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Introduction: The use of automation and sensor-based systems in livestock

production allows monitoring of individual cows in real-time and provides the

possibility of early warning systems to take necessary management actions against

possible anomalies. Among the different RT monitoring parameters, body weight

(BW) plays an important role in tracking the productivity and health status.

Methods: In this study, various supervised learning techniques representing different

families ofmethods in themachine learning spacewere implemented and compared

for performance in thepredictionof bodyweight from3D imagedata in dairy cows. A

total of 83,011 records of contour data from 3D images and body weight

measurements taken from a total of 914 Danish Holstein and Jersey cows from 3

different herds were used for the predictions. Various metrics including Pearson’s

correlationcoefficient (r), the rootmeansquarederror (RMSE), and themeanabsolute

percentage error (MAPE) were used for robust evaluation of the various supervised

techniquesand to facilitatecomparisonwithother studies. Predictionwasundertaken

separately within each breed and subsequently in a combined multi-breed dataset.

Results and discussion: Despite differences in predictive performance across the

different supervised learning techniques and datasets (breeds), our results indicate

reasonable prediction accuracies with mean correlation coefficient (r) as high as

0.94 andMAPE and RMSE as low as 4.0% and 33.0 (kg), respectively. In comparison

to the within-breed analyses (Jersey, Holstein), prediction using the combined

multi-breed data set resulted in higher predictive performance in terms of high

correlation coefficient and low MAPE. Additional tests showed that the

improvement in predictive performance is mainly due to increase in data size

from combining data rather than the multi-breed nature of the combined data. Of

the different supervised learning techniques implemented, the tree-based group of

supervised learning techniques (Catboost, AdaBoost, random forest) resulted in the

highest prediction performance in all the metrics used to evaluate technique

performance. Reported prediction errors in our study (RMSE and MAPE) are one

of the lowest in the literature for prediction of BW using image data in dairy cattle,

highlighting the promising predictive value of contour data from 3D images for BW

in dairy cows under commercial farm conditions.
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Introduction

Over the past decades, one of the major changes the dairy

sector has witnessed has been a reduction in the number of farms

with a simultaneous increase in the average herd size (Lowder

et al., 2016; Martin and Egon, 2018). With such increases in the

average herd size, individual cow management, as well as

measurement for traits of interest, is becoming more

challenging and labor demanding (Barkema et al., 2015). As a

result, the application of automation and sensor systems has

increased among dairy farmers as a means to reduce labor costs

and improve the management of large herds (Bewley, 2010;

Eastwood et al., 2016; Milkevych et al., 2022).

The use of automation and sensor systems in livestock

production, commonly termed precision livestock farming (PLF)

(Friggens and Thorup, 2015; Berckmans, 2017), allows monitoring

of individual cows in real time (RT) and provides the possibility of

early-warning systems to take necessary management actions

against possible anomalies (Song et al., 2018). Among the

different RT-monitoring parameters, body weight (BW) plays an

important role in tracking the productivity and health status and

provides an insight into lactating cows’ energy balance of individual

cows (Mäntysaari and Mäntysaari, 2015; Lassen et al., 2018). It is an

integral trait determined mostly by an individual’s genetics and

feeding conditions and is subject to temporal variability due to

several factors such as physiological state (such as lactation), health

status, and other environmental stressors (de Vries et al., 1999;

Collard et al., 2000; Mäntysaari and Mäntysaari, 2015). Monitoring

BW can allow farmers to make management decisions aimed at

early interventions regarding cows’ health status (van der Tol and

van der Kamp, 2010).

Several studies explored the possibility of predicting BW

using animal morphological features acquired with novel

approaches including computer-vision techniques (Song

et al., 2018; Jang et al., 2020; Weber et al., 2020). Such

approaches cover a variety of techniques to generate

predictive features based on dairy cows’ morphology. In

particular, contour data based on 2-dimensional (2D) vision

(Weber et al., 2020), thermal vision (Stajnko et al., 2008), stereo

vision using multiple calibrated 2D cameras (Tasdemir et al.,

2011), and 3-dimensional (3D) vision using one or multiple 3D

cameras have been previously explored (Marinello et al., 2015;

Salau et al., 2016; Song et al., 2018; Jang et al., 2020).

Investigation on the promise of computer vision for the

prediction of BW in cattle remains a dynamic research topic

where combined efforts promise better prediction accuracy

toward mainstreaming image-based systems for prediction

and monitoring BW in dairy cattle. However, a comparison

across studies in predictive performance is hampered by the use

of different data sizes and structures (time-series (TS), single-

record samples, etc.), different breeds of cattle, inconsistent use

of validation and data-split strategies, as well as metrics to

compare model performance (Pearson’s correlation coefficient,

R2, root mean squared error (RMSE), the mean absolute

percentage error (MAPE), the average magnitude of error

(MAE), etc.).

Additionally, previous studies on the prediction of BW in cattle

based on digital image data mostly used general linear regression

models (e.g., Tasdemir et al., 2011; Jang et al., 2020). However, the

linear regression methods have been shown to have limitations in

handling several predictors, as in the case of automated high-

throughput phenotyping, with complex and often nonlinear

relationships among these predictors (Comrie, 1997). In

comparison, machine-learning (ML) techniques are shown to be

better in handling big data and modeling several predictors

simultaneously addressing the issue of non-linearity among

variables (Shahinfar and Kahn, 2018). The ML is a fast evolving

research area and numerous supervised and unsupervised learning

techniques with potential application to livestock phenomics are

proposed. Nonetheless, only a handful of such techniques are applied

to the prediction of BW from image data in dairy cattle (Shine and

Murphy, 2022). Moreover, the few studies available on prediction of

BW in dairy cattle were breed-specific; all of which focused on the

Holstein breed (Tasdemir et al., 2011; Kuzuhara et al., 2015; Hansen

et al., 2018; Song et al., 2018). To the best of our knowledge, no study

investigated predictive ability image data for BW in the Jersey dairy

cattle or used a combined Jersey–Holstein dataset.

In this study, by using one of the largest training datasets

used for the prediction of BW in the literature (> 80,000 records

from two dairy cattle breeds and three different commercial

farms), we investigate the performance of various supervised

learning techniques in the prediction of dairy cattle BW using

contour data from 3D images. We implement various data-

filtering and -splitting methods that accommodate time-series

data and used various metrics (Pearson’s correlation coefficient;

RMSE, MAPE, etc.) for a robust evaluation of the prediction

ability of the various supervised learning methods used in this

study.

Materials and methods

Ethics approval statement

All procedures to collect 3D images and body weight data

were based on non-invasive methods as part of routine farm

management and hence, no specific permission was required.

The methods implemented in this study involved eight major

steps for image acquisition and processing as well as data filtering

and model fitting (Figure 1).

Sampled cows and body weight data

Data used in this study included a total of 83,011 records of

contour data from 3D images and BWmeasurements taken from
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a total of 914 Danish Holstein and Jersey lactating cows from

three different herds (WO 2020260631A1, 2020). Of the

914 cows used for obtaining image and BW data, 521 cows

were from the Danish Holstein and 393 from the Danish Jersey

breeds. The data for the Jersey cows were from two different

commercial farms while all the Holstein data came from a single

separate farm in Denmark. The number of cows and the

distribution (range and mean) of the number of records

available per cow in each breed and in the combined

Holstein–Jersey dataset are presented in Table 1. The age of

the cows during the data collection ranged between 22 and

136 months. BW was measured using a weighing scale

installed on the route after the milking parlor in such a way

that the BW of passing individual cows is always recorded right

after being milked.

3D digital image acquisition and
processing

The reference unit consists of a single 3D camera using Time

of Flight technology (Microsoft Xbox One Kinect v2) to create a

3D image and a Radio Frequency Identification (RFID) reader

(Agrident Sensor ASR550). A DELL T630 128 GB RAM server

with a 3090 RTX graphics card was used for the data analysis.

These were installed in a narrow corridor with a time-based

trigger system that allocates all images taken within 3 s of reading

an RFID to the associated ear tag. This system ensured that one

reference image was obtained from each cow when they passed

through the corridor. The corridor has been narrowed further

than a normal exit corridor to avoid anomalies during image

acquisition; for instance, two cows exiting together or cows

turning around and exiting at oblique angles. The 3D camera

was placed at a height of 3.4 m above floor level, directly above

the passing cows. At the same position as the camera, a bespoke

walking scale (Eziweight S2) was installed to make individual BW

recordings of the cow that was passing. The scale was calibrated

to 50 and 100 kg using two 50 kg blocks.

Before any cows enter the system, the fixed interior in the

image of an empty corridor is annotated. In that way, anything

that enters an image will be noticed as a change from the

annotated picture and be considered a cow. The first step in

the image process is to estimate features from the geometric

information in the 3D images, which are useful for separating the

individuals. All points within the cow circumference are located

in a point cloud, so each pixel in this region of the 3D image is

transformed into the corresponding spatial 3D coordinates. The

calibration procedure is primarily done to remove distortions

due to perspective.

The process starts by finding the circumference and spine of

the cow in the raw uncorrected 3D images. The circumference is

defined as the last pixel before the image sees the annotated floor.

Across the back of the cow, the highest point is found and named

the spine. This is simply the highest point across the whole

corridor. Figure 2 presents an image of the corridor where 3D

images are taken (A), an example cow in the corridor (B), and a

heatmap of the highest point on the spine of the example cow (C).

The feature generation process starts by finding the points on the

FIGURE 1
A flowchart of all the steps involved in the image acquisition, processing, and prediction of body weight.
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corrected depth image lying 3, 5, 10, and 15 cm below the spine

level of the cow. So how far left or right respectively should you go

from the spine to drop 3, 5, 10 or 15 cm is given. This describes

the contour of the back of each cow. Because of the length

standardization descripted previously, 100 spots are placed for

each of the 3, 5, 10, and 15 cm features. In total, 900 spots for each

image. The variables used to predict BW are the distance between

3, 5, 10, and 15 cm, respectively, from left to right across the spine

of the cow. The height is measured perpendicular to the spine of

the cow to make the features invariant with respect to position

and orientation. Cubic smooth splines are fitted to the points

corresponding to each distance to reduce noise.

An illustration of some of the acquired images and examples

of these contours are presented in Figure 3. The raw spine

features are generated by measuring the distance between the

intersection of the spine normal and the spines on each side of the

cow. The raw spine features are normalized to correct for

anatomically differences. All programming was carried out

using the Python software.

Data filtering

Data used in this study include (i) the sets of individual time

series (TS) of cows’ BW measurements and (ii) associated sets of

contours (resulted from image processing) for each individual’s

TS records. The data records include some proportion of

unavoidable incorrect records due to on-site measurements

(improper position of cows on weighing scale, malfunctions in

the weighing scale, image quality, etc.). Therefore,

implementation of data filtering, considered here as detection

and removal and/or imputation of incorrect records, is an

important primary step in the automated data processing

pipeline.

The methods used in our study for filtering data were, to

some extent, based on prior knowledge of BW characteristics in

Jersey and Holstein dairy cows such as expected average of BW at

a specific age and breed-specific growth rates. That means, the

prior information was used in tuning and/or adapting the

selected filtering methods to handle TS data of BW records.

The records (of cows’ weights) are provided with (i) herd and

farm conditions; (ii) animals’ ages; and (iii) breed-specific

characteristics of growth dynamics.

Three different filtering approaches were used and tested for

the best performance (filtering quality) in the study. The first

approach was based on the modified Z-score (ZS) method

(Iglewicz and Hoaglin, 1993).

The time-series body weight data for a specific cow is

the sequence of records sampled continuously within a

specified time interval ΔT: Dj � (ti, wi) | ti ∈ [t1, tn],{
tn � t1 + nΔT; ΔT � const; i � 1, . . . , n}, where ti is the time

the body weight wi is measured, n is the number of records,

and j � 1, . . . , m where m is the number of cows studied. Note

that, the data Dj are not necessary to be complete in the sense of

all (ti, wi) pairs exist, these are the missing records.

Assume that W ~ N(μw, σ2w), where W ⊂ Dj is the body

weight subset of Dj, μw is the mean ofW , and σ2w is the variance

of W; then Z ~ N(0, 1), where Z � (W − μ)/σ. The Z-scores of
the records wi{ } can be defined as (Iglewicz and Hoaglin, 1993)

zi � wi − μp( )/s,
where μp is the sample median, s is the estimator defined as the

median of the absolute deviations about the sample median

normalized by the constant

s � mediani wi − μp
∣∣∣∣ ∣∣∣∣{ }

0.6745
.

The normalization constant 0.6745 is required because the

expectation E(mediani |wi − μp|{ }) equals 0.6745σ for a large n

(Iglewicz & Hoaglin, 1993).

Finally, the records are labeled outliers when the following

condition is satisfied:

zi| |> τZS,

where τZS is a predefined threshold value which is evaluated in

relation to the prior information, such as breed- and age-specific

median weight of a particular TS. In this study, the threshold

range was τZS � 2.0 − 3.5.

The second-implemented data-filtering approach (CL1) was

based on the mean shift clustering (MSC) algorithm (Comaniciu

and Meer, 2002). Here, the appropriate use of MSC in the case of

Dj is based on the assumption that the subset Wr ∈ W of the

records (where subscript r indicates records are not outliers)

forms a unique cluster while other records (the outliers) form one

or more clusters separated from the Wr-cluster.

TABLE 1 The number of cows and the distribution (min, mean, and max) of the number of records per cow in each breed and the combined dataset.

Breed No. of cows No. of records No. of records per cow

Mean Min Max

Jersey 393 31,935 81 1 263

Holstein 521 51,076 98 2 241

Combined 914 83,011 91 1 263
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As in the case of the ZS method, we use only theW subset of

Dj (the BW records for a specific cow without time stamps). Such

one-dimensional data are further subjected to the MSC

algorithm. Here, we refer to Comaniciu and Meer (2002) for

all the mathematical details of the algorithm. In our study, we use

the sklearn.cluster python module for the practical

implementation of the MSC algorithm.

Finally, the resulting cluster is not labeled outlier when the

following condition is satisfied:

τCL1 − σCL1 ≤ w̃c ≤ τCL1 + σCL1,

where w̃c is the cluster specific median weight, τCL1 is the

threshold based on breed- and age-specific weight

expectations (in this case, within-breed and age mean weights

from the data), σCL1 is the standard deviation of the threshold.

The third data-filtering approach was based on clustering

using the dynamic changes of animals’ weights, such as expected

breed-, age-, and farm-specific daily weight gain (CL2).

Let us suppose that the initial record

Dj0 � (tl, wl) ∈ Dj, l � 1, .., k; k≪ n{ }, where k is the number

of selected initial records, consists of both correctly measured values

and outliers. Furthermore, we assume that the outliers inDj (as the

results of measuring errors) are determined by the same factors.

Data clustering is realized by iterative calculation of the

dynamical BW change for every pair (ti, wi) in Dj using

(tl, wl) ∈ Dj0 as the starting (reference) values; and compare

the calculated estimates to the expected dynamical changes.

Hence, the clustering is based on whether the records are

lying within the expected temporal changes of BW gain/loss

(specific for a known breed, age, and herd conditions) or not.

Initially, the procedure creates two cluster sets which are

subjected to the same iterative procedure aimed at finding

possible embedded clusters (checking if smaller clusters

exist).

The following estimator is used to estimate the dynamical

change of BW in Dj:

dwi � wi+1 − w0

ti+1 − t0
for i � 0, . . . , n − 1,

where wi+1 and ti+1 are the elements of Dj; w0 and t0 are the

elements of Dj0. Note that the estimates dwi{ }l are calculated k

times using k pairs of Dj0 as fixed w0 and t0 values.

The resulting record is labeled outlier (inherited by the

outlier cluster) when the following condition is satisfied:

dwi| |> τCL2,

FIGURE 2
An illustration of the corridor where the 3D images are taken (A), an example cow in the corridor (B), and a heatmap of the highest point on the
spine of the example cow (C).
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where τCL2 is the breed- and age-specific threshold of the

temporal changes based on prior information. Here, the

threshold-expected daily gain/loss value of 1 kg is used since

the average daily weight changes, due to net energy intake, are

not expected to exceed 1 kg (Jensen et al., 2015).

The general overview of data filtering is represented in

Figure 4 (and more details in Supplementary File S1). In

order to determine the best performing data-filtering method,

all three methods were implemented and analyzed with respect to

the quality of outlier filtering. In this regard, three different

simulation pipelines using three filtered datasets (generated

according to the specific filtering method) were established.

The pipelines involved training and validation of the range of

selected models (see all details further in this section). The

prediction results (BW for each dataset) were subjected to the

quality assessment. Here, the assessment was based on Pearson’s

correlations coefficients between the predicted and observed BW.

Accordingly, results on the predictive performances of the

different models presented in this study are based on the best-

performing data-filtering technique (CL2) based on this

preliminary assessment. A fully functional Python code for

implementing the data-filtering techniques is presented in

Supplementary File S2.

In contrast to the BW records, the contour data have limited

prior knowledge: all contours are expected to be closed, which

means that the first and last records of a normalized distance

(width) should approach zero. We used this information for

contours’ records filtering and imputation (recover missing

records). Because no additional information was available

regarding the shape of the contours’ curves, we used simple

linear approximation to detect outliers and complete (impute)

the missing/incorrect contours’ records (Figure 4B).

Training and validation strategies

Predictive ability of contour data from 3D images for BW

in dairy cows was first investigated separately within each

FIGURE 3
An illustration of the data from an image after correction for the annotated floor. All images are standardized in length and width. The highest
point across the image is the spine and these points can be found all the way down the back. Afterward, the distance you have to go left or right
respectively to drop 3, 5, 10 and 15 cm is found, and again, 100 points are found and noted. The data used to predict bodyweight are the distance
from left to right between the 3, 5, 10 and 15 cm point.

TABLE 2 Descriptive statistics of the BW measured in Jersey and Holstein cows, as well as the combined dataset.

Farm/breed Body weight (BW)

Min (kgs) Max (kgs) Mean (kgs) CV (%)

Jersey 354 748 558.4 14.4

Holstein 414 942 690.3 12.3

Combined 354 942 646.7 17.4

CV, coefficient of variation.
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breed and subsequently in the combined multi-breed

(Holstein–Jersey) dataset. Within each dataset (Jersey,

Holstein, and combined), splitting the data into training

and test sets was the first step in the implementation of the

prediction models. Accordingly, we implemented approaches

including the traditional time-series approach (TS), a

modified version of the time-series approach (TS2), and an

approach randomly splitting data (RA) for splitting the data

into training and test sets. The first two scenarios were based

on time-series data splitting such that observations from the

training set occurred before their corresponding test set.

These were implemented in a two-step manner, such that,

the first 80% of cows were randomly selected and records for

each of these cows were sorted according to timestamps, while

the remaining 20% cows were held out as the test set.

Subsequently, for these randomly selected cows, 80% of the

records with the earliest timestamps were selected for training.

The remaining 20% records from these randomly selected

cows were either discarded (TS) or added to the test set (TS2).

Therefore, the main difference between scenario 1 (TS) and

scenario 2 (TS2) was whether later records of cows in the

training set were included in the test set. In addition, a third

data-split scenario was implemented by randomly selecting

80% of individuals for training and excluding all their records

from the test set, while the remaining 20% were used as the test

set (RA).

In the traditional time-series prediction, usually a part at

the end of each series is reserved and not used during model

generation for later use in model evaluation. This is often

called out-of-sample evaluation (Tashman, 2000). Whereas,

in machine-learning studies, cross-validation is the most

widely used tool in the evaluation of regression and

classification methods; studies have demonstrated

practical problems and violations of important

assumptions such as stationarity in time-series data

(Bergmeir and Benítez, 2012). Therefore, here in this

study, we apply, in addition to the RA and TS approaches,

a modified TS approach in a two-stage manner where we first

take a random sub-sample of the data (80%) at a time and

apply time-series approaches to split the data into training

and test sets. That way, we were able to undertake repeated

evaluations (replicates) and still use a part at the end of each

series for validation. Except for the predictions using the

linear regression techniques (LR, RR, and, to some extent,

LA), the modified time-series approach (TS2) for splitting

data into training and test sets resulted in higher correlation

between predicted and observed BW and low RMSE and

MAPE values across the datasets.

FIGURE 4
General overview of the results of data-filtering and imputation. (A) Changes of body weight over time for the combined datasets (all data
depicted in the plot) for Jersey and Holstein; here the original (raw) data is represented by red dots; the same data but without outliers are
represented by the blue dots; the outliers were filtered out using the CL2 method. (B) An example of imputation of contour data for a specific
(randomly selected) cow; here, the blue dots indicate the original contour data resulting from the image processing; the red dots indicate an
imputed data for the missing records in the original contour data; the plot depicts the complete dataset (for the selected cow) which will be used for
modeling; the different colors shown in the plot are just to highlight the imputed part of the contour data. (C), (D) Two examples of body weight
changes over time for the randomly selected cows; here, the original (depicted by the red dots) data and the data without outliers (the blue dots) are
shown together.
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Supervised learning techniques

Several methods chosen to represent different families of

techniques in the supervised learning space were compared for

predictive performance of BW using contour data.

Linear regression

Here, we used the ordinary linear regression (LR) and the

regularization techniques of ridge regression (RR) (Hoerl and

Kennard, 1970) and the Least Absolute Shrinkage and Selection

Operator regression (LASSO) (Tibshirani, 1996). The linear

regression method is one of the most widely deployed tools

for predicting a quantitative response (James et al., 2013), and is

often used as a benchmark method in comparing the

performance of other ML methods. The RR and LASSO are a

family of the linear regression technique with regularization of

parameters in the linear regression fit.

Tree-based regression

We have chosen the random forest (RF) (Ho, 1995) and

decision tree (DT) regressors as well as boosting approaches as

representatives of the tree-based family of supervised learning

techniques. The tree-based methods are a group of supervised

learning techniques that is getting increasing popularity in

computational biology (Geurts et al., 2009) and represents the

most frequent-used family of techniques in the ML

applications to the livestock space (Shine and Murphy,

2022). Regression trees have previously been used for BW

prediction in different livestock species including cattle (e.g.

Topal et al., 2010). While regression trees are relatively simple

for implementation and interpretation, prediction accuracies

have often been lower than other supervised learning

techniques (James et al., 2013). In contrast, methods such

as random forests and boosting use trees as building blocks to

construct more powerful prediction models by aggregating

many decision trees. Therefore, in addition to the random

forest model, we implement two boosting approaches

(Adaptive Boosting (AB) and Catboost (CB)) in this study.

Catboost (Ostroumova et al., 2018) is developed for an

unbiased boosting with categorical features. However,

studies have implemented and demonstrated how well-

suited CatBoost is for regression problems involving time-

series data (Kolesnikov et al., 2019; Hancock and

Khoshgoftaar, 2020). For the RF and DT regressors, the

sklearn ccp_alpha parameter for Minimal Cost-Complexity

Pruning was optimized through cross-validation.

Support vector regression

Support vector (SV) machines (Vapnik and Lerner, 1963)

have been extensively used in machine learning, primarily for

classification, and are being increasingly applied for regression as

well (Smola and Schölkopf, 2004).

All implemented supervised learning techniques, except

the Catboost regressor, were imported from their

corresponding packages available in the scikit learn website

(https://scikit-learn.org). The Catboost regressor was

FIGURE 5
Bodyweight (kg) across ages (months) of cows from the three datasets (Jersey, Holstein, and combined breed).
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imported from the open-source Catboost package

(Ostroumova et al., 2018).

Evaluation of predictive performance

Predictive performances of the different models were

quantified by using Pearson’s correlation coefficient (r), root

mean squared error (RMSE), and the mean absolute percentage

error (MAPE) computed as

r � n ∑n
i�1yiŷi( ) − ∑n

i�1yi( ) ∑n
i�1ŷi( )

n ∑n
i�1y

2
i( ) − ∑n

i�1yi( )2√ 
n ∑n

i�1ŷ
2
i( ) − ∑n

i�1ŷi( )2√ , (1)

RMSE �
∑n

i�1 yi − ŷi( )
n

√
, (2)

MAPE � 1
n
∑n

1�1
yi − ŷi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣x 100%, (3)

where yi is the reference BW, ŷi is the predicted weight from the

models, i denotes the ith record, while n is the total record

available.

The prediction was undertaken in ten replicates for each

dataset (Jersey, Holstein, and combined) and data-split scenario

(TS2, TS, and RA), and the average r, RMSE, and MAPE values

were reported.

Results

Descriptive statistics

Descriptive statistics of BW measured in dairy cows

according to the breed and the combined dataset are

presented in Table 2. The Jersey cows had a mean BW of

558.4 kg, while the Holstein cows had a mean BW of 690.3 kg.

The coefficient of variability (CV) observed in BWmeasurements

was comparable in the two breeds while a relatively higher CV

was observed in the combined dataset. Figure 5 presents BW

across ages of cows in the two breeds and the combined dataset.

Predictive performance of supervised
learning techniques

Figures 6–8 present mean correlation coefficients (r)

between predicted and observed BW, RMSE, and MAPE

values, , from 10 replicates across the different datasets,

data-split scenarios (TS, TS2, and RA), and various

supervised learning techniques. In general, while the

prediction performance varied depending on the dataset

(Jersey, Holstein, and combined breeds), learning techniques,

data-split scenario, and reasonable prediction accuracies were

FIGURE 6
Box plots of correlations (r) between the observed and predicted body weight (BW) from predictions in 10 replicates across the different
datasets (Jersey, Holstein, and combined), data-split scenarios (TS2, TS, and RA), and various supervised learning techniques (LR, linear regression;
RR, ridge regression; LA, LASSO; DT, decision tree; SV, support vector machine; AB, Adaboost; RF, random forest; and CB, Catboost).
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achieved with a mean correlation coefficient (r) as high as

0.94 and MAPE and RMSE as low as 4.0% and 33.0 (kg),

respectively. Supplementary File S3 presents Scatter plots of

predictions vs. real live weights in the validation sets across the

learning techniques and data-splitting methods from one of the

ten replicates in the run using the combined data.

Across all datasets and data-split scenarios, the tree-based

group of supervised learning techniques (Catboost, AdaBoost,

and random forest) resulted in the highest prediction

performance in all the metrics used to evaluate the technique

performance, followed by the support vector regression

technique. The tree-based group of supervised learning

techniques also resulted in the lowest standard deviation

between the 10 replicates. Of the tree-based methods,

Catboost resulted in the highest performance in all the

metrics used, while the decision tree regressor resulted in the

lowest prediction performance. In most instances (dataset and

-split scenario), the support vector method outperformed the

decision tree regressor. In the majority of the data-splitting

scenarios and datasets, the linear regression methods (classical

linear regression, ridge regression, and LASSO) resulted in the

lowest prediction performance compared to the rest of families of

supervised learning techniques. Within this family, classical

linear regression showed the lowest performance in the

majority of the scenarios (dataset and data-split method). The

exception was in the Holstein dataset, where the decision tree

regressor resulted in the lowest predictive performance.

Prediction using the linear regression technique was worst in

the dataset with the smallest number of records (Jersey) in terms

of low Pearson’s correlation coefficient ( = 0.12–0.48) and high

RMSE (60–309.8 kg) and MAPE values (6.2–9.8%) across

different data-splitting scenarios.

In general, the predictive performance of supervised learning

techniques varied according to the datasets. Overall, the highest

discrepancy between the learning techniques in predictive

performance was observed within the dataset with a relatively

smaller number of records (Jersey) where the linear regression

group of techniques showed poor performance while the tree-

based models were shown to be highly predictive in terms of all

metrics used to evaluate models. In the combined

(Jersey–Holstein) dataset, where the largest number of records

was used in training the supervised learning techniques, and

differences in predictive performance between the various

supervised learning techniques were modest. Predictive

performance was the highest in the combined dataset

compared to the single-breed Jersey and Holstein datasets

across all implemented models. To test if the improvement in

predictive ability in the combined dataset was due to the increase

in dataset or due to the multi-breed nature of the combined

dataset, we implemented an additional test where multi-breed

data of similar sizes as the single-breed Jersey and Holstein

datasets were used for prediction using 10 replicates. The

results showed that prediction using multi-breed data of equal

sizes to the single-breed datasets led to slightly lower prediction

accuracies in terms of correlation between the predicted and

observed BW. However, the differences were neither statistically

FIGURE 7
Bar plots of the mean root mean squared error (RMSE) values (+ standard error bars) for the different supervised learning techniques (LR, linear
regression; RR, ridge regression; LA, LASSO; DT, decision tree; SV, support vector machine; AB, Adaboost; RF, random forest; and CB, Catboost)
across the different datasets (Jersey, Holstein, and combined) and data-split scenarios (TS2, TS and RA).
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nor significantly different except in the comparison in the Jersey

dataset (combined multi-breed data with equal size as the Jersey

breed dataset) using the LR models.

Predictive performance of the implemented supervised

learning techniques also varied according to the data-split

scenario used to create training and validation subsets

(Supplementary Files S4–S6). In general, higher Pearson’s

correlation coefficients and lower MAPE and RMSE values

were obtained when supervised learning techniques were

trained using the training subset created with the

TS2 method, followed by TS in comparison to the approach

of splitting training and testing subsets randomly (RA).

Discussion

Relative performance of different
supervised learning techniques

Generally, our results indicate marked differences in the

predictive abilities of various supervised learning techniques

depending on the dataset (Jersey, Holstein, and combined

data) and the data-splitting techniques followed. Relatively

higher predictive performance was shown for the tree-based

family of supervised learning techniques compared to a wide

variety of other techniques implemented in this study to

represent different families of methods in the ML space.

Boosting methods such as Catboost as well as the random

forest performed reasonably well in this study. A similar

observation of the outstanding performance of the tree-based

techniques in the prediction of cattle BW using various features

including 3D image data is previously reported (e.g. Weber et al.,

2020). The linear regression group of techniques (LR, RR, and

LASSO) generally performed poorly in our study. In general, the

relative performance and suitability of different supervised

learning techniques may vary, among others, depending on

the nature of the data and the relationship between predictors

and between predictors and the outcome. The linear regression

group of learning techniques tends to perform poorly when there

is a nonlinear relationship between the predictors and the

outcome (James et al., 2013). CatBoost is a gradient-boosted

decision-tree implementation for supervised ML allowing

ordered target statistics and ordered boosting (Hancock and

Khoshgoftaar, 2020). Gradient boosting is a powerful

supervised learning technique that remained an important

method for learning problems with heterogeneous features,

noisy data, and complex dependencies (Ostroumova et al., 2018).

Repeated records of BW from cows ranging between 22 and

136 months of age were used in training the supervised learning

methods in our study. Moreover, the on-access setup of weighing

scales along the path to milking parlors might cause some noise

in the target variable (BW) in such a way that at times, cows

might have placed only the front or rear legs at the time of weight

reading and, in some cases, reading might belong to that of two

FIGURE 8
Box plots of the mean absolute percentage error (MAPE) between observed and predicted body weight (BW) from predictions in 10 replicates
across the different datasets (Jersey, Holstein, and combined), data-split scenarios (TS2, TS, and RA), and various supervised learning techniques (LR,
linear regression; RR, ridge regression; LA, LASSO; DT, decision tree; SV, support vector machine; AB, Adaboost; RF, random forest; and CB,
Catboost).
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cows both placing some of their legs on the floor attached to the

weighing scale. All these combined can introduce heterogeneity

and noise in the data. Different approaches have been followed to

filter noise and enforce rigorous quality control before

implementing the learning techniques. While such approaches

can help detect and remove major outliers, it is not possible to

eliminate all noise in the data. The differences in the predictive

performance of the various learning techniques implemented in

this study might largely be due to such unavoidable noises in the

data used for training.

Data-splitting methods and validation
metrics matter

Our results also showed differences in the predictive

performance of the learning techniques according to the

implemented data-split scenario. Except for the predictions using

the linear regression techniques (LR, RR, and, to some extent, LA),

the modified time-series approach (TS2) for splitting data into

training and test sets resulted in higher correlation between

predicted and observed BW and low RMSE and MAPE values

across the datasets. While both the traditional and modified time-

series data-splitting techniques accounted for the time-series nature

of the data such that observations from the training set occur before

their corresponding test set, they differed regarding the use of a part

at the end of each series for validation. In the traditional time-series

prediction, usually a part at the end of each series is reserved and not

used duringmodel generation for later use inmodel evaluation. This

is often called out-of-sample evaluation (Tashman, 2000); whereas

inmachine-learning studies, cross-validation is themost widely used

tool in the evaluation of regression and classification methods,

studies have demonstrated practical problems and violations of

important assumptions such as stationarity in time-series data

(Bergmeir and Benítez, 2012). The modified-TS approach (TS2)

implemented in this study allowed repeated evaluations while still

using a part at the end of each series as it was applied in a two-stage

manner where we first take a random sub-sample of the data (80%)

at a time and apply time-series approaches to split the data into

training and test sets. That way, we were able to undertake repeated

evaluations (replicates) and still use a part at the end of each series

for validation, and thus allowing for better predictive performance.

The comparison across the studies investigating predictive

abilities of various supervised learning techniques for the

prediction of cattle BW using image data is hampered by the

use of different data sizes and structures (time-series, single-

record samples, etc.), different validation and data-split strategies

as well as the use of different metrics to compare model

performances (r, RMSE, MAPE, etc.).

In our study, the combined use of three metrics (r, RMSE,

and MAPE) to evaluate the different supervised learning

techniques was chosen to ensure comparability with other

studies and for a robust model evaluation as each has

different advantages and limitations. In computational

biology, it is common to use Pearson’s correlation coefficient

(r) as a model selection criterion (González-Recio et al., 2014).

However, a limitation is that Pearson’s correlation does not

address the bias of predictions (González-Recio et al., 2014).

The RMSE is the most popular measure of prediction error which

has been used in several studies on the prediction of cattle BW

using image data (e.g., Song et al., 2018; Jang et al., 2020; Weber

et al., 2020). RMSE is however scale-dependent and hence, a

comparison of results between variables or species is not possible.

The mean absolute percentage error (MAPE) is, on the other

hand, scale-independent and easy to interpret, making it one of

the most popular measures of prediction accuracy (Byrne, 2012;

Kim&Kim, 2016). In our study, the highest Pearson’s correlation

between predicted and observed BW was observed in the

combined Holstein–Jersey dataset. This is expected due to the

large increase in training data from combining the datasets from

the two breeds compared to the within-breed predictions.

However, the lowest RMSE value was observed in the Jersey

dataset where the smallest training data was used compared to

the Holstein or combined datasets. This is due to the fact that

Jersey cows are smaller in size when compared to Holstein cows

as reflected in the mean BW from the two datasets and the scale-

dependent nature of RMSE as an evaluation metric. This suggests

the need for caution in the use of scale-dependent metrics such as

RMSE for comparison of prediction performance even between

different breeds of cattle of the same livestock species.

Combining datasets is advantageous

Generally, studies on the predictive ability of image data for BW

in dairy cattle are scarce, and the few available studies have solely

focused on theHolstein breed (Tasdemir et al., 2011; Kuzuhara et al.,

2015; Hansen et al., 2018; Song et al., 2018). To the best of our

knowledge, no study investigated the predictive ability of image data

for dairy cattle BW using multi-breed data. Moreover, most studies

relied on numerically small data (number of cows and records). For

instance, the image data from 30 or a lower number of cows were

used to predict the BW in Holstein cows in the studies of Song et al.

(2018) and Kuzuhara et al. (2015). The study of Kuzuhara et al.

(2015) used RMSE as the metric to evaluate predictive performance

in a linear regression model and report an RMSE value of 42.65 kg

while Song et al. (2018) reported the lowest RMSE of 41.2 kg and

MAPE of 5.2%. Here in this study, we used a large dataset (> 80K

records) across different breeds (Holstein, Jersey, and combined

multi-breed data) from different commercial farms to investigate the

predictive ability of 3D image data for BW in dairy cattle. We report

one of the lowest RMSE (33 kg) and MAPE (4%) values in the

literature available on the prediction of dairy cattle BW using

contour data from 3D images, indicating that combining data

(from different breeds or farms) to increase the size of learning

data can improve prediction accuracies.
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Often, combining multi-breed data for the prediction of

phenotypes is challenging due to differences in the breeds. In

this study, we show that the increase in data size due to

combining different breeds might offset the disadvantage from

the multi-breed nature of the combined dataset given that the

combined data is substantially larger than the single-breed data.

Several research groups have undertaken studies aimed at

predicting BW in dairy cattle using morphometric

measurements based on different systems, including 3D

images. Across-population combined analysis using available

data in the different research groups might substantially

improve data size to train learning techniques with

substantially reduced prediction errors. Publicly available

repositories and databases that store images and

corresponding biometrics have previously been suggested

(Wang et al., 2021).

Practical implications and the way forward

In general, our study indicates the promising predictive value

of contour data from 3D images for BW in dairy cows under

commercial farm conditions. Depending on the supervised

learning technique and the datasets used, we show reasonable

predictive performances in terms of correlation between

predicted and observed BW (r), RMSE, and MAPE, promising

an automated and high-throughput prediction of BW in dairy

cattle herds.

Use of image data for automated detection of anomalies in

cows’ health status or monitoring other short-term changes in

cows’ BW requires high sensitivity. While our study reports one

of the lowest prediction errors (RMSE as low as 33 kg) in the

literature on prediction of BW using image data for dairy cattle,

these values might still be considered as high in light of early

warning and monitoring systems. However, these RMSE values

are in line with the expected fluctuation in body weight within a

day for Holstein and Jersey cattle. For instance, dry-matter intake

was reported to be approximately between 14 and 20 kg for

Danish Holstein cows and between 11 and 16.7 kg for Danish

Jersey cows (Li et al., 2016). In addition, the maximum average

daily milk yield of 35 and 24 kg/day were reported for Danish

Holstein and Jersey cows, respectively (Halachmi et al., 2011). A

Holstein cow requires 4–5 kg of water per kg of milk yield (www.

lely.com). Therefore, given all these factors introducing massive

fluctuations of body weight within a day, the RMSE values

reported in this study are within the expected daily weight

fluctuations for Holstein and Jersey cows.

Of all potential reasons for higher prediction errors,

erroneous records might be difficult to eliminate completely

and thus cost prediction accuracies. In this study, we

preliminarily assessed three different data-filtering techniques

for prediction accuracy and presented results based on data-

filtered using the high-rankingmethod (CL2). Despite a relatively

better performance of this outlier detection technique compared

to the other two implemented, some irregularities still persist in

the filtered data. We used time-series data where some

individuals have hundreds of records in different time periods

whereas others have only one or few records. High variability was

observed in the BWmeasurement in cows (records) measured at

an early age compared to later ages (as shown in Figure 5).

Efficient outlier detection and missing-value-interpolation

techniques need to be developed to rigorously filter such time-

series data. Furthermore, as previously suggested by Nir et al.

(2018), considering additional features, based on the image or

other data sources, and introducing deep artificial neural network

algorithms might allow further improvement in the prediction

accuracy of various livestock phenotypes using computer-vision.

Conclusion

Using a multi-breed dataset consisting of over 80,000

records of contour features from 3D images and BW data, our

study reaffirms the promise of image data for rapid and high

throughput prediction of BW in dairy cattle. The study

implemented and compared the predictive performance of

various supervised learning techniques using different

metrics and in both within-breed and combined-breed

datasets. Our results indicate that combining datasets from

different breeds and farms allowed improved prediction

accuracy. Our study also show that the tree-based learning

techniques, including Catboost and random forest led to

higher predictive performance, in terms of higher

Pearson’s correlation coefficients between predicted and

observed BW as well as lower RMSE and MAPE values.

Reported prediction errors in our study (RMSE and

MAPE) are one of the lowest in the literature for

prediction of BW using image data in dairy cattle,

highlighting the promising predictive value of contour data

from 3D images for BW in dairy cows under commercial farm

conditions. Further increasing training data size and

development of efficient and tailored outlier detection

techniques could allow further reduction of prediction error.
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