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Polyunsaturated fatty acids (PUFAs) play important roles in the aetiology and

pathogenesis of metabolic dysfunction-associated fatty liver disease (MAFLD).

However, the underlying molecular mechanisms are not understood. We

analysed a public GEO dataset, GSE89632, to identify differentially expressed

genes (DEGs) in MAFLD. Weighted gene coexpression network analysis

(WGCNA) was used to reveal the core gene regulation network and to

explore the PUFA-related hub genes in MAFLD. We experimentally verified

these genes by quantitative reverse transcription PCR in high-fat diet (HFD)-fed

mice. A total of 286 common DEGs (89 upregulated; 197 downregulated),

mostly related to inflammatory and immune responses, were identified. Six

modules were constructed using WGCNA, and 2 modules showed significant

correlations with PUFAs. After combining these 2 modules with DEGs, the top

10 hub genes were identified. We further established a MAFLD mouse model

with liver steatosis, as proved by HE and Oil Red O staining. Of the hub genes,

ADAM metallopeptidase with thrombospondin type 1 motif 1 (adamts1) (p =

0.005) and transforming growth factor β3 (tgfβ3) (p < 0.001) showed

significantly lower mRNA expression in MAFLD in vivo. adamts1 and tgfβ3

bridged PUFAs and MAFLD, which might be potential causative genes and

therapeutic targets of MAFLD.
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Introduction

Metabolic dysfunction-associated fatty liver disease

(MAFLD), which is also referred to as nonalcoholic fatty liver

disease (NAFLD) (Eslam et al., 2020), includes a series of chronic

liver diseases, ranging from steatosis (SS) to nonalcoholic

steatohepatitis (NASH), cirrhosis, and hepatocellular

carcinoma. Previous studies reported that MAFLD was closely

associated with an increased risk of developing cardiovascular

diseases, type 2 diabetes, and other diseases (Anstee et al., 2013;

Park et al., 2013; Adams et al., 2017). Currently, one-quarter of

the world’s population suffers from MAFLD (Younossi et al.,

2019), which is a major health problem worldwide. However, the

molecular aetiology and appropriate pharmacotherapeutic

approaches for MALFD have not yet been elucidated (Lim

et al., 2021). Therefore, there is an urgent need to elucidate

the molecular mechanism underlying the pathogenesis of

MALFD.

A “two-hit hypothesis” was proposed to explain the

pathogenesis of MAFLD (Day and James, 1998; Dowman

et al., 2010). According to this theory, lipid accumulation or

SS in the liver in the form of triglyceride (TG) and free fatty acids

are considered the first hit, rendering the liver more vulnerable to

inflammatory insult, which acts as the second hit. Cytokines and

chemokines (Peverill et al., 2014) secreted by hepatocytes or

activated neutrophils further enhance injury to hepatic tissue,

which leads to MAFLD (Machado and Diehl, 2016; Koyama and

Brenner, 2017; Schuster et al., 2018). Multiple studies have

suggested that polyunsaturated fatty acids (PUFAs) play

important roles in the aetiology of MAFLD. It has been

reported that dietary PUFA intake is lower in individuals with

MAFLD (Puri et al., 2007; Da Silva et al., 2014; Arendt et al.,

2015), and PUFA supplementation may ameliorate the clinical

symptoms of NASH(Li et al., 2015). One of the explanations for

the relationship between PUFAs and MAFLD is that PUFAs

contribute to the improvement in lipid metabolism, increase in

insulin sensitivity, and amelioration of inflammation (Di Minno

et al., 2012; Imamura et al., 2016; Schulze et al., 2020), which

further lead to a lower risk of MAFLD. However, the underlying

mechanism needs to be further elucidated.

To identify crucial PUFAs-related genes in MAFLD, we used

a public GEO dataset to analyse differentially expressed genes

(DEGs) between MAFLD patients and healthy controls (HCs)

and to determine their biological functions. Now many

bioinformatics methods have been developed to identify

potential therapeutic targets (Wang et al., 2022) (LIANG

et al., 2022). Weighted gene coexpression network analysis

(WGCNA) is a tool used to identify modules as candidate

regulators and drivers of disease states (Langfelder and

Horvath, 2008), and is widely used in liver diseases including

porto-sinusoidal vascular disease, cholangiocarcinoma and

hepatocellular carcinoma (Hernández-Gea et al., 2021; Long

et al., 2021; XU et al., 2022). Besides, a recent study applied

WGCNA to identify two hub genes NDUFA9 and UQCRQ

which may be involved in the pathogenesis of MAFLD (Zeng

et al., 2021). In this study, we applied WGCNA to construct gene

modules and to identify hub genes in the PUFAs-related

modules. The bioinformatics results were validated by

comparing the expression of these hub genes between mice

with MAFLD and control mice using quantitative reverse

transcription PCR (RT–qPCR).

Materials and methods

Data preprocessing

Figure 1 shows the flowchart of the study design. The mRNA

microarray dataset GSE89632 from the GEO database was used

in our study. We downloaded the series matrix file and

GPL14951 platform data table. We sorted the clinical

information from the series matrix file, annotated the probe

IDs in this matrix and generated an expression matrix with gene

symbols using the microarray platform data table. Samples from

24 HCs, 20 patients with simple SS, and 19 patients with NASH

were used for further analysis.

DEG screening

We used the “limma” R package to screen DEGs between HC

and patients with SS/NASH. We set the thresholds to |log2 (fold-

change)| >1 and adjusted p < 0.05 (Lin et al., 2019; Chan et al.,

2020; Dobson et al., 2020; Xiu et al., 2020). Then, we combined

the DEGs from HC-SS and HC-NASH. We identified the

common DEGs of these 2 comparisons. To determine the

biological function of these common DEGs, we conducted

Gene Ontology (GO) and Kyoto Encyclopedia of Genes

Genomes (KEGG) pathway analyses on these DEGs using the

“clusterProfiler” R package. We set the cut-off value for the

functional annotation analysis to adjusted p < 0.05.

Weighted correlation network
construction

We used the “WGCNA” R package for the network analysis.

To construct a network with biological significance, we filtered

genes with the top 25% expression variance to construct the gene

coexpression network. We first built a correlation matrix based

on Pearson’s correlation and transformed this correlation matrix

into an adjacency matrix with the formula amn = |cmn|β, where
amn represents the element in the adjacency matrix, cmn

represents the element in the correlation matrix and β
represents the soft threshold. To detect gene modules from

the coexpression network, we constructed a topological
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overlap measure (TOM) matrix. We performed average linkage

hierarchical clustering and used a dynamic tree cut to detect gene

modules using the TOMmatrix. We set the minimal module size

as 50 and merged similar modules with a threshold of 0.25.

DEG coexpression network construction
and hub gene mining

After gene module detection, we correlated the gene modules

with clinical traits using the eigengene of each module. We

identified modules with the strongest correlation with the

levels of at least one PUFA (i.e., arachidonic acid,

eicosapentaenoic acid, and docosahexaenoic acid), and we

considered these modules to be PUFAs-related gene modules.

We also performed GO analysis on the genes in the PUFAs-

related modules to better understand their biological function. To

construct DEG coexpression networks for hub gene mining, we

mapped common DEGs onto these PUFAs-related modules and

constructed DEG coexpression networks. Genes with the top

10 connectivities were considered hub genes in each DEG

coexpression network.

FIGURE 1
Flowchart of study.
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Experimental validation of hub genes

C57BL/6 female mice (HFK Bioscience Co., Ltd., Beijing,

China, SCXK-2016-0006) were housed in a specific pathogen-

free environment (12-h light/dark cycle) with ad libitum

access to food and water. After 1 week of adaptation, 6-

week-old mice with similar body weights were randomly

assigned to 2 groups: the control diet group (CD, n = 6),

which was fed a standard rodent diet (AIN-93G) (15.8% of the

calories as fat); and the high-fat diet group (HFD, n = 6),

which was fed an HFD (D12492) (60% of the calories as

fat). High fat diet formulations were listed in

Supplementary Table S5. The oral glucose tolerance test

(OGTT, oral administration of 1.0 g/kg of glucose, after

12 h fasting) was performed at the end of the study. All the

animal procedures were conducted in compliance with the

National Institutes of Health Guide for the Care and Use of

Laboratory Animals.

FIGURE 2
DEGs screening for HC-SS andHC-NASH. In heatmap, red color indicates up-regulationwhile blue color indicates down-regulation. In volcano
plot, red dots represent up-regulated genes while green dots represent down-regulated genes. (A,B) Heatmap and volcano plot for HC-SS. (C,D)
Heatmap and volcano plot for HC-NASH.
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Pathological staining

Mice were euthanized after 13 weeks to evaluate the

pathological changes in their livers. HE staining was

conducted according to the protocol of the HE Staining Kit

(G1120, Solarbio). Oil Red O staining was performed using Oil

Red O kits (G1261, Solarbio). Masson’s staining and Sirius red

staining were performed using a Sirius red staining kit (S8060,

Solarbio) and Masson’s staining kit (G1340, Solarbio),

respectively, according to the manufacturer’s protocol.

RT–qPCR

Total RNA was extracted from liver tissues using a

commercially available kit (Vazyme, RC112). The RNA

concentration and quality were determined according to the

260/280 nm ratio, which was measured using a NanoDrop

spectrophotometer (ND-100, Thermo Scientific). Total cDNA

was synthesized from isolated RNA samples by HiScript III RT

SuperMix (Vazyme, R323-01). The mRNA expression of target

genes was quantified by RT-qPCR using ChamQ SYBR qPCR

Master Mix (Vazyme, Q331-02) on a Light Cycler 480 (Roche,

Basel, Switzerland). The GAPDH housekeeping gene (Sangon

Biotech, B661304-0001) was used as the internal control. Relative

target gene expression was calculated by the 2−△△CT method. The

sequences of the primers used in RT-qPCR are listed in

Supplementary Table S4.

Western blot

Proteins from mouse liver samples were extracted using

RIPA buffer (APPLYGEN, China) containing protease

inhibitors (Solarbio, China) and PMSF (Solarbio, China)

Samples containing equal amounts of protein were denatured

and subjected to electrophoresis in 10% SDS-PAGE gels followed

by transfer to PVDF membrane and probed with specific

antibodies, including ADAMTS1 (1:500), TGFβ3 (1:500), and

GAPDH (1:1000) (Proteintech, Inc.). Blots bands were visualized

using the horseradish peroxidase conjugated secondary

antibodies and chemiluminescent substrate.

FIGURE 3
Functional annotation for DEGs. (A,B) Bar plot and dot plot of GO analysis for DEGs. (C,D) Bar plot and dot plot for KEGG pathway analysis for
DEGs.
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Glucose and lipid metabolism parameters
measurements

Liver tissues were homogenized in triglyceride assay buffer,

and serum was tested directly. TG levels were measured using the

Triglyceride Quantification Assay Kit (ab65336, Abcam)

according to the manufacturer’s instructions. Fasting blood

glucose levels were determined using an automated analyzer

(ADVIA1800 Siemens, Germany). Fasting insulin level was

measured using the Mouse Insulin ELISA (ALPCO, America)

according to the manufacturer’s instructions.

Statistical analysis

Bioinformatical analyses, such as DEGs screening, WGCNA,

and functional annotation, were conducted in R v3.6.2. DEG

coexpression network construction and hub gene mining were

performed in Cytoscape v3.7.0. The student’s t-test was used to

compare data from two groups. A p value < 0.05 was considered

statistically significant.

Results

Filtering of DEGs

A total of 409 genes were significantly differentially expressed

between the HC and SS groups (Figure 2A), whereas 410 genes

were differentially expressed between the HC and the NASH

groups (Figure 2C). The heatmap and the volcano plot show the

relative expression patterns of these DEGs (Figures 2B,D). A total

of 286 DEGs were common in both comparisons, of which

89 were upregulated and 197 were downregulated

(Supplementary Figure S1; Supplementary Table S1). The

functional annotation analysis of these common DEGs is

FIGURE 4
Weighted correlation network construction. (A,B) The soft-threshold βwas chosen to be 16. (C,D) Log-log plot of whole-network connectivity
distribution. The x-axis shows the logarithm of the whole network connectivity, and the y-axis is the logarithm of the corresponding frequency
distribution. The network met the requirements of scale-free topology. (E) A total of 6 module was detected. (F) The correlation heatmap for gene
modules and traits.
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shown in Figure 3 and Supplementary Table S2. The key GO

terms in biological processes were mainly related to macrophage

activation (GO: 0042116), positive regulation of inflammatory

response (GO: 0050729), and cytokine production involved in

immune response (GO: 0002367) (Figures 3A,B). After KEGG

analysis, DEGs were mapped to KEGG pathways (Figures 3C,D).

The most affected pathways were the tumour necrosis factor

(TNF) signalling pathway (hsa04668), interleukin (IL)-

17 signalling pathway (hsa04657), and nuclear factor κ-B (NF-

κB) signalling pathway (hsa04064). Generally, all of these

common DEGs might be primarily involved in inflammatory

and immune responses.

Construction of the gene coexpression
network

Based on clustering analysis, 2 outliers (GSM2385767 and

GSM2385782) were identified and excluded before analysis

(Supplementary Figure S2). A cut-off of R2 = 0.85 was used to

select the soft-threshold β, and β = 16 was selected for network

construction (Figures 4A,B). On the log-log plot the

distribution approximately follows a straight line (R2 =

0.86), which is referred to as approximately scale-free

topology. The constructed network met the requirements of

scale-free topology. (Figures 4C,D). After module detection,

we identified 6 gene modules (Figure 4E), and the correlation

of these modules with clinical traits is presented in a

heatmap (Figure 4F). Among the 6 gene modules, the

brown module had the highest positive correlation with

PUFAs levels, while the yellow module had the strongest

negative correlation with PUFAs levels (Supplementary

Figure S3). Functional annotation analysis showed that

the brown module was mainly associated with inflammatory

and immune responses (Figures 5A,B; Supplementary

Table S3), and the yellow module was mainly associated

with lipid metabolism (Figures 5C,D; Supplementary

Table S3).

FIGURE 5
Functional annotation for PUFAs-related modules. (A,B) Bar plot and dot plot of GO analysis for brown module. (C,D) Bar plot and dot plot for
GO analysis for yellow module.
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DEG coexpression network and mining of
hub genes

To combine DEGs with PUFAs-related modules, we mapped

common DEGs onto the brown and yellow gene modules and

acquired 2 DEG coexpression networks (Figures 6A,B). In

coexpression network, a hub is a node with several links with

other nodes that greatly exceed the average. The top

10 connectivity genes were the genes with the greatest number

of links and were considered hub genes (Figures 6C,D; Table 1).

To verify the hub genes, we established anHFD-fed mouse model

to investigate the mRNA expression of these genes.

HFD-fed mice developed liver SS and
metabolic dysfunction

The body weight and hepatic weight significantly increased in

the HFD group compared with the CD group (Figures 7A,B). The

liver tissues of mice were stained with HE to observe lipid

accumulation in hepatocytes as vacuoles (Figure 7C). Oil Red

O staining confirmed the presence of massive lipid deposition in

the livers of HFD-fed mice but not in those of control mice

(Figure 7C). Masson’s staining and Sirius red staining, which

were used to detect fibrosis, revealed no significant differences

between the groups (Figure 7C). The HFD group also showed

significantly higher hepatic TG contents (p = 0.031, Figure 7D),

although there was no significance in the serum TG levels

(Figure 7E). In addition, OGTT and area under curve of

OGTT further showed impaired glucose tolerance in HFD-fed

mice (Figure 7F). Both levels of serum glucose and insulin were

significantly higher in HFD-fed mice (Figures 7G,H), which

meant the HFD-fed mice developed insulin resistance. Overall,

all of the above results confirmed the development of MAFLD in

HFD-fed mice without obvious fibrosis.

Validation of hub genes in HFD-fed mice

To verify whether the hub genes identified in the two DEG

coexpression networks were variably expressed, mRNA was

extracted from liver tissues, and gene expression was

quantified by RT-qPCR. It has been shown that ADAM

metallopeptidase with thrombospondin type 1 motif 1

FIGURE 6
DEG co-expression network and hub genes. (A,B)DEG co-expression networks for brown and yellowmodules. (C,D) hub genes for brown and
yellow modules.
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(adamts1), which is a gene in the brownmodule, was expressed at

significantly lower levels in HFD-fed mice, and these results

matched expectations well (p = 0.005, Figure 8A). However, the

expression of the socs3, epha2, and zc3h12a genes showed no

significant group differences (all p > 0.05, Figure 8B). In the

yellow module, significantly lower tgfβ3 expression was observed

in the HFD-fed mice (p < 0.001, Figure 8C), although rmnd1 and

gper expression did not differ significantly between the groups

(all p > 0.05) (Figure 8D). The changes of TGFβ3 and

ADAMTS1 at the protein levels were further confirmed by

WB assays. HFD-fed mice showed lower expression of

TGFβ3 and ADAMTS1 (Figure 8E).

Discussion

In the present study, 286 common DEGs, which were mainly

involved in inflammation and immune responses, were identified

between HCs and patients with MAFLD. Based on the WGCNA,

we constructed 6 modules, of which one inflammation-related

and one lipid metabolism-related module were most strongly

associated with PUFAs. The genes with the top 10 connectivities

within the 2 modules were mined as hub genes. For the first time,

we confirmed that two hub genes, namely, adamts1 and tgfβ3,

were significantly differentially expressed between healthy mice

and HFD-fed mice with MAFLD. These findings suggest that

adamts1 and tgfβ3 play important roles in the process of MAFLD

and may serve as biomarkers for the disease.

In our study, functional annotation analysis showed that

pathways related to the inflammatory response, especially the

macrophage activation pathway, TNF-α signalling pathway, NF-

κB signalling pathway, and IL-17 signalling pathway, might play

important roles in MAFLD. Similarly, multiple studies have

reported that inflammation is crucial for the process of

MAFLD. According to previous studies, the secretion of

cytokines and chemokines, including TNF-α, IL-6, and IL-1β,
by hepatic macrophages was increased in fatty livers (De Taeye

et al., 2007; Stienstra et al., 2010; Chawla et al., 2011).

Additionally, NF-κB and TNF-α appear to form positive

feedback loops and exacerbate the inflammation and injury of

hepatocytes (Rolo et al., 2012). In addition, IL-17, which is

produced by pro-inflammatory T helper 17 (Th17) cells, can

promote liver inflammation and fibrosis by facilitating the

production of IL-6, IL-1, and TNF-α by inflammatory cells

and activating hepatic stellate cells to produce collagen type I

(Meng et al., 2012; Harley et al., 2014). Conversely, depletion of

hepatic macrophages can effectively mitigate the progression of

diet-induced SS and hepatic insulin resistance in rodent

experiments (Huang et al., 2010; Lanthier et al., 2010;

Lanthier et al., 2011). These findings suggested that the

TABLE 1 Crucial genes for the brown and the yellow module.

Module Crucial gene Official full name

Brown PHLDA1 pleckstrin homology like domain family A member 1

EPHA2 EPH receptor A2

PIM1 Pim-1 proto-oncogene, serine/threonine kinase

AXUD1 cysteine and serine rich nuclear protein 1

SOCS3 suppressor of cytokine signaling 3

RALGDS ral guanine nucleotide dissociation stimulator

MYC MYC proto-oncogene, bHLH transcription factor

ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif 1

APOLD1 apolipoprotein L domain containing 1

ZC3H12A zinc finger CCCH-type containing 12A

Yellow GPER G protein-coupled estrogen receptor 1

C10orf140 SKI/DACH domain containing 1

TGFB3 transforming growth factor beta 3

RBP5 retinol binding protein 5

ORAI3 ORAI calcium release-activated calcium modulator 3

LOC730101 —

LOC730417 —

RMND1 required for meiotic nuclear division 1 homolog

RRP12 ribosomal RNA processing 12 homolog

RTP3 receptor transporter protein 3
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inflammatory response was activated in individuals with

MAFLD, while macrophages might play a mediator role.

Although the aetiology of MAFLD is far from elucidated,

growing evidence suggests that decreased intake of PUFAs is one

of the causes of the disease (Puri et al., 2007; Da Silva et al., 2014;

Arendt et al., 2015; Li et al., 2015). Based on the WGCNA, our

results suggested that PUFAs were associated with MAFLD by

regulating the coexpression network of inflammation and lipid

metabolism (Figure 3). Consistent with our findings, many

studies reported that PUFAs could regulate the TNF-α

signalling pathway and NF-κB pathway, which were found to

be closely associated with liver injury in MAFLD in our study

(Figure 3) and other studies (Zhao et al., 2004; Schmöcker et al.,

2007; Tapia et al., 2014). PUFAs, primarily n-3 PUFAs, can

inhibit activation of the NF-κB pathway and suppress the

inflammatory response (Calder, 2015). Moreover, additional

supplementation with n-3 PUFAs can significantly reduce the

C-reactive protein, IL-6, and TNF-a levels and further block the

progression of western-diet induced MAFLD (Li et al., 2014;

Lytle et al., 2017). Regarding lipid metabolism, dietary PUFAs

FIGURE 7
Evaluation of metabolic phenotype in the HFD-fed mice. (A,B) The body weight and hepatic weight between HFD and CD groups, respectively.
n = 6. (C)Representative HE staining, Oil-red O staining, Masson staining, and Sirius red staining images of liver from each group. Black scale bar,
200 um. (D,E)The hepatic TG and serum TG between HFD and CD group. n = 5. (F) The oral glucose intolerance test (oral administration of 1.0 g/kg
of glucose, after 12 h fasting). (G,H) Fasting serum glucose and insulin were measured. n = 5. Data are mean ± SD. *p < 0.05 versus CD group.
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were found to stimulate fatty acid oxidation by binding directly to

peroxisome proliferator-activated receptor-α(Pawar et al., 2002).
A randomized controlled trial also assessed the association of

dietary PUFAs with lipid metabolism and peripheral insulin

sensitivity in vivo (Hodson et al., 2017). After a 15-18 months

intervention, individuals who achieved higher enrichment of

erythrocyte docosahexaenoic acid, an PUFA, presented

significantly improved hepatic insulin sensitivity, decreased

fasting and postprandial plasma triglyceride concentrations,

and reduced fasting hepatic de novo lipogenesis (Hodson

et al., 2017).

Due to the therapeutic role of PUFAs in treating MAFLD,

further studies on the core gene regulatory network underlying

the PUFAs-MAFLD association would help reveal therapeutic

targets for the disease. For the first time, we mined the hub genes

of the PUFAs-related gene modules (Table 1) and validated the

results in mouse experiments. We found that the expression

levels of adamts1 in the brown inflammation-related module and

tgfβ3 in the yellow lipid metabolism-related module were

significantly decreased in mice with MAFLD. These results

suggest that adamts1 and tgfβ3 may play important roles in

the association between PUFAs and MAFLD.

ADAMTS1, the first identified Adamts family member, is

characterized by its ability to cleave proteoglycans, aggrecan,

collagen, elastin, and other extracellular matrix proteins via its

metalloprotease-dependent catalytic (Rodriguez-Manzaneque

et al., 2009; Esselens et al., 2010) and thrombospondin-dependent

regions (Luque et al., 2003); thus, it plays roles in degrading

extracellular matrix (ECM) components or inhibiting

angiogenesis. A recent study reported that ablation of adamts1 in

adipose tissue led to enlarged adipose tissue mass, reduced insulin

sensitivity, and dysregulated lipid metabolism (Chen et al., 2016). In

addition, lower mRNA levels of adamts1 in both subcutaneous and

visceral white adipose tissues were associated with higher body mass

index in humans (Chen et al., 2016). The reason underlying the

above phenomenon might be due to adamts1 enzymatically

impairing adipogenesis via ECM remodelling (Chen et al., 2016),

which indicated the role of ADAMTS1 in maintaining lipids

homeostasis. It was also reported that ADAMTS1 served as an

extracellular protease that could be activated by prostaglandin F2α, a
metabolite of the arachidonic acid (a type of PUFAs) metabolism

(Keightley et al., 2010). In addition, ADAMTS1 also identified as an

inflammatory associated protein is required for a balanced immune

response (Kuno et al., 1997; Rodríguez-Baena et al., 2018). Thus, we

FIGURE 8
(A,B) Expression of the hub genes in the brown modules. n = 5. (C,D) Expression of the hub genes in the yellow modules. Results represent the
mean ± SD of five to six independent experiments. n = 5. (E) One representative western blot of three independent western blot experiments is
shown. Data are mean ± SD.*p < 0.05 versus CD group.
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speculate that ADAMTS1 decreasing in the liver might indicate

abnormal immune response and reflect adipogenesis inhibition via

ECM remodelling and PUFA regulation. However, further studies

are warranted to prove the hypothesis.

TGFβ3, a member of the TGFβ superfamily, plays a

multifunctional role in the immune response and ECM formation

and regulates cell fate. The mRNA level of tgfβ3 was shown to be

significantly lower in the HFD-fed mice in our study. Consistent with

our study, TGFβ3 was reported to maintain lipid homeostasis. For

example, overexpression of TGFβ3 was reported to reduce the

histopathological damage observed in liver fibrosis (Zhang et al.,

2010). Another study suggested that TGFβ3 participates in adipose

tissue hypertrophy by regulating adipocyte precursor cell proliferation

(Petrus et al., 2018).Moreover, mice with tgfβ3 haploinsufficiency that

are fed anHFD show increased glucose intolerance andweight gain in

vivo compared to their wild-type littermates. TGFβ3 was also proven
to play an anti-inflammatory role andmight participate in obesity and

insulin resistance. TGFβ3 secretionwas also found to be decreased in a
genetic model of mice with CD4+ T cell-specific KLF10 knockout

in vitro and in vivo, and these mice have a predisposition to obesity,

insulin resistance, and fatty liver (Wara et al., 2020). It is quite

interesting that TGFβ3 could mediate the secretion of

prostaglandin E2, which is also an important metabolite in the

arachidonic acid metabolic pathway, to affect macrophage

polarization. Interestingly, TGFβ3 not only participates in the

inflammatory response (Okamura et al., 2015) but also improves

glucose tolerance and phenotypic changes in adipocyte morphology

(Hall et al., 2013), suggesting that tgfβ3may offer potential therapeutic

benefits for MAFLD.

Our study has many strengths. First, we used bioinformatics

tools, including DEGs analyses and WGCNA, combined with

wet-lab experiments to propose and verify our hypothesis.

Second, for the first time, we provide evidence that two hub

genes, namely, adamts1 and tgfβ3, might play important roles in

the association of PUFAs with MAFLD. Nevertheless, this study

has limitations. First, although we mined hub genes that might

play a role in the PUFAs-MAFLD association, the MAFLD

mouse model we used in the validation experiment was

established by feeding on HFD. A model of PUFAs diet

supplementation could help us further validate our hypothesis.

Second, the specific relationship between DEGs and the

development of MAFLD should be clarified. Further insight

into the molecular function of adamts1 and tgfβ3 in PUFA

metabolism and MAFLD pathogenesis is needed.

Conclusion

In conclusion, PUFAs were associated with a brown

inflammation-related gene module and a yellow lipid metabolism-

related module of MAFLD. The expression levels of adamts1 in the

brownmodule and tgβ3 in the yellow module were downregulated in

MAFLD mice. These findings provide evidence regarding the role of

adamts1 and tgfβ3 in the PUFAs-MAFLD association. Overall, the

results of this comprehensive analysis have implications for

personalized medicine and are of great clinical significance.
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