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This study aimed to construct an immune-related prognostic model and a
nomogram to predict the 1-, 3-, and 5-year overall survival (OS) of breast cancer
patients. We applied single-sample gene set enrichment analysis to classify
1,053 breast cancer samples from The Cancer Genome Atlas (TCGA) database
into high and low immune cell infiltration clusters. In cluster construction and
validation, the R packages “GSVA,” “hclust,” “ESTIMATE,” and “CIBERSORT” and
GSEA software were utilized. ImmPort, univariate Cox regression analysis, and
Venn analysis were then used to identify 42 prognostic immune-related genes.
Eventually, the genes TAPBPL, RAC2, IL27RA,ULBP2, PSMB8, SOCS3,NFKBIE, IGLV6-
57, CXCL1, IGHD, AIMP1, and CXCL13 were chosen for model construction utilizing
least absolute shrinkage and selection operator regression analysis. The
Kaplan–Meier curves of both the training and validation sets indicated that the
overall survival of patients in the low-risk group was superior to that of patients in the
high-risk group (p < .05). The areas under curves (AUCs) of the model at 1, 3, and
5 years were, respectively, .697, .710, and .675 for the training set and .930, .688, and
.712 for the validation set. Regarding clinicopathologic characteristics, breast cancer-
related genes, and tumor mutational burden, effective differentiation was achieved
between high-risk and low-risk groups. A nomogram integrating the risk model and
clinicopathologic factors was constructed using the “rms” R software package. The
nomogram’s 1-, 3-, and 5-year AUCs were .828, .783, and .751, respectively. Overall,
our study developed an immune-related model and a nomogram that could reliably
predict OS for breast cancer patients, and offered insights into tumor immune and
pathological mechanisms.
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1 Introduction

Breast cancer is one of the most prevalent cancers affecting women worldwide. According to
the American Cancer Society, one in eight women in the United States will be diagnosed with
invasive breast cancer during their lifetime, and 1 in 39 will eventually die from the disease
(DeSantis et al., 2019). Based on the estrogen receptor (ER) or progesterone receptor expression
status and human epidermal growth factor 2 (HER2) gene amplification, breast cancer is
divided into three major subgroups: hormone receptor+/HER2–, HER2+, and triple-negative
breast cancer (TNBC) (Waks and Winer, 2019). Over the past 30 years, breast cancer patients’
5-year relative survival rate has increased to 83%–92% [Surveillance, Epidemiology, and End
Results (SEER) Program (https://www.seer.cancer.gov/), Seer, 2019]. However, breast cancer is
a molecularly heterogeneous disease in which the treatment and outcomes vary significantly
between subgroups (Waks and Winer, 2019). Therefore, it is imperative that prognostic factors
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associated with the biological heterogeneity of breast cancer be
identified in order to improve survival.

In recent decades, mounting evidence has indicated that breast
cancer is characterized by its immune landscape (Nagarajan and
McArdle, 2018). Numerous studies revealed that the survival time of
breast cancer patients positively correlated with tumor-infiltrating
lymphocytes (TILs), particularly in HER2+ and TNBC subtypes (Loi,
2013; Adams et al., 2014). Following the promising clinical outcomes
of cancer immunotherapies, interest in the field of immune
microenvironment has increased (Waldman et al., 2020). In phase
3 studies on TNBC, programmed cell death ligand 1 (PD-L1)
inhibitor atezolizumab and programmed cell death 1 (PD-1)
inhibitor pembrolizumab have been evaluated. In the phase
3 IMpassion130 trial, the addition of atezolizumab to nab-
paclitaxel as frontline therapy for patients with unresectable and
advanced TNBC improved the survival rate (Schmid et al., 2020b).
Pembrolizumab plus neoadjuvant chemotherapy significantly
increased the pathological complete response rate in patients with

untreated early-stage TNBC in the phase 3 study (NCT03036488)
(64.8% versus 51.2%, p < .001) (Schmid et al., 2020a). Therefore,
immune-related biomarkers of the tumor immune
microenvironment may be used as prognostic indicators in breast
cancer.

By examining the immune landscape of breast cancer, we aimed
to develop a robust prognostic signature. After dividing breast
cancer samples into high and low immune cell infiltration clusters
using single-sample gene set enrichment analysis (ssGSEA),
413 immune-related differentially expressed genes (DEGs)
between clusters were identified using ImmPort, and
12 prognostic immune-related DEGs were selected using Cox
and least absolute shrinkage and selection operator (LASSO)
regression analyses. The model correlated with clinicopathologic
factors, immune infiltrates, genes associated with breast cancer,
and tumor mutational burden (TMB). Finally, we successfully
developed a nomogram to predict the 1-, 3-, and 5-year overall
survival (OS) of breast cancer patients (Figure 1).

FIGURE 1
Flow diagram of the study. BRCA, breast cancer; TCGA, The Cancer Genome Atlas; ssGSEA, single-sample gene set enrichment analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GO, Gene Ontology; PIG, prognostic immune-related gene; LASSO, least absolute shrinkage and selection operator;
TF, transcription factor; PPI, protein–protein interaction; ROC, receiver operating characteristic; TMB, tumor mutational burden.
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2 Materials and methods

2.1 Construction and validation of immune
clustering

The RNA sequencing data and clinical information on breast
cancer patients were obtained from The Cancer Genome Atlas
(TCGA, https://cancergenome.nih.gov/) database. This study
included patients with ductal and lobular breast cancer but
excluded male patients. The original data were summarized and
processed with Strawberry Perl v5.0.1. R version 4.1.1 was utilized
for data analysis (R Core Team, 2019). The ssGSEA was performed
on each breast cancer sample in TCGA database based on the
expression of 29 immune cell types using the “GSVA” R package.
Using the unsupervised hierarchical clustering function “hclust”
of R software, breast cancer samples were divided into clusters
with high and low immune cell infiltration based on immune
infiltration levels. The hierarchical relationship between samples
was depicted using a dendrogram generated by the “sparcl” R
package.

To validate the clustering results, we compared the immune status
of the two clusters of immune cell infiltration using two R software

algorithms. Based on specific gene expression levels, the “ESTIMATE”
algorithm of R software was used to calculate the Immune Score,
Stromal Score, ESTIMATE Score, and tumor purity of each sample
(Yoshihara et al., 2013). Next, we utilized the “CIBERSORT” R
software package to compare the expression levels of human
leukocyte antigen (HLA) family genes and the proportion of
22 immune cell types between the two clusters (Newman et al.,
2015). The R package “ggpubr” illustrated the clustering heatmap,
violin plots, and boxplots.

2.2 Gene set enrichment analysis

Using GSEA (version 4.1.0), gene set enrichment analysis was
performed between clusters of high and low immune cell infiltration in
TCGA database (Mootha et al., 2003; Subramanian et al., 2005). We
used the gene expression data from TCGA database to perform KEGG
pathway analysis and Gene Ontology (GO) functional annotations to
identify enriched molecular mechanisms and cellular functions in the
cluster with high immune cell infiltration. False discovery rate (FDR)
values < .01 were considered statistically significant. The R packages
“reshape” and “ggplot2” were used to create bubble charts.

FIGURE 2
Construction and validation of immune clustering. (A) Heatmap showing enrichment levels of 29 immune cell types between the two clusters. The
Immune Score, Stromal Score, ESTIMATE Score, and tumor purity can be seen on top of the genes. (B) Violin plots showing the Stromal Score, Immune Score,
and ESTIMATE Score of the two clusters. (C) Boxplots showing the gene expression of the HLA family of the two clusters. (D) Boxplots showing proportions of
22 immune cell types between the two clusters. Proportions of CD8 T cells, resting memory CD4 T cells, CD4memory activated T cells, follicular helper
T cells, gamma delta T cells, and M1 macrophages were higher in the cluster with high immune cell infiltration, whereas the proportions of resting NK cells,
M0 macrophages, M2 macrophages, and activated dendritic cells were lower in the cluster with high immune cell infiltration.
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2.3 Identification of differentially expressed
immune-related genes between clusters

DEGs were identified through differential gene expression analysis
of samples from the two clusters in TCGA database. Significant
stipulations were |LogFC| > .585 and FDR <.05. Immune-related
genes were obtained from the Immunology Database and Analysis
Portal (ImmPort, https://www.immport.org/) (Bhattacharya et al.,
2018). We utilized Venn analysis to identify immune-related DEGs
between high and low immune cell infiltration clusters in breast
cancer. The R packages “limma,” “ggplot2,” “venn,” and “heatmap”
were utilized.

2.4 Construction of functional interaction
networks of prognostic immune-related
proteins and transcription factors

Gene expression profiles and clinical details of GSE45255
(GPL96 platform part) were downloaded from the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database
(Nagalla et al., 2013). Based on immune-related DEGs and clinical
data from the TCGA database, univariate Cox regression analysis was
conducted to identify prognostic immune-related genes (PIGs) shared
by TCGA and GSE45255 databases significantly correlated with the
OS of breast cancer patients, with p < .01 considered statistically
significant. Next, we conducted the co-expression analysis of PIGs and
transcription factors (TFs) downloaded from the Cistrome platform
(https://www.cistrome.org/) to identify PIG-related TFs and TF-
related PIGs. The significant thresholds were determined to be |
cor| > .4 and FDR <.001, and the R software packages “ggalluvial,”
“ggplot2,” and “dplyr” were utilized in the procedure. In addition, to
illustrate potential interactions between PIGs and TFs, we performed
protein–protein interaction (PPI) network analysis using the online
Search Tool for the Retrieval of Interacting Genes/Proteins (STRING,
https://string-db.org) (Damian et al., 2021). The confidence score
threshold was set to .7 (high), and disconnected network nodes
were hidden.

2.5 Construction and validation of an
immune-related prognostic model

Based on the identified PIGs, we performed LASSO regression
analysis to screen out genes for model construction using the “glmnet”
algorithm. In the prognostic model, each patient was assigned a risk
score based on the following formula:

RiskScore � ∑n

i�1Coe PIGi × Exp PIGi .

According to the median risk score, patients were divided into
high- and low-risk groups. TCGA andGSE45255 samples were used as
training and validation sets, respectively. The R software packages
“survival,” “survminer,” “timeROC,” and “rms” were used to plot
Kaplan–Meier (K–M) curves, time-dependent receiver operating
characteristic (ROC) curves, and calibration curves. Next,
univariate and multivariate Cox regression analyses with a
significant value of p < .05 were conducted to determine whether
the model was an independent prognostic factor for breast cancer.

2.6 Correlation analysis between PIGs and
immune infiltrates

We examined correlations between PIGs in the model and
immune infiltrates using the “CIBERSORT” algorithm, where p <
.05 was considered statistically significant. R software packages
“reshape2,” “tidyverse,” and “ggplot2” were used to illustrate the
results.

2.7 Correlation analysis between cancer-
related genes and the prognostic model

To identify potential associations between the prognostic model
and the expression level of breast cancer-related genes, we performed
correlation analysis of BRCA1 (breast cancer 1), BRCA2 (breast cancer
2), PDCD1 (programmed cell death 1), and CTLA4 (cytotoxic
T-lymphocyte-associated protein 4) with the risk score and risk
group. The R software packages “limma” and “ggpubr” were
utilized in the process.

2.8 TMB analysis

The TMB data on breast cancer were downloaded from TCGA
database’s simple nucleotide variation section. Differential analysis of
TMB was performed on breast cancer samples with high and low risks.
To investigate correlations between TMB and prognosis, we divided
breast cancer samples from TCGA database into high- and low-TMB
groups, using a TMB cutoff value of one mutation (mut) per megabase
(MB). Survival analysis was conducted on different TMB and risk-
score groups, and Kaplan–Meier survival curves were plotted utilizing
the “survival” and “survminer” R software packages.

2.9 Construction and validation of a
nomogram

We built a nomogram to predict the survival of breast cancer
patients using the “rms” and “survival” R packages. Initially, the T
stage, N stage, M stage, clinical stage, risk group, and age were
considered variables for constructing the nomogram. In order to
evaluate the prognostic value of the nomogram, the ROC curve
and calibration curve were drawn.

3 Results

3.1 Construction and validation of immune
clustering

RNA sequencing data involving 39,740 mRNAs from a total of
1,053 breast cancer samples and 111 normal samples were obtained
from TCGA database, along with the clinical data on 1,053 breast
cancer patients. We obtained the ssGSEA immune enrichment score
for each breast cancer sample. Based on the infiltration levels of
29 immune cell types, clusters of breast cancer samples with high
(n = 993) and low (n = 60) immune cell infiltration were identified
(Figure 2A). The Immune Score, Stromal Score, ESTIMATE Score,
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and tumor purity were calculated using the “ESTIMATE” algorithm in
order to validate the clustering. The cluster with low immune cell
infiltration exhibited lower Immune Score, Stromal Score, ESTIMATE

Score, and tumor purity than the cluster with high immune cell
infiltration (Figures 2A,B). In addition, the “CIBERSORT”
algorithm determined that the cluster with high immune cell

FIGURE 3
Results from gene set enrichment analysis. The size and color of the bubble represent the number of genes enriched in the pathway/function and the
statistical significance, respectively. (A) 22 KEGG pathways. (B) Top 15 GO cellular functions. FDR, false discovery rate; NES, normalized enrichment score.

FIGURE 4
Identification of differentially expressed immune-related genes. (A) Volcano plots showing 845 downregulated genes (green) and 1,206 upregulated
genes (red) in the cluster with high immune cell infiltration. (B) Heatmaps showing 27 downregulated immune-related genes (blue) and 386 upregulated
immune-related genes (red) in the cluster with high immune cell infiltration. (C) Venn diagram showing the intersection of differentially expressed genes
(DEGs) and immune-related genes. In all, 413 overlapped genes were identified.
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infiltration had higher expression levels of all HLA subtypes and
higher proportions of 6 out of 22 immune cell types than the cluster
with low immune cell infiltration (Figures 2C,D).

3.2 Gene set enrichment analysis

Gene set enrichment analysis was conducted within clusters with
high and low immune cell infiltration. KEGG pathway results
demonstrated that the DEGs of the high immune cell infiltration
cluster were mainly involved in the signaling pathways of cytokine
receptor interaction, chemokine, natural killer cell-mediated
cytotoxicity, and toll-like receptor (Figure 3A). GO analysis
demonstrated that the DEGs in the cluster with high immune cell
infiltration were significantly associated with the response to the
molecule of bacterial origin (Figure 3B).

3.3 Identification of differentially expressed
immune-related genes between clusters

Using a threshold of |LogFC| > .585 and FDR <.05, 2051 DEGs
were obtained from TCGA database between high and low immune
cell infiltration clusters. A total of 845 genes were downregulated
and 1,206 genes were upregulated in the cluster with high immune
cell infiltration (Figure 4A). In addition, a list of 1,793 immune-
related genes was obtained from ImmPort. A total of 413 immune-
related DEGs were identified through Venn analysis of two sets of
genes, containing 27 downregulated genes and 386 upregulated

genes in the cluster with high immune cell infiltration
(Figures 4B,C).

3.4 Construction of functional interaction
networks of prognostic immune-related
proteins and TFs

Gene expression profiles of 139 breast cancer samples were
downloaded from GSE45255. Expression levels of 259 out of
413 immune-related DEGs were shared by TCGA and
GSE45255 databases. Based on the clinical data from TCGA
database, 42 immune-related DEGs were found to be significantly
related to OS by univariate Cox regression analysis, thereby considered
as PIGs (Figure 5A). Following this, we downloaded 317 TFs from the
Cistrome platform. The results of co-expression analyses revealed that
21 types of TFs, including CIITA, FOXP3, IKZF1, and IRF4, highly
correlated with 35 types of PIGs (Figure 5B). Furthermore, the PPI
network between the TFs and PIGs was generated by STRING, with
FOXP3, JUN, STAT1, and CD3D at the center (Figure 6).

3.5 Construction and validation of an
immune-related prognostic model

In total, 12 out of 42 PIGs were chosen for model construction
based on LASSO regression analysis: TAPBPL, RAC2, IL27RA,ULBP2,
PSMB8, SOCS3, NFKBIE, IGLV6-57, CXCL1, IGHD, AIMP1, and
CXCL13 (Figures 7A,B). The coefficients for 12 PIGs were

FIGURE 5
(A) Forest plots of hazard ratios for overall survival of 42 prognostic immune-related genes. (B) Sankey diagram illustrating the relationship between
35 prognostic immune-related genes (left) and 21 transcription factors (right) for the same plot. The box height indicates the percentage of TF and PIG
varieties, while lines show the links.
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calculated through LASSO regression (Table 1). The validation set
contained 134 samples from GSE45255, while the training set
contained 1,034 samples from TCGA database. Each sample was
assigned a risk score and categorized as either high risk or low
risk. Results from both the training set and the validation set
indicated that the low-risk group had a significantly better
prognosis than the high-risk group (Figures 7C,D, p < .001 and
p = .026 for the training set and the validation set, respectively).
Figures 7E,F and Figures 7G,H depict the time-dependent ROC and
calibration curves for training and validation sets, respectively. The
AUCs (areas under curves) at 1, 3, and 5 years of this prognostic model
were .697, .710, and .675 for the training set and .930, .688, and .712 for
the validation set, respectively. In this model, the calibration curves for
1-, 3-, and 5-year survival probabilities corresponded well with the

observed survival rates for both sets. The distributions of the risk
scores, survival status, and survival time of the training and validation
sets are plotted in Figures 7I–L. Moreover, univariate and multivariate
Cox regression analyses validated the risk score as an independent
prognostic factor after adjusting for age, T, M, and N stages (Figures
7M,N, p < .001).

3.6 Correlations between PIGs and immune
infiltrates

Results from the “CIBERSORT” algorithm showed that except
for AIMP1, which exhibited no significant correlation with most of
the immune cell types, most PIGs in the model were positively

FIGURE 6
STRING protein–protein interaction network connectivity for prognostic immune-related genes and transcription factors.
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associated with adaptive immune cells, such as T cells, B cells, and
macrophages M1, and negatively associated with immune
regulatory cells, such as macrophages M2, M0, and resting mast
cells (Figure 8).

3.7 Correlations between breast cancer-
related genes and the prognostic model

Compared to the low-risk group, the expression levels of
BRCA1 and BRCA2 were higher in the high-risk group, while

CTLA4 and PDCD1 were lower. In addition, BRCA1 and
BRCA2 expression levels were positively associated with the risk
score, whereas CTLA4 and PDCD1 expression levels were
negatively associated with the risk score (Figure 9).

3.8 TMB analysis

TMB with a mean of 1.562 mut/Mb (range: .026–118,447 mut/
Mb) was obtained from TCGA VarScan2 for 980 breast cancer
samples. Figure 10A demonstrates that TMB was significantly

FIGURE 7
Construction and validation of an immune-related prognostic model. (A) Plot of LASSO coefficient profiles. Variables come to zero as we increase the
penalty (lambda) in the objective function of LASSO. (B) Plot of partial likelihood deviance for 42 prognostic immune-related genes. Tenfold cross-validation
was applied for turning parameter selection in the LASSO regressionmodel, with 12 prognostic genes left formodel construction. (C,D) Patients in the low-risk
group showed better prognosis than those in the high-risk group for both (C) the training set and (D) validation set. (E–H) ROC and calibration curves for
predicting the overall survival of the (E,F) training set and (G,H) validation set at 1, 3, and 5 years. (I–L) Distributions of risk scores and survival status of the (I,J)
training set and (K,L) validation set. (M,N) Forest plots showing (M) univariate and (N)multivariate Cox regression results of the risk score and clinicopathologic
factors.
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higher in the high-risk group than in the low-risk group (p < .0001).
Based on a cutoff value of 1 mut/Mb, patients were divided into high-
TMB (n = 362) and low-TMB (n = 618) groups. The survival analysis
revealed that the low-TMB group was associated with a longer OS than
the high-TMB group (p = .001, Figure 10B). In addition, the OS of
patients in the low-TMB and low-risk group was significantly superior
to that of patients in the high-TMB and high-risk group (p < .001,
Figure 10C).

3.9 Construction and validation of a
nomogram

To predict the 1-, 3-, and 5-year OS of breast cancer patients, a
nomogram was constructed based on TCGA data. The T stage, N
stage, clinical stage, risk group, and age were eventually utilized as
parameters (Figure 11A). The M stage was excluded due to the

imbalance of sample distribution. The 1-, 3-, and 5-year ROC
curves of the nomogram were plotted, with respective AUCs of
.828, .783, and .751 (Figure 11B). The calibration curve fitted well
with the ideal model (Figure 11C).

4 Discussion

Breast cancer as a disease entity is characterized by vast
heterogeneity. Beyond the current classification method based on
pathology, gene expression profiling has subdivided breast cancer
into subtypes with distinct biological behaviors. Intrinsic genomic,
transcriptomic, and molecular complexities had a substantial
influence on treatment response and prognosis (Prat et al., 2015).
In recent years, open access to the next-generation sequencing data
through public databases such as TCGA and GEO has allowed us to
stratify risk based on the genomic heterogeneity of tumors. Using
bioinformatics techniques, we built a risk model of 12 immune-
related genes in this study. The 12 immune-related genes in the
model demonstrated a strong correlation with breast cancer
prognosis and immune infiltrates. Breast cancer samples in the
low-risk group expressed higher levels of genes simulating the
adaptive immune response and had a more favorable prognosis.
The immune-related model could not only improve our ability to
predict breast cancer patients’ prognosis but also help understand
the immune mechanisms involved in tumorigenesis. Our study
found that tumor samples in the high-risk group expressed higher
levels of BRCA1 and BRCA2 but lower levels of CTLA4 and PDCD1.
Intriguingly, a higher TMB was associated with the high-risk
group. Incorporating parameters including T stage, N stage, age,

TABLE 1 LASSO coefficient profiles of 12 prognostic immune-related genes.

Gene Coef Gene Coef

TAPBPL −.18851 NFKBIE −.00698

RAC2 −.07299 IGLV6-57 −.00807

IL27RA −.06814 CXCL1 −.11876

ULBP2 .301293 IGHD −.05503

PSMB8 −.02251 AIMP1 .148086

SOCS3 −.0334 CXCL13 −.01237

FIGURE 8
Correlations between prognostic immune-related genes and immune infiltrates.
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and clinical stage, we developed a nomogram for predicting OS in
patients with breast cancer. Both the risk model and nomogram
showed good accuracy, reliability, and sensitivity in view of the ROC
curve and calibration curve.

In an effort to identify PIGs to build the immune-related model,
we first classified patients into clusters with high and low immune cell
infiltration based on their ssGSEA immune enrichment scores.
According to the GO annotation and KEGG enrichment results,
DEGs of the high infiltration cluster were dominated by the
cytokine receptor interaction signaling pathway and molecule of
bacterial origin. Bioactive metabolites, such as reactivated estrogens,
amino acid metabolites, short-chain fatty acids, and secondary bile
acids, were secreted by microbiota and modulated tumor cell viability,
migration, and apoptosis (Eyvazi et al., 2020). In recent years,
accumulating evidence has demonstrated a close relationship

between the intestinal bacterial microbiome and the progression
and treatment of various tumors (Matson et al., 2021; Si et al.,
2021; Wong-Rolle et al., 2021). For instance, enteric bacterial genes
may metabolize estrogens and influence the incidence of ER-positive
breast cancer (Kwa et al., 2016). Microbial perturbation was reported
to contribute to epigenetic reprogramming and gene hyper-
methylation in the development of breast cancer (Nagarajan and
McArdle, 2018). The intricate interaction between pathogenic
microbes and breast cancer cells warrants additional study.

Moreover, the PPI network uncovered the crucial roles of
numerous proteins (e.g., FOXP3, STAT1, STAT4, FOXP3, JUN,
and CD3D) in breast cancer. FOXP3 was reported to promote
tumor growth and metastasis by activating the Wnt/β-catenin
signaling pathway (Yang et al., 2017), according to previous
research studies on non-small cell lung cancer. The STAT family

FIGURE 9
Correlations between breast cancer-related genes and the risk score.

FIGURE 10
Tumor mutational burden analysis. (A) Boxplots demonstrated a higher TMB in the high-risk group. (B) Low-TMB group was associated with a favorable
survival probability. (C) Patients in the low-TMB plus low-risk group had better prognosis than those in the high-TMB plus high-risk group.
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consists of six isoforms, and the JAK-STAT pathways play varying
roles in breast cancer progression and metastasis (Wong et al., 2022).
The correlation between the associated signaling pathways and
immunotherapy for breast cancer is anticipated to be investigated
in future experiments.

In our research study, TMB showed a promising prognostic value
for breast cancer patients, whether used alone or in conjunction with
the risk score model. TMB, which is defined as the number of non-
synonymous somatic mutations per MB of a cell’s genome, indirectly
reflects heterogeneity and immunogenicity and predicts clinical
response to immune checkpoint inhibitors in solid tumors such as
melanoma, non-small-cell lung cancer, rectal cancer, and breast
cancer (Snyder et al., 2014; Yarchoan et al., 2017). It was widely
believed that TMB benefited immunotherapy because it could produce
more antigens to simulate antitumor response (Rizvi et al., 2015). Data
from the phase 3 KEYNOTE-119 study suggested the clinical benefits
of pembrolizumab monotherapy but not chemotherapy in metastatic
TNBC with TMB ≥10 mut/Mb (Winer et al., 2020). Also, according to
results from the phase 2 TAPUR study, pembrolizumab monotherapy

exerted antitumor activity in heavily pretreated metastatic breast
cancer with high TMBs (9–37 mut/Mb) (Alva et al., 2021).
However, seemingly inconsistent with previous findings, we found
that a high TMB was associated with the high-risk group and a poor
prognosis for breast cancer. The discrepancy of results could be
explained in the following aspects. First, unlike the two clinical
trials focusing on TMB ≥10 mut/Mb, only 1.5% (15/980) of our
samples showed a TMB of over 10 mut/Mb. Second, this study
focused on breast cancer in general rather than TNBC. In fact,
TNBC was generally associated with a poor prognosis and
harbored higher mutational rates than other subtypes of breast
cancer (Kriegsmann et al., 2014). Another bioinformatics study
pertaining to TNBC revealed a higher 5-year survival rate in the
high-TMB group (Gao et al., 2021). Taken together, TMB may have
disparate prognostic values among subgroups of breast cancer
patients. For patients with non-TNBC, high levels of TMB are
likely to suppress the immune response and reduce the survival
rate. For patients with TNBC, survival benefits might only exist for
those with high levels of TMB. In support of our speculation, the

FIGURE 11
(A) Nomogram to predict the overall survival of breast cancer patients. The overall survival probability is calculated by taking the sum of the risk points,
according to the T stage, N stage, clinical stage, risk group, and age. For each parameter, its risk point can be determined by drawing a vertical line straight up
from the variables’ value to the “Points” axis. In order to determine the probability of surviving less than 5 years, a vertical line is drawn intersecting the “Total
points” with the “Pr (futime< 5)” line. (B) 1-, 3-, and 5-year ROC curves of the nomogram. (C) 1-, 3-, and 5-year calibration curves of the nomogram.
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GeparNuevo trial reported a negative correlation of TMB with the
frequency of CD8+ T effector cells, whereas a positive correlation with
CD8+ T memory cells in the early-stage TNBC. The reported TMB
(mean 1.8 mut/Mb and range .02–7.65 mut/Mb) was comparable to
ours (Seliger et al., 2019). In support of to our speculation, the
GeparNuevo trial reported a negative correlation of TMB with the
frequency of CD8+ T effector cells, whereas a positive correlation with
CD8+ T memory cells in the early-stage TNBC. Demonstrating unique
immune characteristics of breast cancer and close relationships with
TILs and TMB, our model could be utilized to predict the efficacy of
therapies for TNBC patients.

The present study has limitations that should be carefully considered.
First, we constructed the prognostic signature using the data downloaded
from various publicly accessible databases. Publication bias and batch
effect cannot be precisely measured, and additional research studies were
necessary to validate the model. Second, genetic testing for genes of our
model could be costly. Moreover, the prognostic model was developed
using the data from a general breast cancer population, not a specific
subtype, resulting in a limited ability to predict survival for breast cancer
subtypes. Future evaluation on the correlation between TMB and
prognosis of different breast cancer subtypes is anticipated to validate
our findings and guide the application of immunotherapy. Last but not
least, the five parameters on which we based the nomogram may not be
optimal due to a limited number of factors available online. Given
additional clinical characteristics, a more accurate model and a
nomogram could be developed.

In conclusion, we developed a robust prognostic model
aggregating 12 immune-related genes for risk stratification and a
nomogram that could reliably predict OS for patients with breast
cancer, which offers new insights into breast cancer immune cells and
tumorigenesis.
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