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Background: A high level of education or intelligence (IQ) is reported to be a risk

factor for Parkinson’s disease (PD). The purpose of this study was to systematically

examine the causal relationships between IQ, educational attainment (EA), cognitive

performance, and PD.

Methods: We used summary statistics from genome-wide association studies

on IQ, EA, cognitive performance, and PD. Four genome-wide association study

(GWAS) data for PD were used to comprehensively explore the causal

relationship, including PD GWAS (regardless of sex), age at onset of PD

GWAS, male with PD GWAS, and female with PD GWAS data. We conducted

a two sample Mendelian randomization (MR) study using the inverse-variance

weighted (IVW), weighted median, simple mode, and weighted mode methods

to evaluate the causal association between these factors. MR-Egger and MR-

PRESSO were used for sensitivity analysis to test and correct horizontal

pleiotropy. Multivariate MR (MVMR) was also used to account for the

covariation between IQ, EA, and cognition, as well as to explore potential

mediating factors.

Results: Genetically predicted higher IQ was associated with an increased risk

of PD in the entire population, regardless of gender. In the analyses using the

IVW method, the odds ratio was 1.37 (p = 0.0064). Men with a higher IQ, more

years of education, or stronger cognitive ability are more likely to develop PD

compared towomen.MVMR showed that adjusting for education and cognition

largely attenuated the association between IQ and PD, suggesting that

education and cognition may mediate the effect of IQ on PD.

Conclusion: This study provides genetic support for the causal link between

higher IQ and an increased risk of PD.
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Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disease, with most PD cases occurring after

the age of 60. PD is characterized by degeneration of

dopaminergic neurons in the substantia nigra, and its clinical

manifestations include motor symptoms, such as bradykinesia,

tremor, and rigidity (Tolosa et al., 2006; De Virgilio et al., 2016).

A high level of education is reported to be a risk factor for PD

(Rocca et al., 1996; Frigerio et al., 2005; Park et al., 2005).

Additionally, in one study, working with highly complex data

was associated with an increased risk of PD (Valdés et al., 2014).

Most studies on the link between PD and occupations and

education have focused on the fact that some occupations

may increase the risk of PD by exposure to environmental

factors, such as exposure to toxins in agriculture or exposure

to infections in the healthcare industry. For example, many

pesticides have neurotoxic properties, and many pesticides

containing 1-methyl,-4-phenyl-1,2,3,6-tetra hydropyridine

(MPTP) metabolites can cause damage to human substantia

nigra dopaminergic neurons. Numerous pesticides increase the

risk of PD, mainly by affecting mitochondrial complex I

(including rotenone) or causing oxidative stress (Langston

et al., 1983; Weisskopf et al., 2010).

However, since intelligence (IQ) is a powerful predictor of

education level and a person’s later work situation, cognitive

performance may be partially responsible for the link between

educational level and PD. The link between higher levels of

education and PD may be due to higher levels of IQ. A recent

cohort study based on a large population found that people with

high IQ were more likely to develop PD (Fardell et al., 2020).

However, direct assessments of the causal effects of IQ and

education on PD are rarely performed. Thus, in this study, we

conducted a two-sample Mendelian random (MR) analysis to

examine the causal effects of IQ, educational attainment (EA),

and cognitive performance on the risk of PD.MR can support the

conversion of observed correlations into causality, offering a

potentially robust approach while minimizing deviations caused

by confusion and reverse causality (Pierce and Burgess, 2013;

Davies et al., 2015; Burgess et al., 2017).

There is growing evidence that men have twice the risk of

developing PD compared to women, but women havemore rapid

disease progression and higher mortality (Moisan et al., 2016;

Vaidya et al., 2021). In summary, biological sex is an important

factor affecting the occurrence and development of PD.

Additionally, there is some evidence that the age at onset

(AAO) may be different between males and females with PD

(Georgiev et al., 2017). Therefore, we further explored the

relationship between PD and intelligence, EA, and cognitive

performance using age at onset of PD GWAS (PDAOO

GWAS), male with PD GWAS (PDMMALE GWAS), and

female with PD GWAS (PDFEMALE GWAS) data.

Materials and methods

Exposure

We selected several strong genetic variations, or single

nucleotide polymorphisms (SNPs) (p < 5 × 10–8), which were

only related to EA, cognitive (test) performance, or intelligence as

instrumental variables (IVs) and applied them to the summary

level results of PD case-control GWAS. We then applied these

IVs to the summary results of the GWAS in PD cases and

controls. We calculated the phenotypic variance of IQ, EA,

and cognitive (test) performance explained by each SNP (R2)

using commonly used formulas: R2 = 2 × EAF × (1 − EAF) ×

betâ2/(2 × EAF × (1 − EAF) × betâ2) + 2 × EAF × (1 − EAF) × se ×

N × betâ2) (Papadimitriou et al., 2020). Here, EAF, beta, se, andN

represent the effect allele frequency, effect size, standard error,

and sample size, respectively. We also calculated the F-statistic

using formula F = R2 (N−2)/(1−R2) to assess the presence of weak

instrumental variable bias. Here, F < 10 indicates a low power of

the instrumental variable to explain the exposure. Our study had

a very large sample size for each MR analysis and strong

estimated effects for each variant (all SNP F-statistics > 10).

Accordingly, the study had high statistical power to assess the

potential associations between IQ, EA, and cognitive (test)

performance and PD. Statistical power was calculated based

on a 5% type I error using the publicly available tool mRnd

(https://shiny.cnsgenomics.com/mRnd/).

A total of 165 approximately independent genome-wide

significant (p < 5 × 10–8) SNPs were identified as associated

with fluid intelligence based on intelligence GWAS from a recent

genome-wide association study of multiple traits (n = 269,867)

(Savage et al., 2018). This GWAS was sufficiently covariate

adjusted (e.g., age, sex, ancestry principal components). The

GWAS for EA is measured as the number of years of

schooling that individuals have received. The sample was

limited to individuals of European ancestry, and all

association analyses were performed at the cohort level. A

total of 317 approximately independent genome-wide

significant (p > 5 × 10–8) SNPs were identified as being

associated with years of schooling in a GWAS meta-analysis

of 766,345 participants (Lee et al., 2018). Additionally, we

reviewed GWAS for cognitive (test) performance (n =

257,841), a factor highly correlated with EA (Lee et al., 2018),

as a meta-analysis of published COGENT consortium findings
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and results based on a new United Kingdom Biobank (UKB)

analysis. We identified 147 genome-wide significant SNPs

associated with cognitive performance. The R2 and F-statistics

for each SNP are shown in Supplementary Table S1. All of these

instrumental variables have F-statistics > 10, suggesting strong

IV strength for MR analyses.

Outcomes

The PD GWAS dataset was from the International

Consortium for Parkinson’s Disease Genomics (IPDGC). The

PD GWAS dataset used in this study included 33,674 PD cases

and 449,056 controls (Nalls et al., 2019). We also performed the

largest PD AAO GWAS to date by including 28,568 PD cases

(Blauwendraat et al., 2019). Additionally, male GWAS and

female GWAS data, all derived from Illumina platform-based

genotyping, were obtained from members of the IPDGC,

collaborators, and publicly available datasets from UKB

genotype data (version 3). The male PD GWAS (MALEPD

GWAS) data included 13,020 male PD cases and 89,660 male

controls. The female PD GWAS (FEMALEPD GWAS) data

included 7,947 female PD cases and 90,662 female controls

(Blauwendraat et al., 2021).

The subjects in both the exposure and outcome datasets

included in this study were of European ancestry. No ethical

approval was required, as our study was a secondary analysis of

previously published data.

Study design

Randomized controlled trials study the effect of a factor by

randomizing subjects into a control group and an experimental

group. However, in reality, it is very difficult to complete a

randomized controlled trial, which requires a lot of manpower

and material resources. Sometimes, due to ethical issues, it is

almost impossible to study a certain factor. Other approaches are

needed, andMendelian randomization is one of them. MR core is

use of Mendel’s second law, also is a free combination law, when

two (or more), has been relatively characteristics of parents for

hybridization, in child generation produces gametes, in the

separation of alleles at the same time, on the same

chromosome, gene expression for free combination, this

process is similar to the random grouping, randomized

controlled trial MR is a randomized controlled trial based on

Mendel’s second law (Emdin et al., 2017). MR is an effective

method for inferring the causal effects of one trait (phenotype) on

another trait (disease risk). The exposures associated with SNPs

were instrumental variables in the MR, and their associations

with outcomes such as PD were identified. By combining SNP

exposure with SNP outcome associations, MR infers whether

exposure causes results (Bowden and Holmes, 2019).

We conducted a two-sample MR study to investigate the

potential causal effects of IQ, EA, and cognitive (test)

performance on PD risk. MR research is based on three main

assumptions: 1) IVs are directly associated with exposure (IQ and

EA) with genome-wide significance (relevance); 2) IVs should

not be associated with confounding factors in the relationship

between exposure and outcome in MR analyses (independence);

and 3) IVs affect the outcome (exclusion restriction) simply by

exposure. Figure 1 provides a schematic diagram of this study.

Using univariate MR to estimate the overall effect of IQ, EA,

and cognitive performance (respectively) on PD risk through all

possible pathways, we did not exclude the 19 SNPs that

overlapped with the GWAS of IQ, EA, and cognition. Since

IQ, EA, and cognition are covariates that correlate with each

other, this univariate approach produces biased effect estimates

(Sanderson et al., 2019). To avoid this problem, we adopted a

multivariate MR approach to adjust for IQ, EA, and cognitive

(test) performance and to explore potential mediating effects

(Hemani et al., 2018). MVMR estimates the direct effect of each

exposure on the outcome by accounting for pleiotropy among

multiple characteristics.

Statistical analysis

MR analysis was performed using the TwoSampleMR and

MR-PRESSO packages in RStudio (version 4.2). Five MR analysis

methods were used, including the inverse-variance weighted

(IVW) (Burgess et al., 2015), weighted median (Bowden et al.,

2016), MR-Egger (Bowden et al., 2015), simple mode, and

weighted mode methods. The main analysis was a random-

effects inverse IVW analysis. Simply put, random-effects IVW

integrates estimates from each IV, assuming that all IVs are valid,

FIGURE 1
Design and main assumptions of our Mendelian
randomization study. SNPs, single nucleotide polymorphisms.
GWAS, genome-wide association study; PD, Parkinson’s disease.
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and evaluates causality. There is no pleiotropic effect or invalid

effect, so the overall pleiotropy is balanced to zero. Four methods

were used to test the sensitivity: a pleiotropy test, a heterogeneity

test, a leave-one-out sensitivity analysis, and anMR-PRESSO test

(Ong and MacGregor, 2019). An MR-Egger regression was

performed to test whether the results had directional

pleiotropy. We also performed a Cochran’s Q test to assess

the heterogeneity of each genetic variation estimate. To

measure whether the combined estimates were

disproportionately affected by each genetic variation (SNP)

and whether the combined estimates were robust, we

performed a leave-one-out sensitivity analysis. IVs can only

affect the outcome through exposure; that is, there is no gene

pleiotropy (Greenland, 2018). The existence of pleiotropy was

tested using the intercept term of the MR Egger regression model

(Burgess and Thompson, 2017). The intercept term was not 0

(p < 0.05), indicating the existence of gene pleiotropy. At the

same time, the MR-Presso method was used to evaluate gene

pleiotropy, and the estimated value was corrected by eliminating

outliers (Verbanck et al., 2018). We used a Bonferroni correction

[corrected p = 0.05/3 (exposures) = 0.0017] to account for

multiple comparisons.

Results

Genetic associations between all exposed SNPs and the four

PD GWAS outcomes are shown in Supplementary Table S1. The

results of the main MR analysis are shown in Figure 2 and

Supplementary Table S2. Sensitivity analysis results for PD are

shown in Supplementary Tables S3, S4. TheMR Presso results for

each analysis are presented in Supplementary Table S5.

Supplementary Figures S1–S12 are scatter plots of SNPs

associated with exposure and PD to each MR Analysis.

Supplementary Figures S13–S24 are tree plots of individual

SNP analyses in the MR Analysis. Supplementary Figures

S25–S36 sequentially show plots of leave-one-out analyses in

each MR Analysis.

MR effect of IQ, EA and cognitive
performance on PD (no gender difference)

We used 140 independent variants to investigate the causal

effect of IQ on PD risk (Supplementary Table S1). Genetically

predicted higher IQ was associated with a higher risk of PD. The

odds ratio was 1.37 (95% CI: 1.09–1.71, p = 0.0064) in the

analyses using the IVW method. The results of the main MR

analysis are shown in Table 1. Numerically, the relationship

between PD and IQ did not reach statistical significance via the

weighted median (OR = 0.20, p = 0.21), simple mode (OR = 0.87,

p = 0.78), or weighted mode (OR = 0.86, p = 0.69)

(Supplementary Table S2). These causal associations are

presented in the scatter plot (Supplementary Figure S1).

Forest plots of the effect of each single SNP on the PD

GWAS are provided in Supplementary Figure S13. As seen in

the forest plots, the results of individual SNPs may not be

significant, and only when the results are combined can a

reasonable result be obtained, which is the red line at the

bottom, which reflects that high IQ increases the risk of PD

under the IVW approach. The MR-Egger regression analysis did

not find directional pleiotropy for IQ SNPs (intercept: −0.014, p =

0.21) (Supplementary Table S3). Because SNPs have high

heterogeneity (Cochran’s Q test, p ＜ 0.05; Supplementary

Table S4), we used a random effect model to estimate the

effects of intelligence on PD risk (p = 0.042). After the

elimination of abnormal SNPs by the MR-Presso Outlier test

and the MR-Presso distortion test, the MR results were still

statistically significant (p = 0.0058; Table 1). Furthermore, a

leave-one-out analysis showed that the causal relationship

between IQ and PD was not driven by any single SNP

FIGURE 2
Mendelian randomization analysis of the association between
intelligence educational attainment, cognitive performance, and
Parkinson disease. OR, odds ratio; CI, confidential interval. (A)
Parkinson GWAS data for outcomes (no gender difference);
(B) PDGWAS data for outcomes were exclusively formale patients.
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(Supplementary Figure S3). The leave-one-out analysis did not

find any pleiotropy influenced by a single SNP, and it confirmed

the associations. This suggests that people with a higher IQ are

more likely to develop PD.

We did not find significant associations between EA and PD

using IVW (95% CI: 1.02–1.51, p = 0.030) and MR Egger (p =

0.3373). The weighted median (p = 0.0620) analyses, simple

mode (p = 0.6887), and weighted mode (p = 0.3700) showed no

evidence of a higher risk of PD (Table 1). These causal

associations are presented in the scatter plot (Supplementary

Figure S2). We used 132 independent variants (Supplementary

Table S1) to investigate the impact of cognitive (test)

performance on PD. The IVW results (IVW: OR = 1.34, 95%

CI = 1.05–1.70, p = 0.0178) are consistent with the estimation

direction of the MR-Egger and weighted median, and the p-value

was not statistically significant (Supplementary Table S2). These

causal associations are presented in the scatter plot

(Supplementary Figure S3).

MR effect of IQ, EA, and cognitive
performance on PD among females and
males, respectively

We used 144 independent variants to investigate the causal

effect of IQ on the risk of PD among men. Genetically predicted

higher IQ was associated with a higher risk of PD among males.

The odds ratio was 1.37 (95% CI: 1.09–1.71, p = 0.0054) in the

analyses using the IVW method. The results of the main MR

analysis are shown in Table 1. The MR-Egger intercept test (p =

0.858) and MR-PRESSO global test (p < 0.001) were applied to

detect the presence of pleiotropy. After the elimination of

abnormal SNPs by the MR-Presso Outlier test and the MR-

Presso distortion test, the MR results were still statistically

significant (p = 0.0039; Table 1). We also observed (Table 1)

that EA was related to PD among male, with a somewhat more

moderate OR of 1.50 (95% CI: 1.18–1.92; p = 0.0012) per SD

higher predicted EA. We used 136 independent variants

(Supplementary Table S1) to investigate the causal effect of

cognitive performance on the risk of PD among men.

Genetically predicted higher cognitive performance was

associated with a higher risk of PD among males. The odds

ratio was 1.37 (95% CI: 1.09–1.71, p = 0.0046) in the analyses

using the IVW method. The MR-Egger intercept test (p = 0.31)

and MR-PRESSO global test (p < 0.001) were applied to detect

the presence of pleiotropy. After the elimination of abnormal

SNPs by the MR-Presso Outlier test and the MR-Presso

Distortion test, the MR results were still statistically significant

(p = 0.0096; Table 1). The results of leave-one-out analyses

indicated that the genetically predicted associations between

intelligence, education, cognition and PD were stable and not

strongly driven by individual SNPSs (Supplementary Figures

S28–S30). Taken together, there is clear evidence that higher

IQ, EA or cognitive ability increase the risk of PD among males.

The statistical analysis showed that there is no evidence that IQ

(OR, 1.11; 95% CI, 0.87–1.41, 1.12; p = 0.39), education (OR,

TABLE 1 Causal effect and sensitivity analysis results for Parkinson’s Disease.

Exposure Outcome SNPs Outliers IVW MR-Egger MR-Egger
intercept

MR-PRESSO global

N N OR
(95%CI)

p
value

OR
(95%CI)

p
value

Intercept p
value

p
value

Outlier-
corrected

p
value

Intelligence PD 140 2 1.37
(1.09–1.71)

0.0064 2.66
(0.93–7.65)

0.0709 -0.0138 0.2844 0.001 0.0058

Intelligence PDMALE 144 2 1.39
(1.10–1.76)

0.0054 1.26
(0.40–3.94)

0.6916 0.0021 0.8582 <0.001 0.0039

Educational
attainment

PD 286 2 1.24
(1.02–1.51)

0.0302 1.45
(0.68–3.09)

0.3373 -0.0022 0.3423 0.363 NA

Educational
attainment

PDMALE 303 3 1.50
(1.18–1.92)

0.0012 1.24
(0.47–3.26)

0.6603 0.0027 0.6904 <0.001 0.0023

Cognitive
performance

PD 132 0 1.34
(1.05–1.70)

0.0178 3.00
(1.05–8.61)

0.0429 -0.0174 0.8413 <0.001 0.0846

Cognitive
performance

PDMALE 136 1 1.46
(1.12–1.89)

0.0045 2.63
(0.83–8.37)

0.1036 -0.0128 0.3057 <0.001 0.0096

Bold numbers indicate that p value is statistically significant.

IVW, inverse-variance weighted; MR-PRESSO, MR pleiotropy residual sum and outlier; OR, odds; CI, confidential; PD, Parkinson’s disease (regardless of gender); PDMALE, PD among

male.
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1.29; 95% CI, 0.99–1.69; p = 0.06), or cognitive performance (OR,

1.36; 95% CI, 1.02–1.81, 1.12; p = 0.03) are causally related to PD

among female.

MR effect of IQ, EA, and cognitive
performance on age at onset in PD
patients

There is no evidence of a causal relationship between IQ (OR,

0.75; 95% CI, 0.23–2.48, 1.12; p = 0.64), EA (OR, 3.09; 95% CI,

0.88–11.10, 1.12; p = 0.08), cognitive ability (OR, 1.86; 95% CI,

0.58–6.02, 1.12; p = 0.30), and different AAO in PD patients.

MVMR effect of IQ, EA, and cognitive
performance on PD

Our MVMR studies showed that the association between IQ

and PD was greatly attenuated after adjustment for EA and

cognitive performance (Supplementary Table S6), both in the

overall PD population and in the male PD patients.

Discussion

We conducted univariate and multivariable MR analysis

using large summary statistical GWASs to explore the causal

relationship between EA, cognitive performance, IQ, and PD.

The results of MR analysis provide genetic support for a causal

relationship between higher IQ and increased risk of PD,

especially in the male population, where the risk is more

pronounced. The effects of EA and cognitive (test)

performance on PD were found only in the male group.

After adjusting for EA and cognitive performance by

multivariate MR, the effect of IQ on PD disappeared.

Genetically predicated intelligence per se was not

independently associated with PD. The discrepancy between

the univariate and MVMR assessments suggests that the effect

of IQ on PD is potentially mediated; that is, IQ impacts PD

through its effect on educational achievement or cognitive

performance rather than by having a direct effect on PD. A

recent meta-analysis demonstrated that the relationship between

IQ and EA probably runs both ways (Ritchie and Tucker-Drob,

2018). The study, which involved more than

600,000 participants, found that education increased IQ by

about 1–5 points (Ritchie and Tucker-Drob, 2018). Therefore,

the effect of a high IQ on PD risk may be partly related to EA.

Our findings are consistent with those of previous case-

control studies (Fardell et al., 2020). It is important to

determine the underlying scientific link between a higher IQ

and a higher risk of PD. While little is known about the

underlying mechanisms, the following points make the link

between IQ and PD credible (Frigerio et al., 2005). First, the

relationship between a higher IQ and a higher risk of PD may be

related to lifestyle. Studies have found that people with higher

IQs or education levels have lower cholesterol (Lara and Amigo,

2018), a factor that has been linked to an increased risk of PD (de

Lau et al., 2006; Huang et al., 2008; Gudala et al., 2013; Huang

et al., 2015; García-Sanz et al., 2021; Lv et al., 2022). People with

higher IQ or education levels are also less likely to smoke

(Wennerstad et al., 2010; Modig et al., 2011; Pärna et al.,

2014), and abstinence from smoking is a known protective

factor against PD (Breckenridge et al., 2016; Delamarre and

Meissner, 2017). The influence of IQ or education level on

cholesterol may be related to economic level and living habits

(Lara and Amigo, 2018). Adults with less education are more

likely to smoke because of psychological factors, such as low self-

esteem and stress, or because of tobacco advertising. The main

reasons they have more difficulty quitting may be that they lack

motivation, social support, and adequate resources to purchase

nicotine replacement products (McEwen et al., 1997; Hiscock

et al., 2012). The mediating role of these factors in the

relationship between IQ and PD cannot be completely denied,

and further studies are needed.

Second, the causal association between a higher IQ and an

increased risk of PD may be related to occupational complexity.

Some studies have found that people (especially men) with more

complex jobs, such as data analysis and processing, have a higher risk

of PD. Jobs involving higher levels of career complexity, such as

senior management and professorial roles, require more mental

activity and may also involve higher levels of stress (McEwen

et al., 1997; Wood et al., 2004). Stress at work can lead to

elevated glutamate levels (Wood et al., 2004), which have been

linked to PD (Mitchell et al., 1989). Third, there is a number of

potential genetic or biological association between IQ and PD. For

example, CDC42, the corresponding gene of rs10917152, is

associated with PD (Ying et al., 2022). It has been shown that

impaired CDC42 signaling regulated by dopamine D2 receptors

leads to spine loss and behavioral deficits in PD (Ying et al., 2022).

ESSRG (a transcription factor estrogen-related receptor gamma), the

corresponding gene of rs10779271, deficiency leads to the reduction

of genes related to synaptic, mitochondrial function, and autophagy,

which causes PD (Fox et al., 2022). Some PD cognitive symptoms

may be related to primary neurodegeneration in cortical and higher

cognitive areas, or may be mediated by abnormal neural activity

(McGregor and Nelson, 2019).

This study has several strengths. Its first major strength is that it

utilized three types of large-exposure GWAS data and four types of

PD outcomeGWAS data to explore these complex associations. This

is the most detailed and comprehensive joint investigation of the

effects of IQ, education, and cognition on the risk of developing PD to

date. By using randomly assigned genetic variants as instrumental

variables, our study largely mitigated the effects of confounding

factors, thereby greatly reducing bias and providing convincing

evidence. Second, the study had high statistical power to assess
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the potential association of exposure with PD (calculated to be close

to 100%); this was possible because of the large sample size for each

MR analysis of exposure and the outcome of GWAS, as well the

strong estimated effect of each genetic variable (all F-statistics > 10).

Our study also has several limitations. First, we did not have

data on other risk factors for PD, such as occupational and family

income, family social status, and lifestyle (Frigerio et al., 2005).

The development of PD is related to metabolic disorders,

including obesity, hypertension, diabetes, and hyperlipidemia,

which are greatly influenced by lifestyle and socioeconomic

factors. Education level and IQ level also influence the

occurrence of metabolic diseases through socioeconomic

factors. Although the causal relationship between IQ and PD

is unlikely to be significantly confounded by these factors, as MR

analyses are less susceptible to confounding than observational

studies, further investigation is needed into the potential role of

these factors in the causal association between IQ and PD.

Second, the participants in this study were all European, so

the inferred causality may only apply to Europeans, which

could affect the generalizations of the MR study.
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