. Additionally, high expression of mTOR-

inhibiting autophagy has been demonstrated in

neurodegenerative diseases (Zhu et al., 2019).

During the construction of the clinical prediction model,

we used LASSO regression to screen for genes with regression

coefficients greater than zero and then combined these genes

with CCT2 to build the logistic model. The model performed

well with high AUC values in the prefrontal cortex, visual

cortex, and hippocampus; however, it performed poorly in

whole blood samples, which could be attributed to the fact that

the brain tissue samples were used to construct the model.

Some of the genes involved in the model have been observed to

be involved in AD, of which CCT2 is significantly

downregulated in AD, PPP1R1B can regulate cAMP

response element-binding protein (CREB) phosphorylation,

and CREB dysfunction is one of the causes of AD (Cho

et al., 2015) whereas NRXN1 is involved in memory

recovery in rats by affecting synaptic plasticity (Zhang

et al., 2021). The ROC curve revealed that the model had

high AUC values in the training, test, and external validation

sets; thus, the expression of these genes can be used as a

biomarker for AD. Online database analysis also demonstrated

that CCT2 is expressed in various brain cells, with neuronal

cells having the highest levels of expression. CCT2 expression,

in contrast, was significantly reduced in various brain regions,

including the entorhinal cortex, hippocampus, frontal cortex,

and frontal cortex, providing further evidence that low

CCT2 expression is one of the mechanisms of AD

pathogenesis.

The study also investigated the causes of low CCT2 expression

and observed that gene mutations, DNA methylation, and miRNA

may cause changes in gene expression, causing AD (Qin et al., 2020;

De Jager et al., 2014; Akhter and Bekris, 2019). Thus, we aimed to

explore the miRNA interacting with hub genes, most of which had

the opposite expression profile of their target genes in AD. For

example, miR-6740–3p, which interacts with CCT2, is significantly

upregulated in AD (logFC = 0.38540845, p = 2.34E-16) and miR-

661, which interacts with HPCAL4, NECAP1, CLTA, and GNAI2,

has been observed to be involved in AD via metabolic and stress

pathways (Hojati et al., 2021). The miR-501–3p, which interacts

with CADM2, may impact AD by regulating cell division (Hara

et al., 2017); hsa-miR-107, which interacts withACTR2,AMPH, and

RAN, targets Aβ precursor protein (APP) and influences AD

(Hébert et al., 2008). This study can assist researchers in

screening for appropriate miRNA and validating their biological

functions to obtain effective biological results. (The specific

pathways by which most miRNAs affect AD are currently

unknown, albeit the mRNA-miRNA interaction network serves

as a reference for AD diagnosis and treatment. Similarly, the

prediction of the last small-molecule drugs provides a point of

reference for targeting CCT2 to treat AD.

Conclusion

Using bioinformatic analysis, this study used multiple

datasets and revealed that the low expression of CCT2 in AD

may be responsible for the inhibition of autophagy in AD. The

PPI network was used to screen out potential AD biomarkers

with diagnostic value, and the mRNA-miRNA interaction

network was constructed to predict the potential miRNA.

These findings contribute to our understanding of the

pathogenesis of AD and provide new guidelines for the

treatment and diagnosis of the disease.
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