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Background: Cellular senescence plays a complicated and vital role in cancer

development because of its divergent effects on tumorigenicity. However, the

long non-coding RNAs (lncRNAs) associated with tumor senescence and their

prognostic value in hepatocellular carcinoma (HCC) remain unexplored.

Methods: The trans-cancer oncogene-induced senescence (OIS) signature

was determined by gene set variation analysis (GSVA) in the cancer genome

atlas (TCGA) dataset. The OIS-related lncRNAs were identified by correlation

analyses. Cox regression analyses were used to screen lncRNAs associated with

prognosis, and an optimal predictive model was created by regression analysis

of the least absolute shrinkage and selection operator (LASSO). The

performance of the model was evaluated by Kaplan-Meier survival analyses,

nomograms, stratified survival analyses, and receiver operating characteristic

curve (ROC) analyses. Gene set enrichment analysis (GSEA) and cell-type

identification by estimating relative subsets of RNA transcripts (CIBERSORT)

were carried out to explore the functional relevance and immune cell

infiltration, respectively.

Results: Firstly, we examined the pan-cancer OIS signature, and found several

types of cancer with OIS strongly associated with the survival of patients,

including HCC. Subsequently, based on the OIS signature, we identified

76 OIS-related lncRNAs with prognostic values in HCC. We then established

an optimal prognostic model based on 11 (including NRAV, AC015908.3,

MIR100HG, AL365203.2, AC009005.1, SNHG3, LINC01138, AC090192.2,

AC008622.2, AL139423.1, and AC026356.1) of these lncRNAs by LASSO-Cox

regression analysis. It was then confirmed that the risk score was an

independent and potential risk indicator for overall survival (OS) (HR [95%

CI] = 4.90 [2.74–8.70], p < 0.001), which outperforms those traditional

clinicopathological factors. Furthermore, patients with higher risk scores also

showed more advanced levels of a proinflammatory senescence-associated
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secretory phenotype (SASP), higher infiltration of regulatory T (Treg) cells and

lower infiltration of naïve B cells, suggesting the regulatory effects of OIS on

immune microenvironment. Additionally, we identified NRAV as a

representative OIS-related lncRNA, which is over-expressed in HCC tumors

mainly driven by DNA hypomethylation.

Conclusion: Based on 11 OIS-related lncRNAs, we established a promising

prognostic predictor for HCC patients, and highlighted the potential immune

microenvironment-modulatory roles of OIS in HCC, providing a broad

molecular perspective of tumor senescence.

KEYWORDS

hepatocellular carcinoma, long noncoding RNA, prognostic signature, immune
microenvironment, NRAV, oncogene-induced senescence

Introduction

Hepatocellular carcinoma (HCC) is the fourth leading cause

of cancer-related mortality globally (Villanueva, 2019). Infection

with chronic hepatitis B virus (HBV) is a key risk factor for HCC

in developing nations such as China and several African

countries (Ligat et al., 2019). Other risk factors for HCC

include hepatitis C virus (HCV) infection, aflatoxin contact,

alcohol use, smoking and diabetes (Jemal et al., 2011).

Though the advances of modern medicine and the adoption

of several treatment techniques have improved the outcomes of

HCC patients, the long-term prognosis after surgical resection

remains restricted due to the high risk of metastasis or recurrence

(Wang et al., 2012).

Prognostic biomarkers are useful for assessing survival,

determining therapy strategies and selecting individuals who

are suitable candidates for clinical trials (Epstein et al., 2016).

Biomarkers like tumor size, lymph node count, and metastasis

status have historically been used to predict prognosis in

oncology. However, the accuracies of these clinicopathologic

variables are restricted (Tseng et al., 2014). Thus, molecular

biomarkers are increasingly being used instead of, or in

addition to, these clinicopathologic characteristics. In the case

of HCC, serum α-fetoprotein (AFP), AFP-L3 and des-γ-
carboxyprothrombin are being utilized or studied for the early

detection and monitoring of HCC patients (Ocker, 2018).

However, little progress has been made in the development of

prognostic biomarkers for reliable HCC survival assessment and

therapeutic approach decision (Black and Mehta, 2018).

Cellular senescence is a permanent condition of cell growth

arrest that can promote tissue remodeling or contribute to

inflammation as one of the major intrinsic fail-safe

mechanisms. Because of the crucial roles it plays in

tumorigenesis, the characteristics of senescent cells including

identification and pharmacological elimination, have gained

great attention in the field of tumor research. In addition to

the replicative senescence induced by alteration of the telomere,

oncogene-induced senescence (OIS) is another type of cellular

senescence (Serrano et al., 1997). Activation or over-expression

of oncogenes associated with OIS was once considered to provide

a barrier against tumor development by triggering a series of

molecular and cellular changes that eventually lead to cell cycle

arrest. However, senescent cells can also gain a phenotype that

increases the level of cytokines, chemokines, matrix

metalloproteinases (MMPs), and other proteins in local

environment, termed as senescence-associated secretory

phenotype (SASP) (Coppé et al., 2010). Senescent cells with

SASP can have a great influence on the immune

microenvironment of tumor and render it to a conducive

status to tumor growth and progression (Park et al., 2021). As

there still remains a paradox about the roles senescence plays in

cancer development and the immune microenvironment, the

molecular landmarks of tumor senescence that may help

elucidate tumor initiation and progression are worth

investigating.

Although some studies indicate that prohibiting p16, p21,

and p53 accumulation can change the status of cellular

senescence (Jung et al., 2016), the exact regulatory mechanism

of cellular senescence is still largely unknown. It has recently

emerged that lncRNAs can play important regulatory roles

(Ghanam et al., 2017) and a few of them have been

demonstrated linked to senescence as key players during

direct/indirect regulation of oncogenes and SASP induction.

PANDA, a lncRNA induced by DNA damage, might, for

example, control senescence by blocking transactivation of

proliferative genes associated with senescence (Puvvula et al.,

2014). The lncRNA MIR31HG regulates BRAF-induced

senescence by affecting the expression and secretion of some

SASP components (Montes et al., 2021). Besides, downregulating

lncRNA MALAT can influence p53 activation in cycling cells,

which can also induce senescence (Tripathi et al., 2013). These

findings emphasized the importance of lncRNAs as regulators in

cellular senescence and emphasized the need for more in-depth

studies of senescence-related lncRNAs. Meanwhile, lncRNAs

have been found to be closely related to tumor development,

metastasis, and outcomes in HCC patients (Huang et al., 2020).
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However, studies to date are still unable to identify the

senescence-related lncRNAs that can be regarded as molecular

landmarks and hopeful prognostic predictors in HCC.

Here, we leveraged the multi-omics datasets of the cancer

genome atlas (TCGA) and explored the prognostic value of

senescence-related lncRNAs. Several senescence-related

lncRNAs were identified as predictive prognostic biomarkers,

using which a prognosis model was constructed for HCC

patients. The model was further refined and confirmed by

comprehensive assessment and NRAV was prioritized as a

potential novel regulator of OIS. Moreover, we profiled an

OIS-related abnormal developmental process which can reflect

the oncogenic pattern of SASP in HCC. We also found that the

senescent cells with advanced levels of OIS can possibly render

the immune microenvironment to a conducive status to tumor

growth and progression with more abundant regulatory T cells

and less naïve B cells infiltration.

Materials and methods

Data collection

Raw count data of RNA sequencing in HCC tumors and non-

tumor liver tissues was accessed through the TCGA data portal

(https://gdc-portal.nci.nih.gov/). Pan-cancer multi-omics data

and clinical data were obtained from the TCGA Pan-Cancer

Atlas (https://gdc.cancer.gov/about-data/publications/

pancanatlas) and GEPIA (Tang et al., 2017), respectively.

TCGA liver hepatocellular carcinoma (TCGA-LIHC) dataset

(including 374 HCC tumor tissues and 50 adjacent non-tumor

tissues) was used for the identification of differently expressed

genes. Patients with OS less than 30 days were excluded to

remove potential bias related to treatment effects and a total

of 346 HCC tumor samples were finally kept to develop the

prognostic risk model. GSE144269 (Candia et al., 2020)

(including 70 HCC tumor tissues with survival information)

available in the Gene Expression Omnibus (GEO: https://www.

ncbi.nlm.nih.gov/geo) database was obtained to evaluate the

prediction ability of the model. The information of all datasets

was shown in Supplementary Table S1.

Identification of senescence-related
lncRNAs

A total of 2,365 OIS-related genes were collected from the

previous study (Hernandez-Segura et al., 2017). Among

them, 1,219 genes are up-regulated and the rest

1,146 genes are down-regulated along the OIS process. The

gene set variation analysis (GSVA) package (Hänzelmann

et al., 2013) was used to compute OIS gene set scores: OIS

score = (GSVA score of the OIS-up-regulated genes in

OIS)–(GSVA score of the OIS-down-regulated genes).

Candidate lncRNAs were then selected according to the

correlation between the OIS scores and the lncRNA

expression levels (Spearman rank correlation; p < 0.05;

abs [correlation coefficient rho] ≥ 0.4).

Construction and evaluation of the
prognostic risk model for hepatocellular
carcinoma patients

For the building of the prognostic risk score model, we

employed a two-stage procedure. First, for each candidate

lncRNA, univariate Cox proportional hazards regression

analysis was performed to identify the lncRNAs correlated

with HCC OS in the model training cohort. Prognosis-related

lncRNAs were defined as those with a p value less than 0.05.

Then, using the GLMNET package (Friedman et al., 2010) in

R, we developed models with least absolute shrinkage and

selection operator (LASSO) regression analysis. LASSO is a

method for shrinking regression coefficients based on a

penalization factor (lambda). Some coefficients may be

shrunk to zero and hence eliminated from the model. The

LASSO regression with Cox proportional hazards model was

used in the model training cohort, and the optimal lambda was

determined based on a 10-fold cross validation. The

coefficients were then estimated. If the coefficient was zero,

the lncRNAs were deleted, and the remaining lncRNAs were

utilized to build the prognostic model. Based on the

coefficients and the expression level of each candidate

lncRNA, the following algorithm was used to calculate the

risk score for each HCC case:

Risk score � ∑
n

i�1
Coef (lncRNAi)pExpr(lncRNAi)

Themedian risk score was used to categorize HCC patients as

“high-risk” or “low-risk”. Using the rms package (Harrell, 2015)

in R, a nomogram was created from the model to analyze the OS

of HCC patients. The suitability of the model to the nomogram

was then evaluated by 1-, 3-, and 5-year calibration curves.

Besides, the area under the receiver operating characteristic

(ROC) curve was also employed to assess the regression

model’s prediction performance.

Functional enrichment analysis

The clusterProfiler package (Wu et al., 2021) was used to

perform gene ontology (GO) and KEGG pathway enrichment
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analyses, and the enrichplot function was used to show the

connection between the enriched pathways. Gene Set

Enrichment Analysis (GSEA) (Subramanian et al., 2005) was

performed by GSEA software (v 4.1.0) using all gene sets

documented in the MSigDB-C5 (v 7.3). The gene set with an

absolute normalized enrichment score (NES) > 1 and a false

FIGURE 1
Identification of OIS-related lncRNAs in HCC.(A)Oncogene-induced senescence (OIS) scores of tumor tissues across cancer types from TCGA.
Wilcox test was used to assess the difference across different age groups. (B) The correlation betweenOIS score and OS of patients across all cancer
types in TCGA. The HRs and 95% CIs were identified bymultivariate Cox proportional hazards analyses. (C) A volcano plot of the correlation between
expression levels of lncRNAs and OIS scores in TCGA-LIHC patients. The red spots represent the statistically significant positive correlates and
the blue ones represent the statistically significant negative correlates. The correlation coefficients (rho) and p values were determined by Spearman
rank correlation analysis. (D) An expression heatmap of OIS-related lncRNAs in HCC tumors from TCGA. OIS, oncogene-induced senescence; HCC,
hepatocellular carcinoma; TCGA, the cancer genome atlas; OS, overall survival; HR, hazards ratio; CI, confidence interval.
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discovery rate (FDR, q) less than 0.05 was considered statistically

significant. The SASP signature was collected from the previous

study (Coppé et al., 2010) to compare the functional differences

among risk groups.

Estimation of the immune cells infiltration
based on bulk RNA-seq data of
hepatocellular carcinoma tumors

CIBERSORT (Newman et al., 2015) was used to quantify

immune infiltration in tumor samples, which was performed

in R using the IOBR package (Zeng et al., 2021) and set to

absolute quantification output with 200 permutations. As

input, gene-level transcripts per million (TPM) were

employed.

Statistical analysis

All statistical analyses were performed with R (v 4.1.0).

Differential analysis of RNA-seq read counts was performed

by using the DESeq2 package (Love et al., 2014). For survival

analyses, Kaplan-Meier survival curves were generated

using the survival R package and log-rank test was

used to compare the difference in survival curves

between two groups. Using univariate Cox proportional

hazards regression analysis, the HR and 95 percent

confidence interval (CI) were computed. p < 0.05 were

considered statistically significant in all statistical tests.

visualization was done with the ggplot2 (Wickham,

2016) or ggpubr (Kassambara and Kassambara, 2020) R

packages. Principal component analysis (PCA) was

applied in the visualization of high-dimensional data and

the result was plotted with scatterplot3d (Ligges and

Maechler, 2003).

Results

Pan-cancer prognostic evaluation of the
oncogene-induced senescence signature
and identification of the oncogene-
induced senescence-related lncRNAs in
hepatocellular carcinoma

Cellular senescence has been reported in several studies to

affect the prognosis of patients with cancer, but the pan-cancer

features of OIS have not been well elucidated. We collected an

OIS-associated gene expression signature from a previous study

(Hernandez-Segura et al., 2017), including a total of

2,365 protein-coding genes. To evaluate the association of

cellular senescence with the prognosis of cancer patients, we

calculated the OIS score using GSVA across all 33 types of cancer

in TCGA (Figure 1A). We observed distinct OIS scores in

different types of cancer, higher in head and neck squamous

cell carcinoma (HNSC), colon adenocarcinoma (COAD)

and lymphoid neoplasm diffuse large B-cell lymphoma

(DLBC), while lower in kidney renal clear cell carcinoma

(KIRC), thyroid carcinoma (THCA) and brain lower grade

glioma (LGG). Of note, the OIS scores were moderately

correlated with the ages of patients in 7 out of the 33 cancer

types, suggesting certain effects of aging on the OIS signature. To

eliminate the influence of this covariant, all subsequent analyses

were performed after correction for age.

Next, we examined the association of the OIS score with

the prognosis of patients. Using the median OIS score,

patients with each type of cancer were divided into groups

with higher and lower OIS scores, and the survival analyses

were performed by Univariant Cox proportional hazards

regression analyses. It showed that the OIS scores of

patients in 10 different types of cancer were significantly

correlated with OS (Figure 1B). Among them, OIS

scores indicated decreased risks of death (HR < 1) in

stomach adenocarcinoma (STAD) and colon

adenocarcinoma (COAD), while indicated increased risks

of death (HR > 1) in the other eight types of cancer,

including adrenocortical carcinoma (ACC), uveal

melanoma (UVM), mesothelioma (MESO), kidney renal

clear cell carcinoma (KIRC), LIHC, lung adenocarcinoma

(LUAD), cervical squamous cell carcinoma and

endocervical adenocarcinoma (CESC), head and neck

squamous cell carcinoma (HNSC), suggesting the adverse

effects of OIS in cancer progression.

There is considerable evidence that lncRNAs provide an

additional degree of complexity to the regulation of genes,

including several famous OIS-related genes like INK4A

(Montes et al., 2015), KRAS (La Montagna et al., 2021),

NRAS (Chen et al., 2021) and PTEN (Zang et al., 2020).

Given the prognostic risk of OIS in HCC and the pivotal

roles of lncRNAs in cellular senescence (Abdelmohsen and

Gorospe, 2015), we therefore went on to identify the OIS-

related lncRNAs in HCC. Through Spearman rank correlation

analyses, we finally identified a total of 76 lncRNAs with their

expression levels significantly correlated with OIS scores in

HCC tumors (abs [rho] > 0.4 and p < 0.05; Figure 1C),

including 62 positively correlated and 14 negatively

correlated ones (Figure 1D). Furthermore, many of the

OIS-related lncRNAs we identified have been demonstrated

as pivotal contributors to cellular senescence. For example,

SNHG3 (rho = 0.50, p < 0.01) can act as a ceRNA for miR-485

to up-regulate ATG7 expression (Cao et al., 2020);MIR100HG

(rho = -0.47, p < 0.01) has the ability to epigenetically silence

LATS1 and LATS2 (Su et al., 2019); and ZFAS1 (rho = 0.43, p <
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0.01) can influence the regulatory axis of miR-373–3 p/MMP3

(Wang G. et al., 2021). Except for the impact on these

OIS-related genes, some lncRNAs can also participate in

the process of senescence directly, like PVT1 (rho = 0.41,

p < 0.01) can inhibit tendon stem/progenitor cell senescence

by sponging miRNA-199a-5p (Han et al., 2022); and SNHG12

FIGURE 2
Construction of the risk score model.(A,B) OIS-related lncRNA candidates for constructing the prognostic model (obtained 11 non-zero coefficients
from LASSO-Cox regression analysis). (C) TheHRs and 95%CIs of the 11 optimal OIS-related prognostic lncRNAs identified by Cox regression analysis. (D) A
heatmap of expression levels of the 11 lncRNAs in the risk scoremodel. (E) The rank of HCC patients according to the risk score. (F) The correlation between
the HCC patients’ prognosis and the risk score. The p value was computed using χ2 test. (G) A three-dimensional scatter PCA plot of HCC patients
according to the risk score. (H) Kaplan-Meier survival plots of HCC patients from the training cohort (HCC tumors from TCGA) with a high or low risk score
according to the 11-OIS-related-lncRNAprognostic riskmodel. (I)Kaplan-Meier survival plots of HCCpatients from the validation cohort (GSE144269)with a
high or low risk score according to the 11-OIS-related-lncRNAprognostic riskmodel.OIS, oncogene-induced senescence;HR, hazards ratio; CI, confidence
interval; HCC, hepatocellular carcinoma; PCA, principal component analysis; TCGA, the cancer genome atlas.
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(rho = 0.44, p < 0.01) can interact with DNA-dependent

protein kinase and protect vascular endothelium from

senescence (Haemmig et al., 2020). Together, we found the

heterogeneous prognostic value of OIS across different

types of cancer and highlighted the diverse effects of OIS

in HCC.

FIGURE 3
Comprehensive assessment of the prognostic model.(A) The HRs with 95% CIs, and p values of the risk score and clinical factors determined by
multivariate Cox regression analyses. (B) Time-dependent AUCs of the risk score and clinical factors based on the ROC curves for predicting 1-, 3-,
and 5-year survival (including age, gender, M stage, N stage, and T stage). (C) An integrated nomogram for predicting the possibilities of 1-year, 3-year
and 5-year survival for TCGA-LIHC cohort. The prognostic nomogram was constructed using the risk score from the 11-OIS-related-lncRNA
prognostic risk model and clinical factors. (D) Calibration curves of the concordance between the predicted and observed 1-, 3-, and 5-year survival
rates of HCC patients from the TCGA cohort based on the prognostic nomogram. Nomogram-predicted OS is plotted on the x-axis; the actual OS is
plotted on the y-axis. The diagonal dotted line represents a perfect prediction by an ideal model. OIS, oncogene-induced senescence; HR, hazards
ratio; CI, confidence interval; AUC, area under the curve; ROC, receiver operating characteristic; T, tumor; N, node; M, metastasis; HCC,
hepatocellular carcinoma; TCGA, the cancer genome atlas; OS, overall survival.
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Construction of prognostic risk score
model for hepatocellular carcinoma

To further identify prognosis-associated lncRNAs among

these 76 candidates in HCCs, we initially assessed associations

between these candidate lncRNAs and clinical outcomes by

utilizing the univariant Cox proportional hazards regression

analysis in the training cohort (TCGA-LIHC), after which

62 ones survived. Next, we employed a LASSO-Cox regression

model to construct a prognostic classifier, from which we chose

11 optimum lncRNAs (Figures 2A,B), including nine risk

lncRNAs (NRAV, AL365203.2, AC009005.1, SNHG3,

FIGURE 4
Stratified analyses of association between the risk score and HCC overall survival.(A) The correlation between the risk score and the patient’s
age. (B) The risk score’s predictive value in HCC patients stratified by age (≥60 vs. < 60 years). (C) The correlation between the risk score and the
patient’s gender. (D) The risk score’s predictive value in HCC patients stratified by gender (male vs. female). (E) The correlation between the risk score
and the patient’s clinical stage. (F) The risk score’s predictive value in HCC patients stratified by clinical stage (T1-T2 vs. T3-T4). In (A–E), the p
values were determined by Wilcox test. In (B–F), the patients were stratified by the median of the risk scores for each stratified group to perform
Kaplan-Meier OS analysis; the p values were determined by log-rank test and theHRswith 95%CIs were obtained frommultivariate Cox proportional
hazards regression analyses. HCC, hepatocellular carcinoma; HR, hazards ratio; CI, confidence interval; OS, overall survival.
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LINC01138, AC090192.2, AC008622.2, AL139423.1, and

AC026356.1) with HR > 1 and two protective lncRNAs

(MIR100HG and AC015908.3) with HR < 1 (Figure 2C).

The risk score for each HCC case was computed using the

expression levels of these 11 lncRNAs and their LASSO

regression coefficients: Risk score = 0.1483 × NRAV +

FIGURE 5
Biological implications of the OIS-related risk score (A) GSEA results of the significantly enriched signaling pathways in the HCC patients with
high-risk. GSEA was carried out using expression data of TCGA-LIHC tumors. The ESs, NESs and FDRs were determined by GSEA. (B) Network
diagrams of the enriched signaling pathways with p < 0.05. Enrichplot analysis was used to create the network diagrams. The number of genes
included in the pathway is represented by the size of the circle, and the number of genes shared by the connected pathways is shown by the
thickness of the line. (C) A heatmap of the expression levels of SASP-related genes in HCC tumors from TCGA. (D) GSVA scores of SASP in the high-
and low-risk groups. The p valuewas assessed byWilcox test. GSEA, gene set enrichment analysis; HCC, hepatocellular carcinoma; TCGA, the cancer
genome atlas; ES, enrichment score; NES, normalized enrichment score; FDR, false discovery rate; SASP, senescence-associated secretory
phenotype; GSVA, gene set variation analysis.
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0.1160 × AL139423.1 + 0.0950×AC008622.2 + 0.0513 ×

AL365203.2 + 0.0485 × LINC01138 + 0.0453 × AC009005.1

+ 0.0326 × AC090192.2 + 0.0069 × SNHG3 + 0.0051 ×

AC026356.1 − 0.0094 × MIR100HG − 0.0355 × AC015908.3

According to the median risk score, we grouped the TCGA-

LIHC cohort patients into two groups: high-risk and low-risk.

The expression levels of these 11 lncRNAs were consistent

with the risk group we defined (Figure 2D). The risk score can

be attached to the status of survival because patients in the

high-risk group tend to have worse prognosis (Figures 2E,F).

Meanwhile, the principal component analysis (PCA)

indicated that these lncRNAs were capable of

distinguishing the high-risk group from the low-risk group

(Figure 2G). Survival analyses in the TCGA-LIHC cohort

revealed that the individuals with higher risk scores

displayed a shorter OS than those with lower risk scores

(p < 0.0001, HR [95% CI] = 3.51 [2.38–5.18]; Figure 2H).

We tested our model in an independent HCC cohort

(GSE144269) (Candia et al., 2020), which contains 70 HCC

tumor tissues with survival information, to confirm its

predictive value. As expected, the risk score was

significantly associated with the OS of HCC patients (p =

0.0032, HR [95% CI] = 3.71 [1.46–9.45]; Figure 2I). Taken

together, we constructed an 11-OIS-related-lncRNA

prognostic model for patients with HCC.

Comprehensive assessment of the
prognostic model

Next, we comprehensively assessed the prognostic model.

First, we performed multivariate Cox proportional hazards

regression analysis and found that the risk score, rather than

most of the clinicopathological factors, exhibited independent

prognostic value for patients with HCC (p < 0.001, HR [95%

CI] = 4.9 [2.74–8.70]; Figure 3A). Subsequently, we tested the

ability of the risk model to predict short-term and long-term

viability of HCC patients and found that the 1-, 3-, and 5-year

survival yielded AUC values of 0.806, 0.722, and 0.761,

respectively (Figure 3B). Of note, the ability of the risk score

to predict short-term or long-term survival outperformed the

clinicopathological factors including age, gender and TNM stage

(all AUCs ≤0.7).
Then, to develop a clinically quantitative method for

predicting the probabilities of 1-, 3-, and 5-year OS in

HCC patients, we performed multivariate Cox proportional

hazards regression analyses and generated an integrated

nomogram. The predictors were composed of the risk score

and the clinicopathological factors (including age, gender, and

TNM stage; Figure 3C). Next, the calibration curves showed

that the predicted 1-, 3-, and 5-year survival probabilities

matched the actual survival probabilities, respectively

(Figure 3D).

Finally, stratified survival analyses were performed to

further evaluate the relationship between the risk score and

clinical characteristic factors in HCC. Between the young and

senior patients, the risk scores were statistically comparable

(p = 0.35; Figure 4A), excluding the effect of aging on OIS in

HCC. The Kaplan-Meier survival analyses revealed that the OS

rate was considerably lower for the high-risk patients

compared to the low-risk patients both in the old group

(p < 0.0001, HR [95% CI] = 3.22 [1.92–5.4]; Figure 4A) and

the young group (p < 0.0001, HR [95% CI] = 4.18 [2.26–7.76];

Figure 4A). We also observed no difference in risk scores

between male and female patients (p = 0.064; Figure 4B). The

risk model’s prognostic usefulness was seen in male patients

(p < 0.0001, HR [95% CI] = 6.56 [3.7–11.61]; Figure 4B). For

female patients, there was no evidence of a significant

predictive value (p = 0.13, HR [95% CI] = 1.55 [0.88–2.74];

Figure 4B). Furthermore, HCC patients in higher clinical

stages (T2, T3, and T4 stage) had higher risk scores than

those in lower clinical stage (T1 stage; Figure 4C). The OS rate

was significantly lower for the high-risk patients compared to

the low-risk individuals in both early (T1-T2 stage; p < 0.0001,

HR [95% CI] = 3.17 [1.88–5.34]; Figure 4C) and advanced

stage patients (T3-T4 stage; p < 0.00055, HR [95% CI] =

2.63 [1.49–4.65]; Figure 4C).

Overall, the above results showed that our model had

accurate and reliable performance in HCC OS prediction and

the risk score is a significant independent prognostic factor,

especially for male patients or those with early stage.

Different biological implication of the
oncogene-induced senescence-related
risk score

To investigate the difference between patients with high risk

scores and those with low risk scores in the context of biological

mechanisms, we employed gene set enrichment analysis (GSEA)

in HCCs from TCGA. Based on the risk groups, we found

enrichment of sister chromatid segregation, metaphase

anaphase transition of the cell cycle and regulation of nuclear

division in the high-risk group, indicating abnormal signal of cell

proliferation (Figure 5A). We also noticed that pathways such as

fatty acid catabolic process, monooxtgenase activity and

microbody were enriched in the low-risk group, indicating the

preservation of normal liver function (Supplementary Figure

S1A). We then performed differential gene expression analysis

by DESeq2, and identified 2,683 differentially expressed genes

(DEG, p < 0.05, abs [logFoldChange] > 1), including 2,090 up-

regulated and 593 down-regulated ones (Supplementary Figure

S1B). DEGs were subsequently classified into functional classes

using GO and KEGG pathway enrichment analysis

(Supplementary Figure S1C). GO analysis consisted of

biological process (BP) analysis mainly including positive
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regulation of the development process and signal release

signaling pathway. Meanwhile, many of the identified DEGs

were found to be associated with neuroactive ligand-receptor

interactions and cytokine-cytokine receptor interaction,

according to KEGG pathway analysis. Additionally, the results

of the network diagrams constructed by enrichplot analysis were

consistent with these findings and highlighted the involvement of

developmental processes in OIS, such as embryonic organ

FIGURE 6
Potential regulatory effects of OIS on the immunemicroenvironment in HCC.(A) 22 types of immune cells’ proportion predicted by CIBERSORT
in HCC tumors from TCGA ranked according to the risk score. (B) A heatmap of correlations between immune cells proportion and the risk score.
The p values were determined by Spearman rank correlation analyses and immune cells with p < 0.05 were kept. (C) The proportions of Tregs in the
high- and low-risk groups. (D) The proportions of naïve B cells in the high- and low-risk groups. (E) A scatter plot of the correlation between the
OIS score and the proportion of Tregs. (F) A scatter plot of the correlation between the OIS score and the proportion of naïve B cells. In (C,D), the p
values were assessed by Wilcox test. In (E,F), the correlation coefficients (rho) and p values were determined by Spearman rank correlation analyses
and the color represents the density of the scatters. HCC, hepatocellular carcinoma; TCGA, the cancer genome atlas; OIS, oncogene-induced
senescence.
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FIGURE 7
Over-expression ofNRAV drivenmainly by DNA hypomethylation is associated with poor prognosis of HCC patients.(A)NRAV expression levels
in the high- and low-risk groups.Wilcox test was used to get the p value. (B) Kaplan-Meier survival plots of HCCpatients (TCGA-LIHC) grouped by the
expression ofNRAV (stratified by themedian expression). (C) Kaplan-Meier survival plots of HCC patients (GSE144269) grouped by the expression of
NRAV (stratified by the upper quartile expression). (D) A scatter plot of the correlation betweenNRAV expression and the OIS score. (E) A scatter
plot of the correlation betweenNRAV expression and the SASP score. (F) A scatter plot of the correlation between the relative CNV value ofNRAV and
its expression. (G) A scatter plot of the correlation between the DNA methylation level of NRAV and its expression. (H–J) Scatter plots of the
correlations between expression of NRAV and senescence-associated markers, including p16, p21 and p53. (K) Expression levels of NRAV in tumors
and adjacent non-tumor tissues across different cancer types. The data was collected from GEPIA. (L) Survival analyses of NRAV expression in TCGA
pan-cancer cohorts. The HRs and p values were calculated using univariate Cox proportional hazards regression analysis. In (B,C), The p value was
determined by log-rank test, and the HR with 95% CIs were obtained from multivariate Cox proportional hazards regression analysis. In (D–J), the
correlation coefficients (rho) and p values were calculated using Spearman rank correlation analysis and the color represents the density of the
scatters. HCC, hepatocellular carcinoma; HR, hazards ratio; CI, confidence interval; CNV, copy number variation; TCGA, the cancer genome atlas.
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development, cell differentiation and extracellular matrix

organization (Figure 5B).

Cellular senescence is often accompanied by SASP which

functions as a strong amplifier of senescence (Glück et al.,

2017) and SASP components can actively participate in tumor

development (Coppé et al., 2010). To provide further

understanding of the functions altered in different risk

groups, the relationship between the risk score and the

SASP pattern in HCC was investigated. We observed that

plenty of the SASP components previously defined (Coppé

et al., 2010) were upregulated in the high-risk group

(Figure 5C). Among them, IL-1β, IL-6, and CXCL1 have

been reported to be factors of immune suppressive SASP

that attract myeloid-derived suppressor cells (MDSCs) to

inhibit cytotoxic NK and T cell responses in prostate

adenocarcinoma (Garcia et al., 2014; Toso et al., 2014).

Besides, as part of the SASP, matrix metalloproteinases

(MMPs) such as MMP10, MMP12, and MMP3 can lead to

cleavage of NKG2D ligands on the surface of senescent tumor

cells that allows them to evade NK cell surveillance (Eggert

et al., 2016). Furthermore, a significantly higher GSVA score

of the SASP signature was obtained in the high-risk group (p <
0.0001) (Figure 5D), which implied tumor-promoting effects

of SASP in individuals with high-risk scores.

Together, we demonstrated that the profile of the high-risk

group was associated with abnormal developmental processes,

which further reflects an oncogenic pattern of SASP in HCC.

Potential regulatory effects of oncogene-
induced senescence on immune
microenvironment in hepatocellular
carcinoma

As senescent cells with SASP can have great influences on

immune microenvironment of tumor and render it to a

conducive status to tumor growth and progression (Park

et al., 2021), the relationship between SASP and risk score led

us to further investigate the impact of OIS on immune

microenvironment in HCC.

To gain insight into the difference in tumor

microenvironment and composition of immune cell infiltrates

between different risk groups in HCC, we estimated the relative

proportions of 22 immune cell types in HCC tumors from the

TCGA-LIHC cohort using CIBERSORT (Newman et al., 2015)

(Figure 6A). According to the correlation between the immune

cell proportion and the risk score, we found that

M0 macrophages, regulatory T cells (Tregs) and follicular

helper T cells (Tfhs) were more likely to be enriched in the

high-risk group. However, the resting mast cells, monocytes and

naïve B cells were more abundant in the low-risk group

(Figure 6B).

We next investigated the difference in the proportion of these

cells between risk groups (Supplementary Figure S2A) and the

correlation between their proportion and the OIS score.

Firstly, we found that the proportion of M0 macrophages is

positively correlated with the OIS score (Supplementary Figure

S2B). M0 macrophages were identified as non-activated

macrophages that can be polarized into two functionally

contrasting subtypes: tumor-detrimental M1 and tumor-

beneficial M2 phenotypes (Pan et al., 2020). Secondly, the

proportion of Tfhs was also found to be positively correlated

with the OIS score (Supplementary Figure S2C). Tfhs can impact

multiple aspects of the immune system during cancer and usually

leads to an effective anti-tumor response (Gu-Trantien et al.,

2017). Although many studies have associated Tfhs with survival,

there are some instances where Tfhs are reported to be

detrimental because of their production of IL-4 (Mayberry

et al., 2022). Moreover, we noticed that the proportions of

Tregs are higher in the high-risk group (Figure 6C) and have

a significant correlation with the OIS score (Figure 6E). Tregs act

as a significant subset of CD4+ T cells with suppressive effects on

a number of immune cells, including natural killer cells, dendritic

cells, CD8+ T cells and CD4+ T cells. Meanwhile, Tregs play an

indispensable role in maintaining normal immune homeostasis

and peripheral tolerance (Wing et al., 2019). As their suppressive

activity in the tumor microenvironment is associated with the

loss of anti-tumor immunity (Li et al., 2020), an in-depth

understanding of Tregs is essential to the immunotherapy of

cancer.

Additionally, we observed a negative correlation between the

proportion of monocytes and the OIS score (Supplementary

Figure S2D). Monocytes bridge innate and adaptive immune

responses and can affect the tumor microenvironment through

various mechanisms that induce immune tolerance,

angiogenesis, and increased dissemination of tumor cells. Yet

monocytes can also give rise to antitumor effectors and activate

antigen-presenting cells (Ugel et al., 2021). Meanwhile, the

proportion of resting mast cells was also found to be

negatively correlated with the OIS score (Supplementary

Figure S2C). Resting mast cells can contribute to tissue

homeostasis by constantly sampling the microenvironment

due to their distinct developmental, phenotypic, and

functional plasticity (Frossi et al., 2017). However, to date, the

role of mast cells in tumors has been largely ignored, particularly

due to the contradictory evidence of a causal relationship

between mast cell infiltrates and tumor progression (Maciel

et al., 2015). Besides, patients with low-risk score had a

significantly higher percentage of naïve B cells (Figure 6D)

and there was a negative correlation between its proportion

and the OIS score (Figure 6F). Recent data has strongly

indicated a critical role for naïve B cells in anti-tumor

immunity as their activation can lead to antigen-specific

immune memory, which can then differentiate into memory B
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and plasma cells within the germinal centers (Downs-Canner

et al., 2022).

Therefore, it can be reasonably assumed that the OIS of HCC

may exert a pivotal role in the regulation of the immune

microenvironment, especially promoting effects on Treg cell

infiltration and inhibitory effects on naïve B cell infiltration.

Over-expression of hypomethylated
oncogene-induced senescence-related
lncRNA NRAV is associated with poor
prognosis of hepatocellular carcinoma
patients

Among the 11 OIS-related signature lncRNAs in the

prognostic model, NRAV exhibited the most significant

association with prognosis (LASSO coefficients λ � 0.1483)

and can be regarded as an independent risk indicator in HCC

according to multivariate Cox proportional hazards regression

analysis (p < 0.001, HR [95% CI] = 2.28 [1.56–3.31]; Figure 2C).

We also observed that NRAV had a significantly higher

expression level in HCC tissues when compared to the paired

non-tumor tissues (Figure 7A) and its higher expression was

correlated with a poor OS rate in both TCGA-LIHC and

independent HCC cohort (GSE144269) (Figures 7B,C).

Besides, the expression of NRAV is highly associated with the

OIS score (rho = 0.4, p < 0.0001; Figure 7D) and correlated with

the SASP score (rho = 0.11, p = 0.043; Figure 7E). A previous

study has shown that NRAV can enhance proliferation and

invasion of HCC cells by promoting the Wnt/β-catenin
signaling pathway (Wang Q. et al., 2022). Another study

showed that NRAV is part of an immune-related lncRNA

signature acting as a prognostic biomarker for human

endometrial cancer (Wang Z. et al., 2021). However, there has

been a lack of study on the relationship between NRAV and OIS

up to now. Thus, we were prompted to assess the role ofNRAV in

HCC OIS.

To this end, we explored the underlying mechanisms that

cause the over-expression of NRAV in HCC tumors. Through

genomic analysis of NRAV in HCC tissues based on the dataset

from the TCGA cohort, we observed no significant relationship

between NRAV expression and its genomic copy number (rho =

0.096, p = 0.066; Figure 7F). Thus, the methylation status of the

NRAV promoter region was then examined, and we found that

the methylation levels were negatively correlated with NRAV

expression levels (rho = -0.35, p < 0.0001), suggesting that

hypomethylation may contribute to the over-expression of

NRAV (Figure 7G). Of note, a positive correlation was

observed between the expression levels of NRAV and the

cellular senescence-associated markers (Campisi and d’Adda

di Fagagna, 2007), including p16, p21, and p53 (Figures 7H–J).

We further assessed the dysregulation and prognostic

significance of NRAV in pan-cancer. The result showed that

there were 7 types of cancer with NRAV over-expression in

tumor tissues compared to non-tumor tissues, including breast

invasive carcinoma (BRCA), uterine corpus endometrial

carcinoma (UCEC), cholangiocarcinoma (CHOL), DBLC,

pancreatic adenocarcinoma (PAAD), STAD and thymoma

(THYM) (Figure 7K). Additionally, NRAV also presents a

risk-indicative value for LGG, LUAD, PAAD and skin

cutaneous melanoma (SKCM) (HR > 1, P < 0.05; Figure 7L)

according to pan-cancer survival analyses, suggesting a trans-

cancer prognostic value of NRAV. Taken together, these results

indicated that over-expressed NRAV driven by hypomethylation

is a risk factor for HCC prognosis, which may act as a modulator

of cellular senescence.

Discussion

A key problem for improving the clinical outcomes of HCC

patients is the lack of useful and accurate predictive biomarkers

or models. The purpose of this study was to investigate and

assess the predictive significance of OIS-related lncRNAs for

HCCs. First, we developed and validated a novel 11-lncRNA

prognostic risk score model, which served as an independent

prognostic factor for HCC patients. Secondly, our findings

implied a potential mechanism in the regulation of SASP,

which is in charge of the communication between cells

undergoing OIS and the tumor immune microenvironment.

Thirdly, we identified NRAV as a representative

hypomethylated OIS-related lncRNA, which is associated

with a poor outcome for HCC patients.

Our study is, to our knowledge, the first report to

systematically assess the OIS signature in pan-cancer multi-

omics data. We identified 10 TCGA tumor types (including

STAD, COAD, ACC, UVM, MESO, KIRC, LIHC, LUAD,

CESC, and HNSC) that exhibit an OIS-associated outcome.

Of note, all of them are limited to solid tumors, for which the

OIS signature can be more informative, implying that there may

be a divergence of OIS-induced consequences between solid

tumors and hematologic malignancies. In addition, we also

noticed that the OIS score predicts a decreased risk of death

in STAD and COAD, which often exhibit microsatellite

instability (MSI) due to deficient DNA mismatch repair

mechanisms (dMMR) (Li et al., 2021; Puliga et al., 2021).

Current evidence indicates that genomic instability is one of

the hallmarks of cellular senescence (López-Otín et al., 2013).

Meanwhile, previous studies have also shown that the percentage

of MSI in both STAD and COAD increased gradually with

increasing age (Polom et al., 2017) and was associated with

better prognosis in later onset cohorts (Farrington et al.,

2002). Nevertheless, the mechanistic basis for the linkage

between MSI genetic status and senescence remains unknown.

Our results provide additional justification for more research in

this area of senescence.
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Human transcriptome sequencing has found tens of

thousands of lncRNAs. Increasing research has discovered an

increasing number of cancer-related lnRNAs. Some of them play

essential roles in tumorigenesis and progression of HCC

(Klingenberg et al., 2017), such as MCM3AP-AS1 (Wang

et al., 2019) and PSTAR (Qin et al., 2020), which can predict

the prognosis of HCC patients. However, it is unfortunate that

few senescence-related lncRNAs have been identified. Our study,

thus, fills an essential gap in our knowledge of the developmental

role of this component of HCC, and the OIS-related lncRNA-

based prognostic model outperforms the traditional clinical

factors. Besides, our prognostic model is more accurate in

predicting HCC patients’ 1-, 3-, and 5-year survival rates

(AUC = 0.806, 0.722, and 0.761, respectively) and higher than

the previously published models that used 4 glycolysis-related

lncRNAs (AUC = 0.747, 0.660, and 0.656, respectively) (Bai et al.,

2021), and 5 exosome-related lncRNAs (AUC = 0.63, 0.58, and

0.65, respectively) (Hou et al., 2018). Collectively, our model

exhibited excellent short- and long-term prognostic values in

HCC patients.

As one of the most distinctive features of senescence, SASP

has attracted considerable attention in senescence research

because of its arguable contribution to the immune

microenvironment (Coppé et al., 2008). On the one hand,

senescent cancer cells with SASP can arrest neighboring

cancer cells, improve the vasculature for drug delivery and

recruit immune cells that can contribute further to tumor

suppression (Faget et al., 2019). On the other hand, SASP can

promote angiogenesis to advance tumor growth and an epithelial

to mesenchymal transition in neighboring cancer cells, which can

promote metastasis (Ruhland et al., 2016). This shift in function

during senescence, which has not yet been fully clarified, is likely

to have significant biological, diagnostic, and therapeutic

implications. Thus, it will be crucial to better understand how

senescent cancer cells-associated SASP impacts the immune

microenvironment. In this study, we characterized the

functional linkage between the OIS signature and SASP in

HCC. Recent advances in senescence have shed light on the

broad role of senescence in regulating tumor-immune

microenvironments (Chibaya et al., 2022). Integrated analyses

have connected prognosis, immunogenic characteristics and

cellular senescence in lung adenocarcinoma (Lin et al., 2021).

Immune-suppressive immune cells, such as Tregs and MDSCs,

are recruited by the tumor cells by secreting anti-inflammatory

cytokines and other chemokines, which inhibit NK and CD8+

T cell cytotoxicity and sedate anti-tumor immunity (Shalapour

and Karin, 2015). Our results revealed the potential impact of

OIS on immune microenvironment, especially promoting effects

on Treg cell infiltration. Although the results are speculative at

this stage, they may provide insight into lncRNAs’ roles in the

regulation of SASP and subsequent immune minienvironment.

The majority of the OIS-associated lncRNAs identified in our

risk model are novel lncRNAs without comprehensive

annotation and functional relevance, while some ones have

been explored to some extent. For instance, emerging

evidence shows that SNHG3 is a novel oncogenic lncRNA that

is abnormally expressed in various types of tumor, including

osteosarcoma, liver cancer and lung cancer (Xu et al., 2020). High

MIR100HG expression was also positively associated with clinical

stage, tumor invasion, lymph node metastasis, and distant

metastasis in gastric cancer (Li et al., 2019). More

importantly, MIR100HG is functionally significant in

establishing senescent phenotype of adult adipose-derived

stem cells (Lopez et al., 2017) and its introns including miR-

100,miR-125b, and let-7awere all reported to regulate the pace of

development or senescence-related degenerative phenotype

(Keane and de Magalhães, 2013; Nyholm et al., 2014; Li et al.,

2015). NRAV has been identified as an immune-related lncRNA

in several studies across cancer types, including HCC (Zhou et al.,

2021), endometrial cancer (Wang Z. et al., 2021) and lower-grade

glioma (Maimaiti et al., 2021). It is also a key regulator of antiviral

innate immunity because of its crucial role in the initial

transcription of multiple critical interferon-stimulated genes

(Ouyang et al., 2014). In terms of mechanism, NRAV could

influence the modulation of the miR-199a-3p/CISD2 axis and

trigger the Wnt/β-catenin signaling (Wang Q. et al., 2022) which

is related to senescence associated stemness (Milanovic et al.,

2018). Senescence associated stemness may result in a highly

aggressive tumor, driven byWnt pathway activation independent

of the Wnt ligand via the SASP and is found to be enriched in

relapsed tumors (Wang L. et al., 2022). These findings provide us

with clues for future research, whereas the detailed mechanism of

how they operate in senescence requires more investigation.

The study also has certain limitations that must be

acknowledged. First, our prediction model was developed

using TCGA data from the United States while validated

using GEO data from Mongolia. Thus, there may be racial

differences and HCC etiology differences in this study, and

prospective studies in different populations are required for

further consideration. Secondly, the lack of specific and

reproducible markers of cellular senescence in vivo is always

the limitation to developing a consensus framework on the role of

senescence in cancer biology and tumor immunology (Chibaya

et al., 2022). It is unknown whether the OIS-related lncRNAs in

our model are capable of distinguishing senescent cells from

other cell states related to cell cycle withdrawal, including

quiescence, post-mitotic terminal differentiation, and

dormancy. Thirdly, the function of many lncRNAs in our

model has not been clearly elucidated. It will also be difficult

to connect them with the comprehensive networks of senescence

transcriptional regulation.

In conclusion, our study demonstrated that the risk score

model based on OIS-related lncRNAs expression levels can

effectively categorize HCC patients into favorable and

unfavorable groups, thereby extending prognostic significance

to the traditional clinicopathological risk factors. Furthermore,
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our risk score model might offer a more convenient and reliable

strategy for predicting the prognosis of HCC patients. It can

therefore provide critical information for patient prognosis and

assist in the selection of suitable disease management strategies.

A similar strategy might be utilized to establish other cancer-

specific prognostic prediction models.
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