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Background: The expression of INMT (indolethylamine N-methyltransferase)

has been reported to be downregulated in non-small-cell lung cancer (NSCLC).

However, the role of INMT in NSCLC remains elusive. We aim to investigate the

underlying mechanisms and clinical value of INMT in NSCLC, especially in lung

adenocarcinoma (LUAD).

Methods:Gene expression cohorts from The Cancer Genome Atlas (TCGA) and

Gene Expression Omnibus (GEO) were analyzed to assess the effect of INMT on

NSCLC. Gene expression data from an immunotherapy cohort were used to

investigate the association of INMT with immunotherapy in NSCLC.

Results: INMT expression was significantly downregulated in NSCLC compared

with adjacent normal tissues. Downregulated INMT was associated with poor

overall survival in LUAD, but not in lung squamous carcinoma. Multivariate Cox

regression analysis suggested that INMTwas an independent prognosticmarker

in LUAD. INMT had a reference value in the diagnosis and prognostic estimation

of LUAD. Gene set enrichment analysis showed that pathways of the cell cycle

and DNA damage response were enriched in the INMT low-expression

group. The top 10 hub genes upregulated in the INMT low-expression group

mainly activated the cell cycle pathway. In addition, more frequently mutated

TP53 genes, higher aneuploidy scores, a fraction of genomes altered, MANTIS
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scores, and tumor mutation burden were found in tumors with low expression

of INMT. Furthermore, patients with low expression of INMT showed favorable

clinical benefits to anti-PD-1 treatment with higher enrichment scores of

immune-related signatures.

Conclusion: The low expression of INMT was associated with poor prognosis

but favorable immunotherapy response in LUAD. INMT may affect the

progression of LUAD by regulating the cell cycle and may serve as a

valuable independent prognostic biomarker in patients with LUAD.
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Introduction

Non-small-cell lung cancer (NSCLC) is a malignant cancer

that has the highest mortality rate of all cancers worldwide (Siegel

et al., 2020; Sung et al., 2021). Lung adenocarcinoma (LUAD) is

the largest subtype of NSCLC (Little et al., 2007). Advances in

recent years, such as the identification of multiple oncogenic

drivers and the use of immunotherapies, have changed the

treatment of LUAD (Kleczko et al., 2019). However, the

survival rates remain low. Therefore, it is urgent to find more

effective biomarkers to smooth the way for novel therapeutic

methods.

In recent years, immunotherapy, especially immune

checkpoint inhibitors (ICIs) targeting programmed cell

death-1 (PD-1) and its ligand PD-L1, has revolutionized

cancer treatment and substantially improved patient

outcomes in NSCLC (Suresh et al., 2018). However, only a

limited subset of patients could benefit from immunotherapy,

and immunotherapy lacks precise biomarkers to predict

efficacy (Brahmer et al., 2012). Therefore, identifying

biomarkers to screen dominant populations for ICI

efficacy is particularly important. Multiple factors

associated with the clinical outcome of immunotherapy are

discovered, such as PD-L1 expression (Herbst et al., 2014;

Shukuya and Carbone, 2016), tumor mutation burden (TMB)

(Rizvi et al., 2015), DNAmismatch repair deficiency (Le et al.,

2015), the degree of cytotoxic T-cell infiltration (Tang et al.,

2016), mutational signature (Miao et al., 2018), antigen

presentation defects (Chowell et al., 2018), interferon

signaling (Ayers et al., 2017), and tumor aneuploidy

(Davoli et al., 2017). These biomarkers show different

accuracies and utilities, and identifying robust ICI-

response biomarkers remains a critical challenge in the

field (Nishino et al., 2017).

Indolethylamine N-methyltransferase (INMT) is a

methyltransferase that regulates the tryptophan metabolic

pathway by catalyzing the N-methylation of tryptamine and

structurally related compounds (Chu et al., 2014; Torres et al.,

2019). As a thioether S-methyltransferase, it also plays an

important role in the detoxification of selenium compounds

(Kuehnelt et al., 2015). It is specifically expressed in the lung

and expressed as supplemental in the liver, kidneys, prostate,

and other tissues (Fukumoto et al., 2020). It has been reported

that the expression of INMT is downregulated in lung cancer,

prostate cancer, and meningioma (Kopantzev et al., 2008;

Larkin et al., 2012; Schulten et al., 2016). However, the role

of INMT and its molecular mechanism in cancer, especially

lung cancer, remain unknown. The study of the molecular

mechanism of INMT would help us better understand the

process of tumorigenesis and development and find new

targets in cancers. Herein, using data from The Cancer

Genome Atlas (TCGA) project and the Gene Expression

Omnibus (GEO) database, we performed a secondary

analysis to thoroughly analyze the INMT expression level,

determine its prognostic role, and explore its potential

functions in NSCLC.

Materials and methods

Genomic data sources

The transcriptome sequencing data (including 962 NSCLC

samples and 103 adjacent nontumor samples), somatic mutation

data (including 486 LUAD samples), and clinical information of

TCGA data were downloaded from the Genomic Data Commons

(GDC) data portal (https://portal.gdc.cancer.gov/). The samples

from primary lesions that had a follow-up time of more than

1 month were included in this study. The following gene

expression profiles were downloaded from GEO (www.ncbi.

nlm.nih.gov/geo/): GSE19188 (including 65 tumor samples

and 72 adjacent nontumor samples), GSE72094 (including

398 LUAD samples), and GSE41271 (including 183 LUAD

samples); these were used to further validate our results. The

PD-1 immunotherapy gene expression profiling dataset

GSE135222 (including 27 NSCLC samples) was downloaded

from GEO and used to analyze the association between INMT

expression and immunotherapy response. The detailed data

sources used in this study are summarized in Supplementary

Table S1.
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Establishment and evaluation of the
nomogram for lung adenocarcinoma
survival prediction

In this study, all independent prognostic factors were selected

using multivariate Cox regression analysis and used to construct

the nomogram to evaluate the 3- and 5-year overall survival (OS)

probabilities of LUAD patients. Covariates in the nomogram

were assessed for the patient and given a point. A higher total

number of points represented a lower expected survival. By

comparing the predicted probability of the line chart with the

observed actual probability through a calibration curve, the

accuracy of the line chart was verified. The overlapping

reference lines show that the model is accurate.

Differential gene expression analysis

The “limma” package (version 3.46.0), using R software, was

used to screen differentially expressed genes (DEGs) between

INMT low- and high-expression groups. INMT-related DEGs

were identified when the adjusted p-value < 0.05 and |log2(Fold

Change) | > 1.

Gene set enrichment analysis and
functional annotation

Gene set enrichment analysis (GSEA) was performed to

explore the biological functions of INMT in LUAD

(Subramanian et al., 2005). First, we ranked all the mRNAs

according to the fold change between INMT high- and low-

expression groups. Then, the ordered mRNAs were imported to

the R package “clusterProfiler” (version 3.18.1) for GSEA,

containing KEGG and Reactome pathways from a Molecular

Signatures Database (MSigDB) (https://software.broadinstitute.

org/gsea/msigdb). Benjamini–Hochberg standard false discovery

rate correction was used for multiple testing corrections. The

gene set was considered significantly enriched when the adjusted

p-value < 0.05.

Protein–protein interaction network
construction and hub gene identification

The protein–protein interaction (PPI) data were extracted

from the Search Tool for the Retrieval of Interacting Genes

(STRING) database (https://string-db.org/), an online tool

allowing users to upload the data of DEGs. It is used to

analyze the PPI information and to evaluate the interaction

relationships among DEGs (Szklarczyk et al., 2015). After

downloading INMT-related DEG interactions, the PPI

network was visualized using Cytoscape (3.7.2) software

(http://www.cytoscape.org/). In Cytoscape, module screening

and connection degree computation were performed using the

maximal clique centrality (MCC) method in the cytoHubba

plugin. Nodes with a higher degree of connection were more

essential for maintaining the stability of the entire network;

usually, nodes with a degree of connection ≥10 were

considered to be core candidate genes. In this study, the top

10 hub genes were selected for further functional analysis. The

GeneMANIA database (http://www.genemania.org) was also

applied to construct the INMT interaction network.

The relationship between gene expression
and pathway activity in GSCALite

Gene Set Cancer Analysis (GSCALite) (http://bioinfo.life.

hust.edu.cn/web/GSCALite/) is a web-based platform for

dynamic analysis and visualization of gene sets from the

point of view of the expression of malignant tumor genes

correlations with drug sensitivity (Liu et al., 2018). The

correlation between gene expression and pathway activity

groups (activation and inhibition) defined by pathway scores

was analyzed in GSCALite. Pathway activation (red) represents

the percentage of cancers in which the pathway may be

activated by given genes, and inhibition in a similar way is

shown as pathway inhibition (blue).

The relationship between gene expression
and drug sensitivity in GSCALite

The drug sensitivity analysis of GSCALite has collected

481 small molecules from the Cancer Therapeutics Response

Portal (CTRP) (https://portals.broadinstitute.org/ctrp/) (Rees

et al., 2016). Drug sensitivity and gene expression profiling

data on cancer cell lines in CTRP are integrated for

investigation (Garnett et al., 2012). The expression profiling of

each gene in a given gene set is performed by Spearman’s

correlation analysis with small molecule/drug sensitivity

(IC50). The Spearman correlation represents the gene

expression that correlates with the drug. A negative

correlation means that the gene’s high expression is sensitive

to the drug and vice versa.

Mutational analysis

The R package “maftools” (version 2.6.05) was used to

analyze the frequently mutated genes in the TCGA-LUAD

cohort. Aneuploidy scores, a fraction of genome altered,

MANTIS scores, and TMB scores were downloaded from

cBioPortal (https://www.cbioportal.org/study/clinicalData?id=

luad_tcga_pan_can_atlas_2018). TMB scores of the
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immunotherapy cohort were downloaded from GEO (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135222).

The aneuploidy score is the total number of arm-level gains and

losses for a tumor, adjusted for ploidy. The fraction of genome

altered is the percentage of copy number-altered chromosome

regions out of measured regions. The MANTIS score is a score

that predicts a patient’s microsatellite instability (MSI) status

(Bonneville et al., 2017). TMB is broadly defined as the number

of nonsynonymous somatic mutations per megabase of the

interrogated genomic sequence as previously described

(Chalmers et al., 2017).

Immune gene signature calculation

Immuno-Oncology Biological Research (IOBR) is a tool for

leveraging multi-omics data to facilitate immuno-oncology

exploration and unveil tumor–immune interactions (Zeng

et al., 2021). The gene sets utilized for the immune signature

score in this study are defined as previously reported (Ayers et al.,

2017; Charoentong et al., 2017; Mariathasan et al., 2018) and are

presented in Supplementary Table S2. The enrichment scores of

these immune gene signatures were calculated using the “IOBR”

R package (version 0.99.9).

FIGURE 1
Study flowchart. INMT, indolethylamine N-methyltransferase; NSCLC, non-small-cell lung cancer; LUAD, lung adenocarcinoma; LUSC, lung
squamous cell carcinoma; TCGA, The Cancer Genome Atlas; K-M curve, Kaplan–Meier survival; GSEA, gene set enrichment analysis.
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Statistical analysis

The Student t-test or Wilcoxon rank-sum test was used to

compare two groups of continuous variables, depending on

whether the data were normally distributed. The Chi-squared

test or Fisher’s exact test was used to compare categorical

variables. The Spearman correlation test was applied to

evaluate the correlation between sample factors. Receiver

operating characteristic (ROC) analysis was performed to

assess the diagnostic value of INMT expression in NSCLC.

The Kaplan–Meier method was applied for survival analysis,

and the log-rank test was used to estimate statistical

significance. Multivariate Cox regression analysis was used to

screen potential prognostic factors. The level of significance was

set at p < 0.05, and all statistical tests were two-sided. All

statistical data analyses were implemented using R software,

version 4.0.2.

Results

Indolethylamine N-methyltransferase was
significantly downregulated in patients
with NSCLC

A brief flowchart of our study is shown in Figure 1. We first

used the TCGA-NSCLC database to evaluate the mRNA

expression levels of INMT in NSCLC patients and adjacent

normal tissues. The result showed that the expression level of

INMT in NSCLC was significantly lower than that in normal

tissues (p < 0.001) (Figure 2A). This result was verified in

GSE19188 and CPTAC-LUAD cohorts at a transcription level

and protein level, respectively (Figure 2B and Supplementary

Figure S1A). According to ROC curve analysis, INMT was a

robust predictor of NSCLC, with an area under the curve

(AUC) = 0.976 (Figure 2C). Furthermore, we found that the

FIGURE 2
Expression of INMT in normal lung and NSCLC tissues. (A,B) Differential expression of INMT in normal lung and NSCLC tissues in TCGA dataset
(A) and the GSE19188 dataset (B). (C) Evaluation of the sensitivity and specificity of NSCLC diagnosis by ROC curves in TCGA dataset and the
GSE19188 dataset. (D)Differential expression of INMT in normal lung, LUAD, and LUSC tissues in TCGA dataset (left) and the GSE19188 dataset (right),
respectively. NSCLC, non-small-cell lung cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; ROC, receiver operator
characteristic; AUC, area under the curve; TPM, transcripts per million mapped reads.
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FIGURE 3
Prognostic significance of INMT in LUAD patients. (A) Hazard ratio (HR) and statistical results of the INMT high-expression group versus low-
expression group at different cutoffs in TCGA-LUAD cohort. The blue dashed line represents the HR value, the red dashed line represents the
p-value, and the solid red line represents p = 0.05. (B) Kaplan–Meier curve analysis of the prognostic significance of high- and low-expression of
INMT in TCGA-LUAD cohorts. (C)Multivariate Cox analysis of the clinical characteristics and INMT associatedwith overall survival (OS) in TCGA-
LUAD cohort. (D,E) Kaplan–Meier curve analysis of the prognostic significance of high and low expression of INMT in two GEO-LUAD cohorts
(GSE72094 and GSE41271), respectively. (F,G)Multivariate Cox analysis of the clinical characteristics and INMT associated with OS in two GEO-LUAD
cohorts (GSE72094 andGSE41271), respectively. The cutoff of 30% quantile was used to divide patients into low- and high-expression groups. LUAD,
lung adenocarcinoma; HR, hazard ratio; OS, overall survival.
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expression of INMT in LUSC was significantly lower than that in

LUAD (Figure 2D). Additionally, based on the TCGA cohort, we

used the Spearman rank correlation test to analyze the

correlation of INMT expression with a pathological stage in

LUAD and LUSC. We observed a weak but significant negative

correlation between INMT expression and pathological stage in

both LUAD and LUSC, i.e., INMT expression decreases as the

stage increases (Supplementary Figures S1B, S1C). These results

showed that INMT was significantly downregulated in patients

with NSCLC and was a robust predictor of NSCLC.

Low indolethylamine N-methyltransferase
expression is associated with poor
prognosis of patients with lung
adenocarcinoma

To identify whether INMT expression affects patient

survival, Kaplan–Meier survival analysis was conducted on the

TCGA-NSCLC cohort. As shown in Figure 3A, low INMT

expression was associated with poor prognosis in LUAD

patients. At the cutoff value of a quantile of 30%, the survival

difference between the low-INMT group and the high-INMT

group was themost significant in LUAD patients. So, we used this

cutoff to classify LUAD patients into a low INMT expression

group (30% of samples with the lowest expression) and a high

INMT expression group (the remaining 70% of the samples) in

this study. The Kaplan–Meier survival analysis showed that the

low expression of INMT was significantly related to the poor OS

of LUAD patients [Hazard ratio (HR), 1.54; 95% CI, 1.14-2.08;

p-value = 0.005] (Figure 3B). Multivariate Cox regression

analysis results suggested that INMT expression was an

independent prognosis factor in the TCGA-LUAD cohort,

after adjusting age, gender, and pathological stage (Figure 3C).

Similarly, we also checked the association between INMT

expression and survival in LUSC patients. However, the

Kaplan–Meier survival analysis failed to show a significant

difference between low and high INMT expression groups in

LUSC patients (Supplementary Figures S2A, S2B). Furthermore,

we validated the relationship between INMT expression and OS

using two GEO-LUAD cohorts (GSE72094 and GSE41271) and

demonstrated that INMTwas an independent prognosis factor in

LUAD patients through multivariate Cox analysis

(Figures 3D–G).

Prognostic nomogram model for lung
adenocarcinoma overall survival

To better predict the prognosis of LUAD patients in the

clinic, we developed a prognostic nomogram model by

integrating two independent predictors of mortality from the

aforementioned analyses, INMT expression and pathological

stage, into a multivariate Cox regression model, which was

evaluated and validated using TCGA, GSE72094, and

GSE41271 data (Figures 3C, F, G). A score based on the

nomogram developed in the current study was calculated to

predict the 3- and 5-year survival probabilities for individual

patients (Figure 4A). The calibration plot showed that the

nomogram performed well in predicting patient OS according

to an ideal model (Figure 4B).

Low indolethylamine N-methyltransferase
expression is closely related to the cell
cycle, DNA replication, and DNA damage
response pathways

To investigate the possible signaling pathways in which

INMT might be involved, GSEA was performed on the

TCGA-LUAD cohort. Supplementary Tables S3 and S4

illustrate GSEA results of KEGG and Reactome gene sets

between high- and low-INMT groups, respectively. As shown

in Figure 5A, KEGG gene sets of the cell cycle, DNA replication,

and DNA damage response (DDR) pathways, such as mismatch

repair, Fanconi anemia pathway, and homologous

recombination, were enriched in the INMT low-expression

group. GSEA of Reactome gene sets showed similar results

that the INMT low-expression group was closely associated

with cell cycle, DNA replication, and DDR pathways (Figure 5B).

Hub genes upregulated in the
indolethylamine N-methyltransferase
low-expression group are associated with
cell cycle, apoptosis, and DDR pathways

Considering that downregulated INMT was associated with

the worse prognosis in LUAD, we further explored the functions

of hub genes that were upregulated in the INMT low-expression

group of the TCGA-LUAD cohort to find the potential drugs that

were inhibitors of hub genes for these INMT-related high-risk

patients. As shown in Figure 6A, 111 upregulated genes in the

INMT low-expression group were used to construct a PPI

network based on the STRING database and thus formed

56 nodes and 553 edges. The top 10 hub genes were identified

from these complex interactomes using the MCC method in

Cytoscape, namely, ASPM, BUB1, BUB1B, TTK, CDC20, CDK1,

CCNA2, CCNB2, DLGAP5, and KIF2C (Figure 6B). The chord

plot result confirmed that the expression of each hub gene was

negatively correlated with the expression of INMT (Figure 6C).

Furthermore, pathway activity analysis of hub genes indicated

that the pathways of the cell cycle, apoptosis, and DDR, the vital

steps in tumor progression, were mainly activated by these

10 hub genes (Figures 6D,E). In addition, high expression of

each hub gene was significantly associated with a worse OS in
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LUAD (Figure 6F), which was consistent with the association of

low INMT with poor OS. Additionally, we used CTRP IC50 drug

data from the GSCALite database to analyze the correlation

between the expression of these 10 hub genes and the

sensitivity of the small-molecule drugs in LUAD cell lines. We

found that LUAD cell lines with hub gene overexpression were

sensitive to the cell cycle and DNA replication-related drugs,

such as topotecan, etoposide, doxorubicin, and gemcitabine

(Figure 6G). Our aforementioned results found that these hub

genes upregulated in the INMT low-expression group were

mainly involved in the activation of the cell cycle, apoptosis,

and DDR pathways and might provide the basis for drug-

targeted therapy for these INMT-related high-risk LUAD

patients.

Low indolethylamine N-methyltransferase
indicates high-frequency somatic
alterations

It has been reported that somatic mutations were involved in

the development of cancer (Martincorena and Campbell, 2015).

Here, we used the TCGA-LUAD cohort to investigate the

difference in somatic mutations between low- and high-INMT

groups in LUAD. Common tumor-related mutations were

shown in the waterfall plot and stratified by the INMT

expression level (Figure 7A). Somatic mutation profiles

revealed that the tumor-suppressor gene TP53 was more

frequently mutated in the low INMT expression group

(Figure 7B). We then compared the differences in the

distribution of aneuploidy scores, a fraction of genome altered

scores, MANTIS scores, and TMB scores between low- and high-

INMT groups. We found that the low INMT expression group

had higher aneuploidy scores, a fraction of genome altered

scores, MANTIS scores, and TMB scores (Figures 7C–F).

Low indolethylamine N-methyltransferase
is associated with a favorable
immunotherapy response

We previously found that mutated TP53 genes and higher

TMB and MANTIS scores were enriched in tumors with the low

expression of INMT, and we therefore speculated on whether

these high-risk patients would benefit from immunotherapy. We

then investigated the correlation between INMT expression and

immunotherapy response in a GEO public PD-1 immunotherapy

cohort of advanced NSCLC (GSE135222). As shown in Figures

8A, B, patients with low INMT expression had a higher durable

clinical benefit (DCB) rate (50% vs. 0%, p = 0.008) and more

improved progression-free survival (PFS) (HR, 0.14; 95% CI,

0.05–0.40; p < 0.001) than those with high INMT expression,

with median PFS of 5.70 months vs. 1.73 months. We also

checked the distribution of TMB in low-and high-INMT

groups and found that tumors with low INMT expression had

higher TMB (Figure 8C). Previous studies have confirmed that

CD8 effector T cells, MHC Class I, IFN-gamma signaling, and

T-cell-inflamed gene expression profiling (GEP) play roles in

anticancer immunity and immunotherapeutic effects (Ayers

et al., 2017; Charoentong et al., 2017; Mariathasan et al.,

2018). Here, we analyzed the relationship between INMT and

these immune signatures and found that the signature scores of

CD8 effector T cells, IFN-gamma signaling, and MHC Class I

signature were significantly higher in the INMT low-expression

group (Figure 8D).

Discussion

In this study, we used data from TCGA and GEO to

thoroughly analyze the INMT expression level, determine its

prognostic role, and explore its potential functions in NSCLC.

FIGURE 4
Nomogram for the prediction of survival in LUAD. (A) Nomogram by multivariate Cox regression analysis for predicting the proportion of
patients with overall survival (OS). (B) Plots depict the calibration of themodel in terms of the agreement between predicted and observedOS. Model
performance is shown by the plot, relative to the 45-degree line, which represents perfect prediction. OS, overall survival.
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FIGURE 5
GSEA of samples between high- and low-INMT groups in TCGA-LUAD cohort. Ridge plot of gene sets of KEGG (A) and Reactome (B) enriched
in the high- or low-INMT group in TCGA-LUAD cohort. The X-axis represents the normalized enrichment score (NES), and the color represents the
p-value adjusted by FDR. The top enriched signaling pathways are shown in the figures. GSEA, gene set enrichment analysis.
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We found that INMT expression was significantly

downregulated in NSCLC, and downregulated INMT was

associated with poor OS in LUAD, but not in LUSC.

Multivariate Cox regression analysis further demonstrated that

INMT is a promising independent prognostic biomarker in

LUAD in three independent datasets. In addition, INMT has

FIGURE 6
Biological function analysis of hub genes that were upregulated in the INMT low-expression group of TCGA-LUAD cohort. (A) Protein–protein
interaction (PPI) network of upregulated genes in the INMT low-expression group constructed based on the STRING database. (B) Top 10 hub genes
identified using the MCC method in the cytoHubba plugin of Cytoscape. (C) Chord plot for the correlation of INMT and its hub genes. (D) Pathway
activity analysis of hub genes. Pathway activation (red) represents the percentage of cancers in which pathways may be activated by given
genes, and inhibition in a similar way showed as pathway inhibition (blue). (E) Interaction map of hub genes and pathway conducted. A solid line
indicates that the hub gene activates the pathway, and a dashed line indicates that the hub gene inhibits the pathway. (F) Survival difference between
the high and low expression of hub genes. (G) Correlation between the expression of hub genes and CTRP drug sensitivity. The analyses of Figures
5D–G were performed online in GSCALite. LUAD, lung adenocarcinoma; PPI, protein–protein interaction.
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a certain reference value for the diagnosis and prognosis of

LUAD. GSEA results found that pathways of the cell cycle,

DNA replication, and DDR were enriched in the INMT low-

expression group. The top 10 hub genes upregulated in the INMT

low-expression group mainly activated the cell cycle pathway,

and LUAD cell lines with hub gene overexpression were sensitive

FIGURE 7
Association between INMT and gene alterations in TCGA-LUAD cohort. (A) Common tumor-related gene mutation information illustrated in
the somatic mutation spectrum in low- and high-INMT groups, respectively. The genes in the top 20 of the population mutation frequency are
shown in the figure. (B) Forest plot examined the difference in the population frequency of mutant genes between the high- and low-INMT groups.
(C–F) Distribution of the aneuploidy score (C), a fraction of genome altered score (D), MANTIS score (E), and TMB score (F) between low- and
high-INMT groups. TMB, tumor mutation burden.
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to the cell cycle and DNA replication-related drugs. More

mutated TP53 genes and higher aneuploidy scores, a fraction

of genome altered scores, MANTIS scores, and TMB scores were

found in the INMT low-expression group. Furthermore, a GEO

public PD-1 immunotherapy cohort of NSCLC suggested that

patients in the INMT-related high-risk group could benefit from

immunotherapy. Our study has provided new insights into

INMT that could be a potential prognostic marker of survival

and a potential predictive marker of immunotherapy in LUAD

patients.

As a methyltransferase, INMT detoxifies selenium

compounds and regulates the tryptophan metabolic pathway

by catalyzing the N-methylation of tryptamines and structure-

related compounds (Kuehnelt et al., 2015). INMT is

downregulated in NSCLC and prostate cancer (Kopantzev

et al., 2008; Larkin et al., 2012; Jianfeng et al., 2022). To the

best of our knowledge, no previous study has assessed the

relationship between INMT and prognosis in cancers. In this

work, using TCGA-NSCLC data, we found that the low

expression of INMT was associated with poor OS in LUAD,

but not in LUSC. We further demonstrated that INMT was an

independent prognostic biomarker in LUAD using multivariate

Cox regression analysis in TCGA-LUAD and another two GEO

cohorts. We found that INMT expression decreased as the

pathological stage increased; this supported that there was a

correlation between low INMT and poor prognosis in LUAD.

ROC curve analysis and the nomogram model showed that

INMT had a certain reference value in the diagnosis and

prognostic estimation of LUAD. Our work is the first report

on the association between INMT and the prognosis of patients

with LUAD, providing new insights into INMT as a potential

prognostic marker in LUAD.

Previous studies on INMT have mainly focused on its role

in regulating the tryptophan metabolic pathway and

detoxifying selenium compounds by catalyzing the

methylation of several substrates (Chu et al., 2014;

Kuehnelt et al., 2015; Torres et al., 2019). Only a few

studies have reported on its biological function in prostate

cancer but not in lung cancer. For instance, Zhong et al. (2021)

found that INMT was highly increased in castration-resistant

FIGURE 8
Association between INMT and immunotherapy response in a PD-1 immunotherapy cohort of NSCLC (GSE135222). (A) Clinical benefit rate
among INMT low-and high-expression groups. Fisher’s exact test was used for the analysis. (B) Kaplan–Meier curve for progression-free survival
according to an INMT expression status. The log-rank test was used for the analysis. (C) TMB distribution between INMT low- and high-expression
groups. The Wilcoxon rank-sum test was used for the analysis. (D) Boxplot of enrichment scores of immune-related signatures among INMT
low- and high-expression groups. The Wilcoxon rank-sum test was used for the analysis. DCB, durable clinical benefit; NDB, non-durable clinical
benefit; HR, hazard ratio; TMB, tumor mutation burden.
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prostate cancer, and further in vitro experiments suggested

that INMT might promote prostate cancer castration

resistance through detoxification of anticancer metabolites.

Wang et al. found that INMT may inhibit proliferation and

promote apoptosis of human prostate cancer cells (Jianfeng

et al., 2022). In our study, we showed that the cell cycle and

DNA replication pathways were enriched in the INMT low-

expression group. Cell cycle disorder is one of the key features

of cancer that cause genomic instability (Hanahan and

Weinberg, 2011). Our GSEA results indicated that

downregulated INMT may lead to an acceleration of cell

cycle and DNA replication to increase the probability of

genome instability. Further hub gene analysis also showed

that the top 10 hub genes that were upregulated in the INMT

low-expression group played key roles in the control of the cell

cycle, including mitotic spindle regulation and G1/S and G2/

M transition. The drug sensitivity analysis revealed that

LUAD cell lines with hub gene overexpression were

sensitive to the cell cycle and DNA replication-related

drugs, indicating that these INMT-related high-risk

patients might benefit from cell cycle-related drugs. Our

results revealed that INMT may affect the progression of

LUAD by regulating the cell cycle and might provide the

basis for drug-targeted therapy for these INMT-related high-

risk LUAD patients. However, our results are only analyzed

based on the public data, and further molecular experiments

on cancer cell lines are needed to explore the mechanism of

INMT in tumorigenesis and the development of LUAD.

Our analysis of the relationship between INMT expression

and immunotherapy response found that NSCLC patients with

low INMT expression showed favorable clinical benefits to anti-

PD-1 treatment. More mutated TP53 genes, higher TMB, and

higher enrichment scores of immune-related signatures of

MHC Class I, CD8+ effector T cells, and IFN-gamma

signaling were found in the INMT low-expression group. A

TP53 gene mutation has been reported to boost PD-L1

expression, facilitate T-cell infiltration, and augment tumor

immunogenicity and is a potential predictive marker for

response to ICIs in LUAD (Dong et al., 2017). TMB reflects

cancer mutation quantity. The more mutations there are, the

higher the number of neoantigens and the higher the chances

that one or more of the neoantigens will be immunogenic and

trigger a T-cell response. Many studies have reported a

connection between higher TMB and ICI efficacy across a

wide variety of cancer types (Snyder et al., 2014; Goodman

et al., 2017; Cristescu et al., 2018; Samstein et al., 2019). A

number of predicted MHC Class I-associated neoantigens have

been shown to be correlated with a cytolytic activity (Rooney

et al., 2015), and the anti-tumor activity of ICIs is dependent on

MHC Class I presentation of specific tumor-derived peptides

(Gubin et al., 2014; Tran et al., 2015). CD8+ T cells are primed

and activated toward CD8+ T effector cells in a process called

the cancer immunity cycle to make durable and efficient anti-

tumor immune responses (Chen and Mellman, 2013). It has

been reported that the IFN-γ–related mRNA profile could

predict clinical response to a PD-1 blockade in many types

of cancers (Ayers et al., 2017). The higher scores of biomarkers

in the INMT low-expression group may explain why patients in

the INMT low-expression group have a better response to

immunotherapy in NSCLC. Although our result is based on

a small cohort, it provides these INMT-related high-risk

patients with a treatment option.

There are several limitations to our work. First, we did not

investigate the exact mechanisms of INMT with in vivo/in vitro

experiments, and further experiments are required to

demonstrate the effect of INMT on the tumor cell cycle to

improve the reliability of our results. Second, we obtained

data on the anti-PD-1 response in a small NSCLC cohort

from a public database, and further immunotherapy data on

LUAD are needed to verify the role of INMT.

Conclusion

In summary, INMT is downregulated in LUAD, and the

low expression of INMT is closely associated with poor

prognosis in LUAD. INMT has a certain reference value for

the diagnosis and prognosis of LUAD. Furthermore, INMT

may affect the progression of LUAD by regulating the cell

cycle. With further exploration, patients with low INMT

expression showed favorable clinical benefits to anti-PD-

1 treatment. This is the first study to reveal that INMT

influences prognosis and immunotherapy responses in

LUAD. These findings provide a new perspective on LUAD

progression and treatment.
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