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Lung adenocarcinoma (LUAD) is a typical disease regarded as having multi-

stage progression. However, many existing methods often ignore the critical

differences among these stages, thereby limiting their effectiveness for

discovering key biological molecules and biological functions as signals at

each stage. In this study, we propose a method to discover the evolution

between biological molecules and biological functions by investigating the

multi-stage biological molecules of LUAD. The method is based on the random

walk algorithm and the Monte Carlo method to generate clusters as the

modules, which were used as subgraphs of the differentiated biological

molecules network in each stage. The connection between modules of

adjacent stages is based on the measurement of the Jaccard coefficient.

The online gene set enrichment analysis tool (DAVID) was used to obtain

biological functions corresponding to the individual important modules. The

core evolution network was constructed by combining the aforementioned

two networks. Since the networks here are all dynamic, we also propose a

strategy to visualize the dynamic information together in one network.

Eventually, 12 core modules and 11 core biological functions were found

through such evolutionary analyses. Among the core biological functions

that we obtained, six functions are related to the disease, the biological

function of neutrophil chemotaxis is not directly associated with LUAD but

can serve as a predictor, two functions may serve as a predictive signal, and two

functions need to be verified throughmore biological evidence. Comparedwith

two alternative design methods, the method proposed in this study performed

more efficiently.
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1 Introduction

Lung cancer is a type of malignant tumor with the highest

morbidity and mortality in the world at present (Siegel et al.,

2016; Siegel et al., 2020; WHO, 2020; Rahib et al., 2021), while

lung adenocarcinoma (LUAD) has become the most important

pathological type of lung cancer, accounting for the vast

majority of all lung cancer patients. LUAD is a typical

disease whose progression is a dynamic process that typically

occurs from a normal state through the gradual accumulation of

small changes in biological molecules that eventually result in a

disease state. Therefore, it is of particular interest to analyze the

multi-stage biological molecules of LUAD in order to help cure

the disease.

Recent developments in experimental procedures have

resulted in several mature methods to analyze biological

molecules. One approach involves directly using gene set

enrichment analysis (GSEA) to identify crucial biological

molecules in LUAD (Murohashi et al., 2010; Subramanian

et al., 2005; He et al., 2019) and age-related macular

degeneration (AMD) (Zhang et al., 2014). Another

approach involves clustering biological molecules into

networks, using existing clustering algorithms, such as

random walk (Liu et al., 2016; Zhang et al., 2019), Markov

clustering (MCL) (Yang et al., 2019), clustering with

overlapping neighborhood expansion (ClusterONE)

(Nepusz et al., 2012), SigMod (Liu et al., 2017), and

unsupervised hierarchical clustering (Sato et al., 2014), in

order to clarify the significant biological molecules and

related biological functions. However, the limitation of

directly using GSEA analysis lies in the inability to classify

biological molecules for correlation with and the subsequent

refinement of a portion of biological molecules corresponding

to certain specific biological functions. Although module

generation via clustering algorithms is a good idea, there

are problems with the details in relation to the network

being considered. Hence, the existing methods are not ideal

for discovering key biological molecules and biological

functions as signals for this multi-stage disease.

FIGURE 1
Schematic diagram of the three methods. Design1 presents
the approach that directly gathers all the biological molecules in
each stage in GSEA to obtain the results. Design2 presents the
approach that gathers the biological molecules obtained
through our clustering algorithm without dividing them into
different modules in GSEA to obtain results. Our method uses a
clustering algorithm to generate modules and put biological
molecules in specific modules to obtain the results.

FIGURE 2
General framework of our method. It comprises three steps. Step (1) is building the stage-specific differentiated biological molecule network
build, and the method used is data processing, which transforms the four datasets (A) into the stage-specific differentiated biological molecule
network (B). Step (2) is identifying the modules, which uses the walking algorithm to generate modules (C) from the network (B). Step (3) is building
the core networks, which initially connects modules to generate the global module network (D) and, through GSEA, to generate the functional
interaction network (E) from the modules (C). We then use the two networks (D,E) to generate the core evolution network (F) by combining and
selecting.
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To overcome this limitation, the present work aims to

identify the crucial biological molecules of LUAD and the

biological functions that accompany LUAD through its four

stages, ultimately aiming to improve the diagnosis, treatment,

and prognosis of LUAD. The aim is to discover the evolution

between biological molecules and biological functions by

investigating the multi-stage biological molecules of LUAD.

Many current methods for clustering biological molecules in

order to identify key biological molecules use the random walk

algorithm. However, differing from the traditional random walk

algorithm, we combine the Monte Carlo method with a random

walk approach, which does not record the start vertex and the

end vertex of the walking path but instead assigns a weight to

every step in the walking. Moreover, studies on networks that use

the traditional randomwalk algorithm can provide only a generic

solution, lacking in specificity. Thus, we consider the degree of

the vertices to help define the weight by introducing the penalty

coefficient.

Specifically, the steps followed in the present work are as

follows. The stage-specific differentiated biological molecule

network was first built, which contains genes, miRNA, and

lncRNA, respectively. An innovative clustering method based

on the random walk (Liu et al., 2016) algorithm and the Monte

Carlo method (Kroese et al., 2014) was proposed to cluster the

biological molecules, and only appropriate clusters were

selected as modules, which were believed to have strong

relationships with specific biological functions.

Subsequently, the modules were connected to generate the

global module network for individual stages, and the Jaccard

coefficient was employed to find relationships between

modules from adjacent stages. GSEA was used to gather the

biological functions into modules, and the obtained cellular

functions were used to build a functional interaction network

by taking individual functions as vertices and their Jaccard

coefficient as edges. The combination of the aforementioned

two networks into a comprehensive network can be used to

explore the evolutionary relationships of biological functions

according to the obtained modules. The key evolution

information in the comprehensive network was selected to

build the core evolution network. The key ideas of this

proposed method are shown in Figure 1.

2 Methods

2.1 General framework

The dataset in the experiments comprises the gene,

miRNA, and lncRNA information for patients with LUAD

(encompassing the four stages). The datasets were

downloaded from The Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov/), including tumor

and normal groups, and we obtained the data for mRNA,

miRNA, and lncRNA. The genome annotation for Homo

sapiens was downloaded from the Gencode database

(https://www.gencodegenes.org/). Duplicate genes were

removed and standardized using the trimmed mean

of M-values (TMM) normalization (Robinson et al., 2010).

Moreover, taking miRNA as the object, the correlation

data verified by experiments were kept for further analysis.

The final form of the datasets presents the data regarding

edge sets of the four stages of the disease, where four kinds

of edges were considered, namely genes and genes,

miRNAs and lncRNAs, genes and miRNAs, and genes and

lncRNAs.

FIGURE 3
Flowchart for building the sage-specific differentiated
biological molecule network.

FIGURE 4
Flowchart for our algorithm.
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The analysis process comprised three steps: 1) building the

stage-specific differentiated biological molecule network, 2)

module identification, and 3) building the core networks. In

the first step (building the stage-specific differentiated

biological molecule network), the dataset was transformed

into the differentiated biological molecule network in each

stage, including not only the differentiated genes but also the

miRNA and lncRNA. In the module-identification step,

FIGURE 5
Flowchart for the module identification.

FIGURE 6
Flowchart for building the core networks.
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modules of the differentiated biological molecule network

were obtained by clustering the vertices and edges in the

network through the innovative walking algorithm. The

source code for the algorithm in this step is available on

Github (https://github.com/Thunder-ZJL/

InnovativeRandomWalk-MonteCarlo). The last step

(building the core networks) concerned how to build the global

module network by connecting modules in each stage, further

using similarity to connect modules in adjacent stages, and how to

build the functional interaction network using the Gene Ontology

(GO) database and the Kyoto Encyclopedia of Genes andGenomes

(KEGG) in GSEA to obtain the biological functions corresponding

to the modules. This step also concerned how to build the core

evolution network through the combination of the two

aforementioned networks, as well as how to find the core

biological molecule modules and the core biological functions.

The general framework of the proposed method is shown in

Figure 2.

2.2 Buidling the stage-specific
differentiated biological molecule
network

The datasets were used to construct the differentiated

biological molecule network for each stage, where the vertices

represent the differently expressed genes, miRNAs, and

lncRNAs, while the edges represent their functional

interactions between these biological molecules. The

integration of miRNAs and lncRNAs increases the degree of

the meaningfulness of the identified molecule modules from

individual networks. The specific work in this step is shown

in Figure 3.

2.3 Module identification

Clustering refers to grouping vertices and edges with the same or

similar functions in the network into corresponding clusters. In this

step, we used a clustering algorithm to cluster the vertices in the

stage-specific differentiated biological molecule network and to pick

the key clusters as molecule modules. Molecule modules are dense

subgraphs of the individual stage-specific biological molecule

network. They are a response to specific biological functions that

play important roles in the progression of the disease.

Random walk is a network clustering algorithm based on a

very simple idea (Firat et al., 2007). Traditionally, mature

methods based on a random walk algorithm are used to

identify the key biological molecules and obtain biological

functions through clustering; however, using a traditional

random walk algorithm results in false positive or false

negative results. Thus, considering that different networks

have different vertex-edge characteristics, we considered the

degree of the vertices to balance the weights so that the

results do not tend to the vertices with a high degree.

In this step, a clustering algorithm based on the random

walk algorithm together with the Monte Carlo method is

proposed, and the penalty strategy was employed to further

assess the quality of the obtained walks. Unlike the traditional

random walk algorithm, where randomness is merely reflected

FIGURE 7
Module network and the simplifiedmodule network in S1 to S4. The figure in each stage has two subfigures: the left one is the module network,
with different colors representing biological molecules in different modules, blue edges connecting molecules within different modules, and gray
edges connecting different modules; the right one is the simplified module path graph, where the letter M on vertices represents module and the
number afterM is the serial number of themodule, the number on edges represents the number of edges connecting the twomodules, and the
width of the edge represents the magnitude of the number.
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FIGURE 8
Summary figure of the simplifiedmodule networks in the four stages. The figure contains four simplifiedmodule networks, each representing a
corresponding stage, with arrows marking the progression of the disease according to the order S1 → S2 → S3 → S4.

TABLE 1 Biological molecules corresponding to the core biological functions.

Core biological function Biological molecules

B-cell differentiation CR2, CD79A, CD79B, CD22, MS4A1

B-cell activation CR2, CD79A, CD79B, CD22, MS4A1, PRKCB

B-cell receptor signaling pathway CR2, CD79A, CD79B, CD22, PRKCB

Neutrophil chemotaxis SAA1, END2, END3, CCL13, CCL8, CCL26

CCL23, CXCL11, CXCL8, CXCL5, CXCL2, CXCL1

PPBP, CXCL3, CXCL6, PF4, CCL19, TREM1, CCL14

Chemokine activity CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, CCL19

PF4, CXCL3, PPBP, CCL13, CCL26, CXCL11

CXCL12, CCL14, CCL28, CCL8, CCL23

Chemokine-mediated signaling pathway CXCL5, CXCL2, CXCL8, CXCL1, CXCL11, CCL26

PF4, CCL14, CCR2, CXCL6, CXCL12, CCL13

PPBP, CCL23, TFF2, CCL8, CCL19, CXCL3

CXCR chemokine receptor binding CXCL1, CXCL2, CXCL5, CXCL8

Peptidoglycan binding REG3G, REG3A, ZG16

Negative regulation of keratinocyte differentiation REG3G, REG3A, MSX2

Oligosaccharide binding REG3G, REG3A, ITLN1

Positive regulation of keratinocyte REG3G, REG3A, AREG, CDH3

Proliferation
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in the start vertex and end vertex of the walk, our proposed

algorithm focuses on every vertex in the walk, and every

random choice is evaluated according to its frequency and

importance. In other words, every step in the path of walking

is recorded, which is more complete than only recording the

starting point and the end point in the traditional random

walk algorithm. The flowchart showing the design idea of our

algorithm is presented in Figure 4.

Figure 4 shows the process for obtaining the connected

subgraph, the module, screening the vertices in the network,

screening the edges among the edges composed of the

vertices, and screening the modules formed by the vertices

and edges.

In the walk part and the vertices-screening step, we used the

weight to represent the sequence of the order of appearance in the

walk. More specifically, N was taken as the basic weight, in which

the start vertex weights N and the end vertex weights 1.

Furthermore, to avoid the final results tending to the vertices

that have smaller degrees, we introduced the penalty coefficient

to ensure balance. The design of the penalty coefficient aims to

consider the degree of the vertices in the network.

Through walking, the weights of the vertices were determined,

and the final weights were employed to generate a weight distribution

along with the walk. The vertices whose weight was larger than a

specific threshold were selected for further statistical analysis.

In the edges-screening step, both the intersection and the

union between the pairwise vertices among all the selected

vertices in the network were made. Based on the value of the

set size of the intersection divided by the union, a threshold of

[0,1] was selected as the screening condition, and any union

whose value was larger than the threshold was retained for

further statistical analysis.

The modules-screening step involved making clusters and

screening the connected clusters as modules. We used the

union that we obtained in the previous part to generate the

clusters, which obeys the rule: if there is an intersection

between different unions, the unions should be merged

into a vertices list; and the final integrated vertices lists

should contain five or more individual vertices in the

cluster. Since the vertices in the clusters were screened

based on their weights through the walking algorithm,

there is one special situation we need to pay attention to.

Say there are three vertices A, B, and X. A and B are not

directly connected but linked through X. While A and B have

high weights and are reserved through the algorithm, X has a

low weight and needs to be removed. This will lead to A and B

becoming disconnected. Thus, the connectivity within

clusters was examined visually using Cytoscape. The

connected clusters were directly set as modules, while for

the disconnected clusters, the connected sub-clusters were

FIGURE 9
Global module network. The network contains four parts corresponding to the four stages of the disease. Information on the vertices contains a
number after the letter S, representing the stage serial number, and a number after letter M, representing the serial number of the module in each
stage. Pink edges connect modules between S1 and S2, blue edges connect modules between S2 and S3, and orange edges connect modules
between S3 and S4. The gray edges connectmodules in each stage. The width of the edge represents the value of the Jaccard coefficient of the
biological molecules in the connected modules.
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also considered. The specific work in this step is shown in

Figure 5.

2.4 Building the core networks

In the core-networks-building step, the individual

modules obtained from the aforementioned stage-specific

networks were taken as vertices to build a global module

network, where the connections between modules within

the stage were based on the connections of edges between

the vertices of the module in the original network, and the

connections between modules of two adjacent stages were

based on their Jaccard similarity. The reason for building the

global module network is to explore the relationship of

modules along with the progression of cancers, since the

real cancer-related modules tend to form densely connected

structures in the global module network, while the non-

cancer-related modules tend to be isolated in the network.

After the modules are identified, the biological functions

corresponding to individual modules can be obtained through

GO and KEGG enrichment analysis. By analyzing the biological

functions, we can reveal the relationship of the biological

functions with the disease. The p-value of the biological

functions was acquired through GSEA and then adjusted for

multiple tests by using false discovery rate (FDR) (Jafari and

Ansari-Pour, 2019; Pike, 2011), and the adjusted p-value is the

q-value. The biological functions with the q-value ≤ 5 × 10−2
were screened as the module-related functions.

Subsequently, the selected biological functions were taken as

vertices, and we used the Jaccard coefficient to evaluate their

similarity to generate a functional interaction network for further

analysis.

The global module network and the functional interaction

network both present the statistical information about the

disease. Since we obtained the functions in the modules, it

can be proven that there is a relationship between the

functions and the modules. Therefore, the aforementioned

two kinds of networks can be combined to generate a

comprehensive network. In this comprehensive network, we

combined the two networks with the relationship between the

modules and functions as new edges. The comprehensive

network combines the two aspects of the disease (biological

molecules and biological functions), as well as combining

information about the four stages. We thus took both

modules and functions as vertices and took three kinds of

relationships (between modules, between functions, and

between modules and functions) as edges.

In the comprehensive network, to select the core modules,

the degree of the modules was taken into consideration. After

statistical analysis of the degree of the modules in the network,

the distribution of modules with a degree <5 was 64.29%, and this

FIGURE 10
Functional interaction network. The vertices in the network represent the biological functions we obtained through GSEA and selection. The
color of the vertices represents the stage in which we obtained the function, and vertices with multiple colors indicate that the corresponding
function appears in multiple stages. Using the DAVID database, we obtained all the genes corresponding to the biological functions, and the edges
represent that the same genes corresponding to the two biological functions have an intersection. The weights on the edges and the width of
the edges represent the value of the Jaccard coefficient of the two groups of genes corresponding to the two biological functions.
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distribution is close to the distribution corresponding to (μ − σ, μ

+ σ) in the normal distribution, which corresponds to 68.26%

(Ahsanullah et al., 2014). Therefore, according to the three-sigma

rule (Pukelsheim, 1994), we chose modules with degree >=5 to

screen out most modules and only retain some typical modules.

Therefore, after the statistical analysis, from the comprehensive

network, modules with a degree ≥ 5 were regarded as core

modules.

Ultimately, the core evolution network was generated after

vertices selection, which is a subgraph of the comprehensive

network. What the core evolution network presents is the

dynamic evolution of the disease from the aspects both of

biological molecules and biological functions during the four

stages of development of the disease. The specific work in this

step is shown in Figure 6.

3 Results

3.1 Core networks

Figure 7 illustrates the results of module network of S1, S2,

S3, and S4, respectively. Here, regarding the two kinds of

graphs, the left subgraph is the module network in each stage,

which takes biological molecules as vertices and the

relationship between biological molecules as edges, while

the right subgraph is the simplified module network, which

takes modules as vertices and the relationship between

modules as edges. In the module network, we used

different colors of vertices to distinguish different modules

and different kinds of edges. Blue edges represent connections

between raw molecules, while gray edges represent

connections between modules. In the simplified module

network, the letter M represents the module, and the

number after M is the serial number of the module. The

number on the edge represents the number of edges

between biological molecules in the two modules, and the

width of the edge represents the magnitude of the number. We

used the simplified module network to obtain the main

information in the global module network for further analysis.

Figure 8 summarizes the simplified module networks among

the four sequential stages from S1 to S4.

Figure 9 shows a global module network formed by

connecting the simplified module networks in adjacent stages.

The pink edges represent the edges connecting S1 and S2, the

blue ones represent the edges connecting S2 and S3, and the

orange ones represent the edges connecting S3 and S4. The width

of the edges represents the value of the Jaccard coefficient of the

biological molecules in the connected modules.

While the functional interaction network was generated

through GSEA and further screened, we marked the value of

the Jaccard coefficient on the edge and used the width of the edge

to represent the magnitude of the value. The network is

illustrated in Figure 10.

After combining the global module network and

functional interaction network with edges between modules

and biological functions to form the comprehensive network,

the core modules and core biological functions were selected

to construct the core evolution network. This network is

shown in Figure 11. We used green vertices to represent

modules, and pink vertices to represent functions with

different shades. The smaller the q-value of the function,

the darker the color. Furthermore, the yellowish pink

background represents the modules that we show in detail,

and the number represents the sequence of the functions. The

result obtained prove that the biological functions associated

with the B cell and CXCR family play significant roles in

LUAD (Gangadhar et al., 2010; Wang et al., 2019; Liao et al.,

2021; Hu et al., 2022). Therefore, among the core biological

functions we obtained, the biological functions of B-cell

FIGURE 11
Core evolution network. There are two types of vertices in the
network. Green vertices are the core modules, which are the
modules combining the global module network and the biological
functional network with a degree ≥5. The pink vertices are
the core biological functions that we obtained through GSEA, the
selection of which is related to the core modules: the darker the
color is, the smaller the q-value of the biological functions. The
cycles with a dotted line represent the stages of the disease, and
the vertices in the cycle represent the core modules and core
biological functions in the stage. There are three types of edges.
Edges in gray connect the modules in each stage or between the
core modules and core biological functions. Edges in orange
connect core modules in the two stages with the Jaccard
coefficient ≥0.1. Edges in light green connect the core biological
functions, which represent the evolution of the biological
functions, and the numbers on the edges represent the serial
number of the core biological functions. The blue background
highlights the evolution of the biological functions and the
corresponding 11 core biological functions, which are as follows: 1.
B-cell differentiation; 2. B-cell activation; 3. B-cell receptor
signaling pathway; 4. neutrophil chemotaxis; 5. chemokine
activity; 6. chemokine-mediated signaling pathway; 7. CXCR
chemokine receptor binding; 8. peptidoglycan binding; 9. negative
regulation of keratinocyte differentiation; 10. oligosaccharide
binding; and 11. positive regulation of keratinocyte proliferation.
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differentiation, B-cell activation, B-cell receptor signaling

pathway, and CXCR chemokine receptor binding are

associated with LUAD. The results also demonstrate that

chemokine-related biological functions are applied in

clinical treatments (Tsukita et al., 2019; Liu and Wu, 2021);

thus, the biological functions of chemokine activity and the

chemokine-mediated signaling pathway can provide certain

evidence for the diagnosis of the disease. It is worth noting

that the LUAD-related biological functions of the B cell and

the CXCR family are in a relatively broad range; the study

narrows the broad concept to the four specific biological

functions and reflects their roles in the evolution process of

the disease more accurately. However, the biological functions

of the negative regulation of keratinocyte differentiation and

the positive regulation of keratinocyte proliferation normally

do not show in LUAD (Xu et al., 2020). The result is only on

the statistical analysis level. Similar to the biological functions

of peptidoglycan binding and oligosaccharide binding, the

four biological functions were obtained through GSEA with

the two key RNAs in the core modules: REG3A and REG3G

(see Figure 13). Therefore, due to the limitations of GSEA

(Tamayo et al., 2016), the calculation results are only based on

statistical analysis, and they still need to be verified and

screened in combination with more biological evidence.

Furthermore, the biological functions of neutrophil

chemotaxis, peptidoglycan binding, and oligosaccharide

binding are associated with some diseases, but there is no

direct evidence that they are strongly associated with LUAD

(Metzemaekers et al., 2020; Cui et al., 2022; Rye and Bovin,

1997). Thus, the biological function of neutrophil chemotaxis

can be used as a prediction for clinical pretreatment, and the

biological functions of peptidoglycan binding and

oligosaccharide binding may serve as a predictive signal

that requires more biological evidence. In summary, of the

11 biological functions we obtained, six are related to the

disease, the biological function of neutrophil chemotaxis is

not directly associated with LUAD but can serve as a

predictor, two functions may serve as a predictive signal,

and two functions need to be verified through more

biological evidence.

Since few biological functions are performed by isolated

biological molecules, we need to find the common

participation of multiple biological molecules corresponding to

biological functions. That is why we first divided the biological

molecules into different modules in the previous steps and

divided the closely related biological molecules into different

modules. Furthermore, we used the biological molecules inside

the module to find the corresponding biological functions. The

core biological functions and the corresponding biological

molecules are shown in detail in Table 1.

From the core evolution network, we selected 12 core

modules and 11 core biological functions, and the details are

visualized in Figure 12. In this figure, the biological molecule

corresponding to the vertex lies in different regions with different

FIGURE 12
Module overlap visualization. The vertices in the visualization contain yellow vertices and blue vertices. The yellow vertices are the intersection
of biological molecules of the modules, while the blue vertices are not the intersection. The background regions in different colors represent
different modules. The four large regions represent the four largest core modules, corresponding to the four stages which, through GSEA, do not
obtain accurate results. The other eight small regions represent the eight core modules which, through GSEA and selection, reveal the core
biological functions.
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background colors. If the biological molecule appears in multiple

modules, the biological molecule lies in the intersection

corresponding to the overlapping region of the modules.

Figure 13 shows the relationship between overlapping core

biological functions. The biological molecule dataset related to

different biological functions was first obtained from the DAVID

FIGURE 13
Graphs (11) visualizing the biological functions overlap.
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database, and the connections between these molecules were

obtained from the STRING database. The blue background

represents the biological molecules related to the biological

functions, and the yellow, green, and red background

represent the biological molecules in different modules.

Vertices not in blue are the biological molecules in the

original network, while vertices in blue mean otherwise.

3.2 Comparison

Regarding comparison, we primarily designed two control

groups called Design1 and Design2. For Design1, we directly put

all the biological molecules in each stage into GSEA to obtain the

results. For Design2, we put the biological molecules obtained

through our clustering algorithm, without dividing them, into

different modules into GSEA to obtain the results.

We compared these two design methods to our method to find

the different stages of the 11 biological functions according to the

stage separation to compare the q-values of the 25 biological

functions. These 25 items were generated into a heat matrix.

Moreover, we combined a hierarchical clustering algorithm to

cluster the information corresponding to these 25 biological

functions. The specific clustering effect is shown in the left part

of Figure 11, which is helpful for further exploration and analysis.

Figure 14 shows the comparisons among these three methods.

On the one hand, our method demonstrates significance for the

majority of biological functions, while Design1 andDesign2 inmany

biological functions lack corresponding significance according to

their q-values. On the other hand, the q-value of our method is

smaller than that of Design1 and Design2 in all cases. Therefore, our

method can reveal these biological functions more accurately and

effectively. Our result is better than that of Design1 (which shows

that it is better to cluster the whole network) and also better than that

of Design2 (which shows that it is better to build modules than to

put vertices together).

4 Conclusion

In this study, we have proposed a method to investigate the

evolution of LUAD from the perspective of the combination of

graph theory knowledge and biological knowledge. The global

module network, the functional interaction network, and the core

evolution networkwere presented from the dynamic evolution point

of view. In the core evolution network, there are 12 core modules

and 11 core biological functions. Among the core biological

functions, six are related to the disease, the biological function of

neutrophil chemotaxis is not straightly associated with LUAD but

can serve as a prediction, two functions may serve as a predictive

FIGURE 14
Effectiveness comparison of the three methods. In the heat matrix, we takeQ′ = − lnq as the comparative index and some biological functions
cannot be found in the corresponding enrichment information in somemethods. We use 0 to represent absence or a q-value equal to 1.0; thus, the
larger the value of Q′, the smaller the q-value and the darker the color.
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signal, and two functions need to be verified throughmore biological

evidence. The core evolution network highlights the evolution

information for the multi-stage disease.

The advantages of the proposed method are as follows. First,

we chose an innovative clustering algorithm based on the

random walk algorithm and the Monte Carlo method for the

network clustering and designed a set of parameters for each step

of the experiment to find the best parameter setting based on

statistical principles. Additionally, many objective factors were

considered in each step of the algorithm design, and some simple

ideas or models were used to solve problems. Second, compared

with other methods, our method not only presented the

information of each stage statically, but also presented the

evolution dynamically. Third, the idea of “focusing on the

main factors” is implied in every step, which greatly reduced

the amount of work and harvested the most typical results.

The limitations of the proposed method are as follows. The

algorithm can be further optimized to overcome the high time

complexity of the method. Moreover, in the cluster-screening

step, we directly combined the union as the clustering results,

without considering the corresponding problems of irrelevant

vertices, which should be further investigated.
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