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Yugin Pan?* and Shukui Wang2*

School of Medicine, Southeast University, Nanjing, Jiangsu, China, ?General Clinical Research Center,
Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China

Background: The traditional TNM staging system is often insufficient to
differentiate the survival discrepancies of colorectal cancer (CRC) patients at
TNM stage I/Il. Our study aimed to reclassify stage I/l CRC patients into several
subgroups with different prognoses and explore their suitable therapeutic
methods.

Methods: Single-cell RNA (scRNA) sequencing data, bulk RNA sequencing data,
and clinicopathological information of CRC patients were enrolled from the
TCGA and GEO databases. The tumor microenvironment of CRC tissues was
accessed by the ESTIMATE algorithm. The prognostic genes were identified by
Cox regression analysis. GO and KEGG analyses were conducted in the DAVID
database. GSEA analysis was performed for annotation of the correlated
gene sets.

Results: We successfully reclassified stage I/l CRC patients into two subgroups
and discovered that patients in cluster-2 underwent worse overall survival than
those in cluster-1. GSEA analysis showed that immune-associated gene sets
were positively enriched in cluster-2. Besides, the differentially expressed genes
(DEGs) between cluster-1 and cluster-2 patients also participated in immune-
related biological processes and signaling pathways. Moreover, we found that
more immune cells infiltrated the microenvironment of cluster-2 patients
compared to that of cluster-1 patients, such as Tregs and tumor-associated
macrophages. SCRNA sequencing analysis uncovered that most of the enriched
immune-associated signaling in cluster-2 patients was mainly attributed to
these upregulated immune cells whose infiltration levels were also high in CRC
tissues rather than in normal tissues. In addition, we demonstrated that the
expression of immune checkpoint genes was significantly higher in cluster-2
patients compared to cluster-1 patients. SCRNA sequencing analysis revealed
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that the infiltrated CD8+T cells in CRC were naive T cells and can be activated
into effector T cells after immune checkpoint blockade (ICB) treatment.

Conclusion: TNM stage /Il CRC patients can be divided into two subgroups,
which have different overall survival rates, tumor microenvironment, and
response to ICB therapy.

KEYWORDS

colorectal cancer, immune, prognosis, immune checkpoint blockade treatment,
single-cell RNA sequencing, TCGA, GEO

Introduction

Colorectal cancer (CRC) ranks the second leading cause of
tumor-related mortality worldwide (Sung et al., 2021). Although the
American Joint Committee on Cancer (AJCC) TNM staging system
has been widely applied to predict prognosis and formulate
therapeutic strategies for CRC patients, it is insufficient to
differentiate the survival discrepancies of TNM stage I/Il CRC
patients. For instance, the prognosis of part CRC patients at
stage II was worse than that at stage ITI (Hari et al,, 2013).

Tumor cells live in a complex microenvironment that is
composed of various stromal cells, immune cells, extracellular
matrix molecules, and cytokines (Wu and Dai, 2017). Mounting
studies have proved that the abnormal tumor microenvironment
(TME) plays a critical role in the progression and treatment of
cancer (Bruni et al., 2020). For example, inducible co-stimulator-
activated CD4" T cells are triggers of antitumor immunity in
early-stage breast cancer (Zhou et al., 2021). Besides, Shi et al.
(2022) systematically profiled a single-cell immune signature to
anti-PD-1
hepatocellular

assess immunotherapy efficacy of early-stage
Although  differential ~ gene

expression of tumor-infiltrating CD33 myeloid cells in

carcinoma.

advanced-versus early-stage CRC has been reported (Toor
et al.,, 2021), it remains elusive whether there is a discrepant
TME among CRC at TNM stage I/II.

The modality of immune checkpoint blockade (ICB) has
revolutionized the treatment of advanced solid tumors over the
last decade (Burtness et al., 2019; Mok et al., 2019). Recently, several
ongoing clinical trials suggested that integrating ICB into the
neoadjuvant treatment of early-stage triple-negative breast cancer
and non-small cell lung cancer improved patients’ survival without
adding substantial toxicity (Gobbini and Giaj Levra, 2018; Schmid
et al., 2020). Whereas there is no literature about ICB treatment in
TNM stage I/II CRC. Moreover, due to the heterogeneity of tumors,
selecting TNM stage I/II CRC patients who are more suitable for
ICB therapy can promote personalized therapy and avoid
overtreatment.

In the present study, we discovered that TNM stage I/II
CRC patients can be reclassified into two subgroups with
different overall survival rates which was mainly attributed
to the distinct immune microenvironment of tumors.
Moreover, we revealed that this TNM stage I/II CRC
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patients with poor outcomes owned higher expression
levels of immune checkpoint genes and were more suitable
for ICB treatment.

Materials and methods

Bulk RNA sequencing and SCRNA
sequencing analysis

The high-throughput bulk RNA sequencing data and
clinicopathological ~ characteristics of CRC patients were
downloaded from the TCGA database deposited in the University
of California, Santa Cruz (UCSC) Xena browser (https://xenabrowser.
net/datapages/) and GEO database (GSE17536 and GSE39582)
(Marisa et al., 2013; Chen et al,, 2019). The transcription values of
genes in the enrolled datasets had been transformed into a normalized
count. The single-cell RNA (scRNA) sequencing data of CRC tissues
were enrolled from two GEO datasets (GSE146771 and GSE122969)
(Kurtulus et al,, 2019; Zhang et al,, 2020) and analyzed in the public
Tumor Immune Single-cell Hub (TISCH) database (http://tisch.
comp-genomics.org/home/).

Functional enrichment analysis

Gene Ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis of genes was
conducted in the DAVID database (https://david.ncifcrf.gov).
The results of the functional enrichment analysis were visualized
through an online tool, OmicShare (http://www.omicshare.com/
tools). The GSEA analysis was implemented based on the
MSigDB database (http://www.gsea-msigdb.org/gsea/msigdb/
index.jsp). The enriched gene sets with a p-value < 0.05 and
FDR value <0.25 were identified to be significant ones.

Evaluating the infiltration levels of
immune and stromal cells

The Estimation of Stromal and Immune cells in Malignant
Tumor tissues using Expression data (ESTIMATE) algorithm was
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Reclassify TNM stage /1l CRC patients into two novel clusters with different prognoses based on the TCGA CRC cohort. (A) The forest plots of

prognostic genes with p< 0.01 identified by univariate Cox regression analysi. (B) The optimal number of clusters according to the consensus index.
(C) The optimal clustering stability (k) determined by the proportion of ambiguous clustering measurements. (D) Consensus clustering analysis

divided TNM stage I/Il CRC patients into two subgroups. (E) The KM plot curves of TNM stage I/Il CRC patients in cluster-1 and cluster-2. (F) The

KM plot curves of CRC patients in cluster-2 and patients at the TNM-1V stage. (G) The KM plot curves of CRC patients in cluster-2 and patients at the

TNM-1Il stage.

used to assess the portion of immune and stromal cells (Yoshihara
et al,, 2013). The infiltration levels of specific immune cells were
estimated by the CIBERSORT, CIBERSORT-ABS, EPIC, and XCELL
algorithms. The immune infiltration analysis was performed with the
online tool TIMER2 (http://timer.cistrome.org).
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Statistical analysis

Statistical analysis was performed by using GraphPad Prism
8.0 (GraphPad Software, United States) and R software (R 4.1).
The Kaplan-Meier (KM) curve with a log rank test was used to
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Validate the discrepant prognosis of TNM stage I/l CRC patients based on the GSE39582 dataset. (A) The forest plots of prognostic genes with

p< 0.001 identified by univariate Cox regression analysis. (B) The optimal number of clusters according to the consensus index. (C) The optimal
clustering stability (k) determined by the proportion of ambiguous clustering measurements. (D) Consensus clustering analysis divided TNM stage I/11
CRC patients into two subgroups. (E) The KM plot curves of CRC patients in cluster-1 and cluster-2. (F) The KM plot curves of CRC patients in
cluster-2 and patients at the TNM-IV stage. (G) The KM plot curves of CRC patients in cluster-2 and patients at the TNM-IIl stage.

compare the significant difference in prognosis between the two
groups. The prognostic genes were identified by the univariate
Cox regression analysis. The statistical difference between the
two groups was analyzed through the Wilcoxon test. p-value <
0.05 was considered statistically significant.

Results

Reclassifying TNM stage I/Il CRC patients
into two subgroups with different
prognosis

We first conducted a univariate Cox regression analysis to

screen the prognostic genes among TNM stage I/II CRC patients
based on the TCGA CRC cohort and selected 46 prognostic genes
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with p< 0.01 (Figure 1A). Subsequently, the R package of
“Consensus ClusterPlus” was used to test whether these
prognostic genes could reclassify TNM stage I/II CRC patients
into novel subclusters, and the result indicated that the optimal
clustering was two (Figures 1B,C). Based on the unsupervised
clustering, this TNM stage I/II CRC patients (N = 153) were well
divided into two distinct clusters (Figure 1D). The KM curve
analysis showed that stage I/II CRC patients in cluster-2
underwent worse OS than that in cluster-1 (HR = 5.50%, 95%
CIL: 2.21-13.70, p < 0.001) (Figure 1E). Intriguingly, although
CRC patients in cluster-2 underwent better OS than patients at
the TNM-IV stage (N = 64) (HR = 2.42%, 95%CI: 1.35-4.33, p =
0.0024) (Figure 1F), there was no significant difference in the OS
between CRC patients in cluster-2 and patients at the TNM-III
stage (N = 126) (HR = 1.04%, 95%CI: 0.58-1.87, p = 0.89)
(Figure 1G).

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.948920

Liu et al.

Validating the survival discrepancies of
TNM stage I/Il CRC patients

Two GEO datasets (GSE39582 and GSE17536) were
implemented to validate the survival discrepancies of TNM
stage I/II CRC patients. Firstly, based on univariate Cox
regression analysis, 27 prognostic genes (p< 0.001) and
103 prognostic genes (p< 0.01) identified in
GSE39582 and GSE17536, respectively 2A,
Supplementary Figure S1A). The proportion of ambiguous

were

(Figure

clustering analysis suggested that the lowest clusters were two
(Figures 2B,C, Supplementary Figure S1B,C). Based on the
unsupervised clustering, TNM stage I/II CRC patients in both
GSE39582 (N = 302) and GSE17536 (N = 81) were reclassified
into two subgroups (Figure 2D, Supplementary Figure S1D). The
KM curve analysis showed that no matter in GSE39582 or
GSE17536, TNM stage I/II CRC patients
underwent worse OS than that in cluster-1 (Figure 2E,

in cluster-2

Supplementary Figure SI1E). As expected, analysis of the
GSE39582 dataset exhibited that although CRC patients in
cluster-2 underwent better OS than patients at the TNM-IV
stage (N = 59) (HR = 3.81%, 95%CI: 2.19-6.45, p < 0.001)
(Figure 2F), there was no significant difference in the OS between
CRC patients in cluster-2 and patients at the TNM-III stage (N =
208) (HR = 0.98%, 95%CIL: 0.69-1.41, p = 0.94) (Figure 2G).
Consistently, based on the GSE17536 dataset, CRC patients in
cluster-2 underwent better OS than patients at the TNM-IV stage
(N = 39) (HR = 330%, 95%CL 1.83-594, p < 0.001)
(Supplementary Figure S1F), but there was no significant
difference in the OS between CRC patients in cluster-2 and
patients at the TNM-III stage (N = 57) (HR = 0.87%, 95%CI:
0.45-1.70, p = 0.67) (Supplementary Figure S1G). Taken
together, we demonstrated that TNM stage I/II CRC patients
can be reclassified into two novel subgroups with distinct overall
survival rates.

The different immune regulation systems
between TNM stage I/l CRC patients in
cluster-1 and cluster-2

Based on the TCGA CRC cohort, we carried out a GSEA
analysis to explore the difference between TNM stage I/II CRC
patients in cluster-1 and cluster-2, and the results showed that
gene sets of HALLMARK_INFLAMMATORY_RESPONSE,
HALLMARK_COMPLEMENT, HALLMARK_INTERFERON_
GAMMA_RESPONSE, HALLMARK_INTERFERON_ALPHA _
RESPONSE, HALLMARK_ALLOGRAFT_REJECTION, HALL
MARK _IL6_JAK_STAT3_SIGNALING, HALLMARK_IL2_
STAT5_SIGNALING, and HALLMARK_INFLAMMATORY_
RESPONSE were positively enriched in CRC patients in cluster-2
(Figure 3A). Subsequently, 2,374 differentially expressed genes
(DEGs) with p< 0.001 were identified between CRC patients in
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cluster-1 and cluster-2 (Figure 3B). Biological process analysis
showed that these DEGs were mainly involved in immune
regulation, such as innate immune response, T cell co-
stimulation, T cell activation, immune effector process,
lymphocyte
presentation (Figure 3C). In addition, KEGG pathway analysis

migration, and antigen processing and
exhibited that most DEGs participated in immune-related
signaling pathways, such as T cell receptor signaling pathway,
natural killer cell-mediated cytotoxicity, PD-L1 expression and
PD-1 checkpoint pathway in cancer, and chemokine signaling

pathway (Figure 3D).

Validating the distinct immune regulation
systems between TNM stage I/Il CRC
patients in cluster-1 and cluster-2

The GSE17536 and GSE39582 datasets were used to validate
the distinct immune regulation between TNM stage I/II CRC
and cluster-2. GSEA analysis of
GSE17536 showed that the immune-associated gene sets

patients in cluster-1
were positively enriched in CRC patients in cluster-2
(Figure ~ 4A).  Consistently, =~ GSEA of
GSE39582 exhibited that the immune-associated gene sets
were negatively correlated with CRC patients in cluster-1
(Supplementary Figure S2A). Subsequently, 1,466
3,419 DEGs with p< 0.001 between CRC patients in cluster-
1 and cluster-2 were identified in GSE17536 and GSE39582,
respectively (Figure 4B, Supplementary Figure S2B). Biological
process analysis based on GSE17536 and GSE39582 both
showed that part DEGs were also associated with immune

analysis

and

regulation, such as positive regulation of T cell proliferation
and positive regulation of IL-8 production (Figure 4C,
Supplementary Figure S2C). Moreover, KEGG pathway
analysis demonstrated that part DEGs in GSE17536 and
GSE39582 both participated in immune-related signaling
pathways, such as TNF signaling pathway, natural killer cell-
mediated cytotoxicity, PD-L1 expression and PD-1 checkpoint
pathway in cancer, and chemokine receptor interaction
(Figure 4D, Supplementary Figure S2D). Therefore, the
different immune regulations were partly responsible for the
discrepant prognosis of TNM stage I/II CRC patients.

The discrepant tumor microenvironments
between TNM Stage I/lIl CRC patients in
cluster-1 and cluster-2

To investigate the tumor microenvironments between CRC
patients in cluster-1 and cluster-2, we first calculated their
microenvironment scores based on the TCGA CRC cohort.
The results showed that the microenvironment scores were
significantly upregulated in TNM stage I/II CRC patients in
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cluster-2 compared with that in cluster-1 (Figure 5A).
Subsequently, we analyzed the immune scores and stromal
scores. Intriguingly, we found the immune scores, rather than
stromal scores, were significantly elevated in CRC patients in
cluster-2 (Figures 5B,C). Next, we compared the infiltrated levels
of immune cells between the two groups based on four
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algorithms. As shown in Figure 5D, most immune cells were
significantly enriched in CRC patients in cluster-2, such as CD8*
T cells, Tregs, resting NK cells, tumor-associated macrophages
(TAMs), and resting mast cells.

To validate our findings, the GSE17536 dataset was analyzed.
As shown in Figures 5E-G, the microenvironment scores,
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immune scores, and stromal scores significantly
upregulated in TNM stage I/II CRC patients in cluster-2

compared with that in cluster-1. In line with the above

were

results, the infiltrated levels of most immune cells were
significantly higher in CRC patients in cluster-2 than those in
cluster-1 (Figure 5H). Overall, our results indicated that the
different prognoses of TNM stage I/Il CRC patients in two
subgroups were partly attributed to their distinct tumor
microenvironment.
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Exploring the dysregulated immune
signaling and differentially infiltrated
immune cells in CRC through ScCRNA
sequencing

A single-cell RNA (scRNA) sequencing data enrolled from
GSE146771 were analyzed to further explore the dysregulated
immune signaling and differentially infiltrated immune cells in
CRC. Firstly, 10,468 cells collected from normal adjacent tissue
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(NATSs), CRC tissues, and peripheral blood mononuclear cells
(PBMC), were well divided into 15 cell subtypes and the
corresponding marker genes were exhibited (Figures 6A,B).
Intriguingly, these immune cells, such as Tregs, CD8+T cells,
B cells, TAMs, and mast cells, whose infiltration levels were
significantly elevated in TNM stage I/II CRC patients of cluster-2
were also enriched in CRC tissues compared to NATSs
(Figure 6C). Our previous GSEA analysis based on bulk RNA
sequencing data exhibited that several immune-associated gene
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sets were positively enriched in cluster-2. Interestingly, scRNA
sequencing analysis revealed that these gene sets were enriched in
these immune cells whose infiltration levels were significantly
elevated in CRC tissues and in CRC patients of cluster-2,
including HALLMARK_INFLAMMATORY_RESPONSE,
HALLMARK_COMPLEMENT, HALLMARK_INTERFERON_
GAMMA_RESPONSE, HALLMARK_INTERFERON_ALPHA
RESPONSE, HALLMARK_ALLOGRAFT_REJECTION, HALL
MARK_IL6_JAK_STAT3_SIGNALING, HALLMARK_IL2_
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FIGURE 6

Sc-RNA sequencing of the dysregulated immune signaling and differentially infiltrated immune cells in CRC tissues. (A) The identified
15 subtypes of cells collected from normal adjacent tissue (NAT), CRC tissue, and peripheral blood mononuclear cell (PBMC). (B) The hallmark genes
of each cell subtype. (C) The enrichment of each cell subtype in NAT, CRC tissue, and PBMC. (D) The distribution of immune-associated gene sets in

each cell subtype identified by single-cell GSEA analysis.

STAT5_SIGNALING, and HALLMARK_INFLAMMATORY_
RESPONSE (Figure 6D). Our scRNA sequencing analysis
demonstrated that the dysregulated immune signaling was

mainly enriched in differentially infiltrated immune cells in

CRC patients of cluster-2.
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TNM stage I/Il CRC patients in cluster-2
were more suitable for ICB treatment

Subsequently, we examined the expression of immune
checkpoint genes. Analysis of the TCGA CRC cohort and
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TNM stage I/Il CRC patients in cluster-2 were more suitable for ICB treatment. (A) The heatmap of differentially expressed immune checkpoint
genes between CRC patients in cluster-1 and cluster-2 based on the TCGA CRC cohort. (B) The heatmap of differentially expressed immune
checkpoint genes between CRC patients in cluster-1 and cluster-2 based on the GSE122969 dataset. (C) The Chi-square test of MSI status between
TNM stage I/l CRC patients in cluster-1 and cluster-2 based on the TCGA CRC cohort. (D) The identified nine subtypes of immune cells
collected from xenograft before and after ICB treatment. (E) The hallmark genes of each subtype of immune cells. (F) The change of cell subtypes in
xenograft before and after ICB treatment. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

GSE17536 dataset revealed that most immune checkpoint genes
were significantly upregulated in TNM stage I/II CRC patients of
cluster-2 compared with that of cluster-1 (Figures 7A,B). In
addition, the Chi-square test revealed that CRC patients in
cluster-2 own more high or low microsatellite instability
(MSI-H/L) status and less microsatellite stability (MSS) status
compared to those in cluster-1 (p < 0.001) (Figure 7C). Given the
high infiltrated levels of CD8+T cells in cluster-2 patients, based
on scRNA sequencing data of the GSE122969 dataset, we
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simulated the changes of CD8+T cells in tumors before and
after immune checkpoint blockade (ICB) treatment. Firstly,
5457 immune cells achieved from the tumor-bearing
(MC38 cells) mice before and after anti-PD-1/TIM3 treatment
were well divided into nine cell subtypes (Figure 7D). The
corresponding marker genes of cells were exhibited in
Figure 7E. As shown in Figure 7F, the infiltrated CD8+T cells
in CRC tissues were naive CD8" T cells (CD8Tn) and after ICB
treatment, more central memory CD8" T cells (CD8Tcm),
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effective CD8" T cells (CD8Teff), and exhausted CD8* T cells
(CD8Tex) were enriched in tumor tissues. Taken together, our
results uncovered that TNM stage I/IT CRC patients in cluster-2
were more suitable for ICB treatment.

Discussion

For decades, the AJCC TNM classification system provides a
guideline for surgical resection, adjuvant chemotherapy, as well as
patient outcomes for a variety of cancers (Locker et al, 2006).
However, unusual clinical outcomes are often observed in patients at
TNM stage I/II (Nagtegaal et al, 2011; Cadiz et al, 2018). For
instance, the prognosis of part CRC patients at stage IT was worse
than that at stage ITI (Hari et al., 2013). In this study, we verified that
TNM stage I/II CRC patients can be well divided into two novel
subgroups with distinct overall survival rates. Besides, there was even
no difference in prognosis between CRC patients in cluster-2 and
advanced CRC patients. Therefore, the therapeutic strategy for TNM
stage I/II CRC patients in cluster-2 should be different from that in
cluster-1.
that  the
microenvironment plays a critical role in tumor progression and

Emerging  evidence  uncovered tumor
that the pre-existing antitumor adaptive immune reaction is vital for
patient survival (Galon et al., 2006). For example, tumor cells can
enhance  macrophage-mediated ~ immunosuppression  and
subsequently suppress CD8" T cytotoxic function to accelerate
metastasis (Zhuang et al, 2020). Similarly, our results revealed
that the DEGs between TNM stage I/II CRC patients in cluster-1
and cluster-2 mainly participated in immune-related biological
processes and signaling pathways. Subsequently, we discovered
that more immune cells infiltrated the tumor tissues of CRC
patients in cluster-2 compared with that in cluster-1, such as
Treg cells, mast cells, TAMs, CD8" T cells, and B cells. Treg cells
suppress abnormal/excessive immune responses to maintain
immune homeostasis (Kumar et al., 2020). Treg cells are often
involved in tumor development and progression by inhibiting
antitumor immunity (Ohue and Nishikawa, 2019). TAMs are
also critical regulators of tumors and are significantly associated
with metastasis and drug resistance of cancer cells (Guan et al., 2021;
Ma et al,, 2021). Recently, the advances in macrophage-based cancer
immunotherapy have attracted more and more attention
(Baradaran et al, 2022). For example, Wang et al. have
TAM-targeted

biomimetic system to reprogram tumor immunosuppressive

constructed an  engineering  endogenous
microenvironment and enhance chemo-immunotherapy (Wang
et al,, 2021).

As we know, active CD8"* T cells bind and kill tumor cells
by secreting granzymes, perforin, and cathepsin C (Basu et al.,
2016). Interestingly, the infiltration levels of CD8" T cells were
also markedly upregulated in TNM stage I/II CRC patients of
cluster-2 whose prognosis was poor. ScCRNA sequencing

technology provided a possibility to deeply analyze the
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the
traditional opinions. For example, oncogenic and tumor-

subtypes of various cells which often changed
suppressing fibroblasts and macrophages were uncovered in
the same tumor tissues (Sebastian et al., 2020; Liang et al,,
2021). Based on scRNA sequencing, our study revealed that
most infiltrated CD8" T cells in tumor tissues were exhausted
CD8" T cells that have lost their cytotoxicity. Tumors can
induce CD8" T cell exhaustion and inhibit its activation via
expressing immune escape factors, such as PD-L1 (Zhang
et al,, 2018). Recently, the antibody-based ICB treatment
has been applied to improve CD8* T cells’ priming ability
and to establish a durable and efficient antitumor immunity
(Borstetal., 2018). ICB does not act on the tumor cell itself but
directs membrane ligands or receptors to enhance T cell
response (van de Ven and Borst, 2015). We discovered that
most immune checkpoint genes were upregulated in TNM
stage I/II CRC patients in cluster-2, suggesting that these
patients may be more suitable for ICB treatment. To
validate our hypothesis, we then simulated the changes of
CD8* T cells in CRC tissues before and after ICB treatment
based on scRNA-sequencing. We found that after ICB
treatment, more activated CD8 + T cells (CD8Tcm and
CD8Teff) infiltrated tumor tissues. Although our study
provided theoretical support, whether ICB treatment could
improve the prognosis of TNM stage I/II CRC patients in
cluster-2 should be further investigated in clinical trials.

Indeed, there were several limitations in our study. First,
although multiple independent datasets were enrolled to confirm
the correctness of the data, it was better to personally detect these
parameters. Second, it is necessary to consider the expense and
the testing period about the classification when our findings were
applied to clinical practice. Third, whether TNM stage I/II CRC
patients in cluster-2 were more suitable for ICB treatment should
be further validated in clinical.

In conclusion, based on bulk RNA sequencing and scRNA
sequencing, we first reclassified CRC patients at TNM stage
I/II into two novel subgroups with different overall survival
rates, tumor microenvironment, and response to ICB

treatment.
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