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Background: Tumor-derived lactate can modulate the function of infiltrating

immune cells to establish an immunosuppressive microenvironment that favors

tumor progression. However, possible effects of lactate-related genes (LRGs) on

the tumor microenvironment (TME) of breast cancer (BRCA) are still unknown.

Methods: LRGs were comprehensively screened from lactate metabolism-

related pathways. We correlated the expression of these LRGs with immune

cell infiltrating characteristics in the TME and clinicopathological features of

patients. We also established a lactate score for quantifying lactate metabolism

patterns of cancers and to predict of recurrence-free survival (RFS).

Results: We successfully constructed a lactate score that was an independent

prognostic factor in BRCA. A low lactate score, which was associated with immune

activation with increased CD8+ T cells infiltration levels, indicated an inflamed TME.

Consistently, higher expression levels of inhibitory immune checkpoints, including

PD-L1, LAG3, CTLA4, and TIM3, as observed from high lactate score subgroup,

suggested an immune-desert phenotype as well as poor prognosis. Moreover, a

low lactate score predicted the increased chemotherapeutic drug sensitivity and

enhanced anti-PD-1 immunotherapy responses.

Conclusion: The present study analyzed the potential roles of LRGs in the TME

diversity and prognosis. These results will help to improve our understanding of

the characteristics of TME immune cell infiltration and guide the development

of more effective immunotherapy strategies.
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Introduction

Metabolic reprogramming is a key hallmark of cancer

(Hanahan and Weinberg, 2011). Aerobic glycolysis, called

“Warburg effect” as well, has been frequently mentioned as a

metabolic reprogramming pathway. In aerobic glycolysis, tumor

cells take up excessive glucose and produce massive lactate,

although there is oxygen, leading to a highly acidic tumor

microenvironment (Warburg et al., 1927). Lactate has long

been recognized as the “metabolic waste product”. Emerging

evidence shows lactate accumulation in several neoplasms,

including breast, cervical, colon and liver cancers (Jiao et al.,

2018; Cheung et al., 2020). Thereafter, the excessive amounts of

lactate produced will enhance acidosis within TME, thus

accelerating angiogenesis, metastasis or even

immunosuppression, and predicting poor survival (Vander

Heiden and DeBerardinis, 2017). Therefore, lactate is the vital

oncometabolite during tumor metabolic reprogramming and a

promising therapeutic target.

The TME exerts a critical effect on cancer progression.

Tumor-infiltrating immune cells (TIICs) in the TME have

certain effect on cancer development and therapy in currently

available antitumor treatments (Balkwill et al., 2012). TIICs

recruited at tumor site play dual roles, they can either inhibit

cancer development or promote tumor occurrence (Terlizzi et al.,

2014). Activated CD8+ T lymphocytes can prolong survival and

predict better clinical prognosis of BRCA patients (Mahmoud

et al., 2011). Tumor associated macrophages (TAMs) can

suppress the effect of CD8+ T lymphocytes and promote

tumor angiogenesis and metastasis (Qian and Pollard, 2010;

Noy and Pollard, 2014), causing major challenges for efficient

cancer immunotherapies (Mahmoud et al., 2012).

Immunotherapy, which is represented by immunological

checkpoint blockade (ICB), exhibits notable therapeutic effect

on some patients. However, most patients, especially those with

solid tumors, experience negligible or no clinical benefit,

indicating that immunotherapy is far from meeting this

clinical need (Topalian et al., 2012). It is important to predict

ICB response according to the characteristics of TME, so as to

improve the efficacy of currently available ICB approaches and

for developing novel immunotherapeutic strategies (Quail and

Joyce, 2013; Ali et al., 2016). Therefore, it is important to

comprehensively dissect the TME heterogeneity for identifying

distinct tumor immunophenotypes and improving the

prediction of immunotherapeutic responsiveness.

Tumor metabolism contributes to immunological escape.

Numerous studies have demonstrated that lactate negatively

affects tumor immunosurveillance by suppressing cytotoxic T

lymphocytes (CTLs) in terms of their proliferation, recruitment

and function (Fischer et al., 2007; Brand et al., 2016). Moreover,

lactate derives from tumor can promote the polarization of

macrophages to the tumor-promoting type (Colegio et al.,

2014), and lactic acid pretreated bone marrow-derived mouse

macrophages (BMMMs) inhibit CD8+ T cell growth (Ohashi

et al., 2013). Murine tumors in which LDHA is inhibited produce

lower levels of lactic acid; this increases the numbers of CTLs and

NK cells and enhances their cytolytic activities, resulting in

greater tumor inhibition when combined with PD-1 therapy

than that achieved by either treatment alone (Brand et al., 2016;

Daneshmandi et al., 2019). However, few comprehensive

analyses have focused on the relationships between lactate

production, clinical characteristics and immune cell function

according to clinical data from BRCA patients. Therefore,

exploration of these associations may provide insights for

predicting responses to immunotherapy and understanding

the mechanism underlying BRCA tumorigenesis.

The present work focused on the comprehensive evaluation

of correlation of lactate levels with immune cell infiltration in

BRCA, and we used a lactate score to predict patient survival and

response to immunotherapy. Our work provides novel insights

for improving the immunotherapeutic responses of patients,

identifying diverse immune phenotypes of tumor, and

promoting individualized immunotherapy.

Methods

Data sources

Supplementary Figure S1A displays the study flowchart. We

obtained mRNA transcriptome data as well as the relevant

prognostic and clinicopathological information of 1082 BRCA

tumor samples and 112 normal samples in The Cancer Genome

Atlas (TCGA) database (https://portal.gdc.cancer.gov/).

Meanwhile, we acquired data of two eligible BRCA cohorts

(GSE131769 and GSE25066) in Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) to

conduct later analysis. We acquired raw “CELL” files, adjusted

the background and normalized the quantile. Detailed

information, including clinicopathological features, about these

patients with BRCA were presented in Supplementary Tables

S1, S2.

Selection of potential lactate-related
genes

To investigate the differences in lactate-related pathways

between normal and cancer patients, the ontology enrichment

scores of 12 lactate-metabolism associated pathways for each

sample from TCGA-BRCA dataset were generated by “GSVA” in

R package. Meanwhile, “c5.all.v7.4.symbols.gmt” gene sets

obtained in the MSigDB database were adopted in gene set

variation analysis (GSVA). Statistical significance was judged

based on adjusted p < 0.05. Genes in pathways with significant

differences were selected and defined as lactate-related genes
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(LRGs), and the ggplot2 R package was used to draw bar graphs.

PCA analysis and visualization of normal and tumor samples in

the TCGA-BRCA dataset based on lactate-related genes using the

pca3d R package.

Consensus clustering analysis of lactate-
related genes

We utilized the “ConsensusClusterPlus” in R package to

conduct consensus unsupervised clustering for classifying

TCGA-BRCA patients as different lactate cluster groups based

on expression levels of LRGs (Wilkerson and Hayes, 2010). The

consensus matrix and cumulative distribution function (CDF)

were used to calculate the optimal cluster number. To investigate

the differences in biological processes among the lactate cluster

subtypes, we carried out GSVA using the MSigDB database-

derived hallmark gene set (h.all.v7.4.symbols.gmt).

Assessment of tumor microenvironment
immune cell infiltration and chemokine
expression

We utilized CIBERSORT algorithm for evaluating 22 human

immune cell subsets from each BRCA lactate subtype (Newman

et al., 2015). Data about fifty-eight chemokines were obtained

from the MSigDB database for comparing differential expression

among lactate clusters by using ggplot2 and ggpubr R packages.

Association of lactate subtypes with breast
cancer clinical characteristics as well as
prognostic outcome

For examining whether the consensus clustering-

identified lactate subtypes were of clinical significance, this

work compared correlation among clinicopathological

features, molecular subtypes, as well as prognostic outcome.

Typically, patient features were stage, PAM50 subtype, TNM

stage, and immune subtype. We used single-sample GSEA

(ssGSEA) to quantify the difference of clinical feature for each

patient in different clusters using the “GSVA” package in R. By

adopting “survminer” and “survival” in R package, we plotted

Kaplan–Meier (KM) curves to compare recurrence-free

survival (RFS) across diverse subtypes.

Differentially expressed genes
identification and functional enrichment

This work utilized “limma” in R package to identify DEGs

among diverse lactate clusters, and the cutoffs were adjusted p <

0.05 and fold-change (FC) > 1.5 (Ritchie et al., 2015). For better

exploring lactate cluster-associated DEGs’ possible effects and

identifying relevant gene functions as well as pathways, this work

conducted functional enrichment of the DEGs using

“clusterprofler” package.

Construction and validation of the lactate
score

This work determined a lactate score for quantifying

lactate metabolism-patterns in different tumor samples.

Firstly, after clustering of lactate subtypes, DEGs identified

from the different lactate clusters were extracted. Secondly, all

patients were divided as three gene clusters (lactate gene

cluster A, B, C) in further unsupervised clustering analysis

to analyze overlapping DEGs. We defined gene cluster number

and stability using the consensus clustering algorithm.

Thereafter, prognosis of all genes incorporated into the

model was analyzed by univariate Cox regression.

Thereafter, this work selected significant prognostic genes

in subsequent analyses. Further, lactate gene signatures

were constructed by principal component analysis (PCA),

with principal components 1/2 (PC1/PC2) being chosen to

be signature scores. Later, this study determined lactate score

by gene expression grade index (GGI) (Sotiriou et al., 2006;

Zeng et al., 2019):

Lactate score � ∑(PC1i + PC2i)

in the formula, i stands for LRG expression levels. Patients were

classified as low- or high-risk group according to lactate score

using the survminer R package. We plotted KM survival curves

and receiver operating characteristic (ROC) curves with ‘survival

ROC’ in R package to predict survival based on the lactate score.

The area under the curve (AUC) was calculated for assessing

lactate score’s prognosis prediction accuracy (Yu et al., 2012).

Besides, this work further validated the role of the lactate score

algorithm in two independent BRCA validation sets, namely,

GSE131769 and GSE25066.

Nomogram construction and validation

This study constructed a prognosis prediction nomogram

by incorporating risk score and clinical features with “rms”

package in line with prognosis analytic results. All variables in

nomogram were assigned with corresponding scores, which

were later added to obtain the overall score. This work also

plotted 1-year time-dependent ROC (t-ROC) curves for

nomogram assessment. Besides, we depicted the nomogram

prediction ability based on calibration plots by comparing the

1-, 2-, and 3-year survival rates predicted with those measured

values.
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FIGURE 1
Genetic and transcriptional alterations of LRGs in BRCA. (A) The top 30 LRGs with the highest mutation frequency in 506 patients with BRCA
based on TCGA-BRCA cohort. The columns represent diverse patients. The top bar plot presents the TMB. The number on the right stand for gene
mutation frequency. Bar plot on the right presents variant proportions. (B) Those top 30 LRGs with the most significant frequencies of CNV gain and
loss. The column height stands for alteration frequency. Red and blue dots stand for amplification and deletion frequencies, separately. (C)
Those top 30 differentially expressed LRGs between BRCA and normal samples. Asterisks represent the p-values (***p < 0.001).
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FIGURE 2
LRG subtypes as well as biological features among four different subtypes classified through consensus clustering. (A) Cumulative distribution
function (CDF) of consensus clustering at k = 2–5. (B) Consensus matrix heatmap that defined four clusters (k = 4) as well as the relation area. (C)
Heatmaps of the hierarchical clustering of differential gene expression in the four clusters. (D) Survival analyses of the four lactate subtypes. KM
curves (p-value = 0.03, log-rank) showed that survival was different among four clusters. (E) GSVA of 50 hallmark gene sets among the four
clusters.
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Immunotherapeutic and drug
susceptibility analysis

The present work collected patient information in two

prospective clinical studies conducted among patients with

advanced clear cell renal cell carcinoma (NSCLC)–CheckMate

010 (CM-010; NCT01354431) (Motzer et al., 2015) together with

CheckMate 025 (CM-025; NCT01668784) (Motzer et al., 2018)

using anti-PD-1 antibody (nivolumab). We used the web

platform TIDE (http://tide.dfci.harvard.edu/) for predicting

ICB therapy responses (Jiang et al., 2018). Meanwhile, we

downloaded RNA-seq data in CheckMate 010 and 025 from

Supplementary Table S4 of PMID: 32472114 (Braun et al., 2020).

The “pRRophetic” package was used for exploring different

efficacy achieved by chemotherapeutics among 2 patient

groups. For chemotherapeutics frequently utilized for BRCA

treatment, their semi-inhibitory concentrations (IC50) were

determined.

Statistical analyses

Differences across diverse groups were compared by

Kruskal–Wallis test and one-way ANOVA. R version

4.1.0 was employed for statistical analysis. p < 0.05 stood for

significant difference.

Results

Lactate-related genes screening in breast
cancer

Supplementary Figure S1 displays the analytical process in

this work. A total of 12 lactate metabolism-related pathways were

screened and found to be enriched in BRCA tissues compared

with normal tissues (Supplementary Figure S2A). The number of

genes associated with each pathway and the different p value were

shown in Supplementary Figure S2B. A total of 204 genes

associated with the top 3 enriched pathways that had the

smallest p values were considered LRGs (Supplementary Table

S3). Based on the expression level of these 204 genes, BRCA

samples can be distinguished from normal samples using PCA

(Supplementary Figure S2C).

Genetic and transcriptional alterations of
lactate-related genes in breast cancer

We then analyzed somatic mutations and copy number

variations (CNVs) of LRGs in BRCA samples. Among the

954 BRCA samples, 506 (53.04%) had mutations in the LRGs.

Among these genes, TP53 had the highest mutation frequency

(34%), followed by LYST (Figure 1A). Afterwards, somatic copy

number alterations of the above LRGs were analyzed, as a result,

CNVs were commonly seen within the LRGs; most of these CNV

alterations represented the amplification in copy number

(Figure 1B). We also analyzed mRNA expression in BRCA

samples compared with normal tissues, as a result, many

LRGs showed positive relation to CNVs. For LRGs that

harbored CNV gain, including NDUFAF6, COX20, TARS2,

their levels markedly elevated within BRCA tissues compared

to healthy controls, whereas LRGs with CNV loss, such as FLI1,

were expressed at lower levels in BRCA samples (Figure 1C).

Identification of lactate subtypes and
biological characteristics in breast cancer

For better exploring LRG expression features within BRCA,

we conducted consensus clustering analysis for categorizing

BRCA patients according to the expression levels of the

204 LRGs (Figure 2A). As a result, k = 4 was optimal to sort

the whole cohort as lactate clusters A-D (Figure 2B). The four

distinct clusters showed differences in the expression of LRGs

(Figure 2C). The Kaplan–Meier curves showed that patients in

lactate cluster D showed the worst RFS, and those of lactate

cluster A had better RFS (p = 0.03 upon log-rank test; Figure 2D).

For exploring biological behaviors among the different lactate

clusters, GSVA of hallmark gene sets in MSigDB were carried

out. Lactate clusters A and B were enriched in immune

activation-related pathways, such as the inflammatory

response, interferon alpha response, and interferon gamma

response (Figure 2E). Lactate clusters D were enriched with

the TGF beta signaling pathway (Figure 2E). These results

suggested that the lactate cluster subtype may be associated

with different immune response in the TME.

Characteristics of infiltrating immune cells
in the tumor microenvironments of
distinct lactate subtypes

For investigating LRGs’ effect on TME in BRCA, we analyzed

the correlations between the four subtypes and the numbers of

22 immune cell subsets in diverse BRCA samples by adopting the

CIBERSORT algorithm. Lactate B was markedly enriched in

CD8+T cells, M0 and M1 macrophages, whereas

M2 macrophages showed an increased level within lactate

clusters C and D (Figure 3A). Similarly, the CD8+T effector

and antigen processing machinery gene signatures increased

within lactate clusters B (Figure 3B). We also observed

enrichment of immune checkpoint genes in cluster B

(Figure 3B). Moreover, we analyzed the expression of

57 chemokines among the four subtypes (Supplementary

Table S6). T cell-recruiting chemokines, including CXCL9,
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FIGURE 3
Correlations of immune cells infiltrations into the TME of the four lactate subtypes. (A) Enrichment levels of 22 infiltrating immune cells among
four lactate subtypes. (B) GSVA enrichment scores of the classical gene signatures among the 4 lactate clusters using the ESTIMATE package. (C)
Expressions of T cell-associated chemokines in the four lactate subtypes. (D) Correlation between immune subtypes abundances and the four
lactate clusters. Differences among 3 gene clusters were compared by chi-square test (p < 0.001). Asterisks represent p-values (*p < 0.05; **p <
0.01; ***p < 0.001).

Frontiers in Genetics frontiersin.org07

Yin et al. 10.3389/fgene.2022.943849

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.943849


FIGURE 4
DEGs-based gene subtype identification. (A) Relationships among clinicopathologic features, lactate clusters, and the three gene subtypes. (B)
KM analysis for RFS among three gene subtypes (p = 0.016, log-rank tests). (C) Enrichment levels of 22 infiltrating immune cells among three gene
subtypes. Asterisks represent p-values (*p < 0.05; **p < 0.01; ***p < 0.001).
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CXCL10 and CXCL11, were higher in lactate clusters B, which

was consistent with the higher T cell infiltration (Figure 3C). A

landscape of the tumor immune microenvironment derived from

immunogenomics data classified BRCA into 5 immune subtypes:

C1 (wound healing), C2 (IFN-g dominant), C3 (inflammatory),

C4 (lymphocyte depleted) and C6 (TGF-b dominant) (Thorsson

et al., 2018). Lactate clusters C and D had higher proportions of

the C4 and C6 subtypes compared to lactate clusters A and B

(Figure 3D). BRCA subtypes C4 and C6 are reported to be

associated with a worse prognosis (Thorsson et al., 2019).

Collectively, clusters B were classified as having the immune-

inflammatory phenotype, which had the feature of immune

activation. Lactate clusters C and D were divided into

immune-desert phenotypes, which had the feature of

immunosuppression.

Identification of lactate gene subtypes and
clinical characteristics

For better exploring diverse lactate subtypes’ possible

biological behaviors, 717 DEGs related to lactate subtype were

discovered by limma package (Supplementary Table S4). We

then used the consensus clustering analysis to divide patients as

3 genomic subtypes according to the 717 DEGs, including lactate

gene clusters A–C (Figure 4A). In addition, as revealed by KM

curves, patients of lactate gene cluster C showed the worst RFS,

while those of lactate gene cluster A had prolonged RFS

(Figure 4B). We also used the CIBERSORT algorithm for

assessing the relation of lactate gene clusters with immune

cells abundance within TME. Consistent with the results of

lactate cluster analysis, the infiltration of M0 and

M1 macrophages, as well as CD8+ T cells remarkably

increased in lactate gene cluster B than in lactate gene cluster

C, while lactate gene cluster C was markedly enriched in

M2 macrophages (Figure 4C).

Lactate score establishment and
clinicopathological feature evaluation

As shown in the above results, patients in cluster B have high

immune infiltration but lower survival. Therefore, we wanted to

establish a simpler lactate score based on lactate subtype-related

DEGs for prognosis of BRCA. Univariate Cox regression analysis

was carried out for identifying 717 LRGs for their prognostic

significance. As a result, 79 RFS-related genes were identified (p <
0 0.05); these genes were used to generate the lactate score by

using PCA algorithms (Supplementary Table S5). Associations of

lactate cluster, lactate gene cluster, lactate score, PAM50 subtype

and immune subtype are displayed in the alluvial diagram

(Figure 5A). Most patients in clusters C and D had higher

lactate scores and were classified into aggressive basal and

her2 subtypes (Figure 5A). The Kruskal-Wallis test revealed

that lactate cluster A had smallest median score, whereas

lactate cluster B showed the greatest score (Figure 5B). There

was higher CD8 T cell score in lactate cluster B, but the

expressions of immune checkpoint-related molecules are also

high (Figure 3B). However, the survival of lactate cluster B

patients within 100 months are worse than cluster A,

suggesting that there are other factors such as T cell

exhaustion and high myeloid cell infiltration that affect tumor

progression. More importantly, lactate gene cluster B had

significantly increased lactate score in comparison with others,

and lactate gene cluster A showed lowest score (Figure 5C).

According to KM curves, patients who had decreased lactate

scores were associated with markedly more favorable overall

survival (OS) compared with those having increased lactate

scores (p = 0.013 upon log-rank test; Figure 5D). Additionally,

AUC values of lactate risk score in predicting the 3-, 6-, 9-, and

12-month survival rates were 0.618, 0.572, 0.6, and 0.516,

separately (Figure 5E). For validating lactate score’s prognostic

value, this work determined lactate scores based on one internal

(training set) as well as two external validation cohorts

(GSE25066 and GSE131769). We classified the patients as

high- or low-risk group based on formula utilized in training

cohort. As suggested by survival analysis, low-risk patients had

markedly superior survival to high-risk patients (p = 0.03 upon

log-rank; Figures 5F,G).

For investigating lactate score’s role in clinical features, this

work analyzed correlations of the lactate score with diverse

clinical characteristic (PAM50 subtype, TNM stage, and

immune subtype). Patients in the Basal and Her2 subgroups

had markedly increased lactate scores, which were more

aggressive tumors (Figure 6A). Moreover, the stage IV

subgroup had the highest lactate scores compared with the

other stage groups (Figure 6B). Consistent with the immune

subtype analysis in the lactate clusters, the C6 immune subtypes

had higher lactate scores than the C1and C3 subtypes

(Figure 6C). Similarly, the analyses of the immune pathway

activities suggested that low lactate scores were markedly

related to CD8+ T effector and antigen processing machinery

gene signatures, while angiogenesis gene signatures were

significantly enhanced in high lactate scores (Figure 6D).

Based on these findings, a low lactate score was markedly

related to immune-activation, whereas a high lactate score was

related to stromal-activation. Moreover, lactate score performed

well in assessing lactate metabolism profiles among different

tumors, which also assessed immune cell in TME.

Development of a nomogram based on
the lactate score to predict survival

This work analyzed the feasibility of lactate score to

independently predict the prognosis of BRCA. As revealed by
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FIGURE 5
Lactate score construction. (A) Alluvial diagram showing the association of the lactate cluster, lactate gene cluster, lactate score, PAM50 subtype and
immune subtype. (B) Differences in lactate score among the four lactate clusters based on TCGA-BRCA cohort. Differences among those 3 gene clusters
were compared by Kruskal–Wallis test (p < 0.001). (C) Differences of lactate scores among those 3 gene clusters based on TCGA-BRCA cohort (p < 0.001,
Kruskal–Wallis test). (D) Kaplan-Meier analysis of the RFS in high versus low lactate score patients. (E) ROC curves to predict sensitivity and specificity of
the lactate score in predicting 3-, 6-, 9-, and 12-month survival. (F) KM analysis for RFS of both groups in the GSE25066 cohort. (G) KM analysis of the RFS
between the two groups in GSE131769 cohort. ROC, receiver operating characteristic; RFS, recurrence-free survival.
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multivariate regression including patient’ immune subtype,

pathologic_T, tumor_stage and lactate score, lactate score was

the vigorous factor independently predicted patient prognosis

[HR 0.6 (0.42–0.85); Supplementary Figure S3]. Then, we

established a comprehensive nomogram that integrated the

lactate score with three other clinicopathological factors for

predicting RFS at 1-, 2 and 3-year (Figure 7A). The

nomogram-predicted value was compared with those predicted

by stage, pathologic_T and immune subtype, and the 3-year

AUCs were 0.597, 0.698, 0.598 and 0.512 separately, suggesting

that our nomogram exhibited superior ability to predict survival

compared to the immune subtype (Figure 7B). According to the

subsequent calibration plots, our nomogram achieved similar

performance to the optimal model (Figure 7C).

FIGURE 6
Correlation between lactate score and clinical characteristics. (A) Lactate score of different PAM50 molecular subtypes. (B) Lactate score in
subtypes of different TNM stages. (C) Lactate score of different immune subtypes. (D) GSVA enrichment scores of the classical gene signatures of
high-versus low-score patients by ESTIMATE algorithm. Asterisks represent p-values (*p < 0.05; **p < 0.01; ***p < 0.001).
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Lactate score in the prediction of response
to therapies

Patients with an increased tumormutation burden (TMB) show

durable clinical responses to immunotherapy (Snyder et al., 2014).

Thereafter, this work examined the different somatic mutation

distributions of high and low lactate score patients from TCGA-

BRCA cohort. According to Supplementary Figure S4, the TMBwas

comparable between high and low lactate score groups. Patients who

had increased lactate scores were associated with increasedTP53 and

XIRP2 mutation frequencies compared with low lactate score ones.

However, PIK3CA and TTNmutation frequencies showed the exact

opposite results (Supplementary Figure S4). Additionally, the

expression of inhibitory immune checkpoints, including CTLA4,

PD-L1 (CD274), TIM3 (HAVCR2) and LAG3, were higher in the

high lactate score group (Figures 8A–D). Other immune checkpoint

molecules involved in T cell activation were expressed at higher

levels for patients having low lactate scores (Supplementary Figure

S5).Therefore, these findings suggest that the differential expression

of LRGs in tumors is a potentially important factor that affects

immunotherapeutic responses. This work further found that the low

lactate score group had significantly more treatment responders in

FIGURE 7
Establishment of the comprehensive nomogram based on TCGA-BRCA cohort. (A) Nomogram development according to immune subtype,
pathologic_T, tumor_stage.diagnoses and lactate score. (B) ROC curves for our constructed nomogram. (C) Calibration plots for our constructed
nomogram.
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the anti-PD-1 cohort (CheckMate 010; NCT01354431 and

CheckMate 025; NCT01668784, Figure 8E). Similarly, the

nonresponders had a significantly increased lactate score

compared to the responders (Figure 8F). Subsequently,

chemotherapeutics utilized to treat BRCA at present were chosen

for evaluating their sensitivities in high and low lactate score

patients. Interestingly, the IC50 values for chemotherapeutics,

such as paclitaxel, docetaxel, doxorubicin and gemcitabine,

decreased among low lactate score patients, compared with those

in the high lactate score group (Supplementary Figure S6).

Collectively, lactate score was associated with therapy responses.

Discussion

Lactate has an indispensable effect on establishing an

immunosuppressive microenvironment, which favors tumor

progression (Gabrilovich et al., 2012; Morrot et al., 2018).

However, many studies mainly focus on one immune cell type

or one lactate metabolism-related gene, and the combined effects

of multiple LRGs on immune infiltration into the TME are not

comprehensively elucidated. Consequently, determining the role

of different lactate metabolism profiles in immune cell

infiltration into the TME will help to understand the

mechanisms underlying BRCA tumorigenesis, and develop

more effective immunotherapy strategies.

This work illustrated the global alterations of LRGs within

BRCA at the genetic and transcriptional levels. Four different

molecular subtypes were discovered according to 204 LRGs.

These four patterns had significantly distinct TME cell

infiltration characteristics. Lactate clusters A and B were

associated with the feature of adaptive immunity activation,

which was associated with an immune-inflammatory

phenotype, also known as a hot tumor with the infiltration of

FIGURE 8
Comprehensive analysis of the role of the lactate score in therapy. (A–D) Expression of inhibitory immune checkpoints, including PD-L1
(CD274), CTLA4, TIM3 (HAVCR2) and LAG3, of low- and high-risk patients. (E) Percentage of patients responding to PD-1 blockade immunotherapy
of low or high lactate score groups. (F) Distribution of lactate scores in distinct anti-PD-1 clinical response groups.
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massive activated immune cell (Chen and Mellman, 2017).

Lactate clusters C and D had the feature of

immunosuppression, associated with immune-desert

phenotype that display immune tolerance, with little or no

activated T cells (Joyce and Fearon, 2015). Conforming to

these definitions, this work discovered that lactate clusters A

and B were markedly enriched in CD8+ T cells, antigen

processing machinery gene signatures and chemokines for

T cell–recruiting, like CXCL9-CXCL11.

Furthermore, DEGs among the four lactate subtypes were

considered lactate-related signature genes. We identified three

gene subtypes based on these DEGs, and they were markedly

related to immune as well as stromal activation. As a result, LRGs

are important for evaluating the responses to immunotherapy

and clinical outcomes of BRCA. Therefore, a scoring system were

established for evaluating lactate metabolism patterns in different

BRCA patients. Lactate subtype with the immune-desert

phenotype had an increased lactate score, while subtype with

the immune-inflamed phenotype showed the decreased lactate

score. Clinicopathological features, prognoses, TMEs, mutations,

immune checkpoints expression levels, immunotherapy and

drug susceptibilities were different between patients who had

high and low lactate scores. Correspondingly, lactate score,

immune subtype, pathologic_T, and tumor stage, were

integrated to construct the comprehensive nomogram, for the

sake of improving the use and accuracy of lactate score. Our

integrated nomogram is utilized to stratify prognosis of BRCA

patients, which helps to better understand the mechanism

underlying BRCA tumorigenesis and provides new important

insights for the development of immunotherapy.

Immunotherapy brings new hopes for treating cancers, in

particular for lymphoma, melanoma, renal cell cancer, and

non-small-cell lung cancer (NSCLC) (Waldman et al., 2020).

However, patients with BRCA show limited clinical benefits

after immunotherapy due to the heterogeneity of the TME in

BRCA tumorigenesis and progression (Emens, 2018). The

TME facilitates immunosuppression and limits anticancer

immune responses. TME has the feature of recruiting

suppressive immune cells, physical barriers to immune

infiltration, and upregulated immunosuppressive ligand

expression on tumor cells (Turley et al., 2015). Lactate

derived from tumor can regulate immune cell function,

thereby facilitating to establish the immunosuppressive

TME favoring impaired efficacy of immunotherapy

(Feichtinger and Lang, 2019). In this study,

M1 macrophages and CD8+ T cells were significantly

enriched into low lactate score group, which predicted the

good prognostic outcome, and high lactate score group

showed a higher enrichment level of M2 macrophages,

which predicted poor prognostic outcome.

Immunosuppressive M2 macrophages, are barriers to

cancer immunotherapy and enhance the metastasis of

BRCA (Qiu et al., 2018; Larionova et al., 2020). Immune

checkpoints inhibit antitumor immune response within

TME (Nishino et al., 2017). Accordingly, high lactate score

group showed higher inhibitory immune checkpoints levels,

like CTLA4, PD-L1 (CD274), or TIM3 (HAVCR2). Hence,

antitumor effect on patients showing increased high lactate

scores is possibly inhibited via the excessive amounts of

M2 macrophages together with the overexpression of

inhibitory immune checkpoints. This work verified that

lactate score was effective on predicting patient’ responses

to anti-PD-1 immunotherapy.

Certain limitations should be noted in this work. Firstly,

experimental data for evaluating the biological behavior-related

mechanisms are lacking. Secondly, more multi-center studies

with large sample size should be conducted for validating the

above results.

We developed a novel lactate score based on LRGs, and this

score could comprehensively evaluate TME immune cell

infiltration and prognosis for BRCA patients. Besides, lactate

score was utilized for assessing patient clinical features and anti-

PD-1 immunotherapeutic responses. Our work suggested that

targeting LRGs could turn the relatively “cold tumors” to the “hot

tumors”, which help to develop the new immunotherapeutic

agents and new drug combination strategies.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Author contributions

T-TY and LL conceived and designed the study. T-TY, FW,

Y-HJ, JL, and M-XH integrated and analyzed the data. T-TY and

LL performed overall data interpretation and wrote the paper.

T-TY, LL, and JC were responsible for editing and revising this

manuscript.

Funding

The present work was partially funded by the National

Natural Science Foundation of China (82003125 to T-TY;

81871943, 82173236 to JC), Postdoctoral Research Project

Funding of Guangzhou (BHSKY20200305 to T-TY).

Acknowledgments

Our thanks should go to every participant in this work.

Frontiers in Genetics frontiersin.org14

Yin et al. 10.3389/fgene.2022.943849

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.943849


Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.943849/full#supplementary-material

References

Ali, H. R., Chlon, L., Pharoah, P. D. P., Markowetz, F., and Caldas, C. (2016).
Patterns of immune infiltration in breast cancer and their clinical implications: a
gene-expression-based retrospective study. PLoS Med. 13 (12), e1002194. doi:10.
1371/journal.pmed.1002194

Balkwill, F. R., Capasso, M., and Hagemann, T. (2012). The tumor
microenvironment at a glance. J. Cell Sci. 125 (23), 5591–5596. doi:10.1242/jcs.116392

Brand, A., Singer, K., Koehl, G. E., Kolitzus, M., Schoenhammer, G., Thiel, A.,
et al. (2016). LDHA-associated lactic acid production blunts tumor
immunosurveillance by T and NK cells. Cell Metab. 24 (5), 657–671. doi:10.
1016/j.cmet.2016.08.011

Braun, D. A., Hou, Y., Bakouny, Z., Ficial, M., Sant’ Angelo, M., Forman, J., et al.
(2020). Interplay of somatic alterations and immune infiltration modulates
response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat.
Med. 26 (6), 909–918. doi:10.1038/s41591-020-0839-y

Chen, D. S., andMellman, I. (2017). Elements of cancer immunity and the cancer-
immune set point. Nature 541 (7637), 321–330. doi:10.1038/nature21349

Cheung, S. M., Husain, E., Masannat, Y., Miller, I. D., Wahle, K., Heys, S. D., et al.
(2020). Lactate concentration in breast cancer using advanced magnetic resonance
spectroscopy. Br. J. Cancer 123 (2), 261–267. doi:10.1038/s41416-020-0886-7

Colegio, O. R., Chu, N. Q., Szabo, A. L., Chu, T., Rhebergen, A. M., Jairam, V.,
et al. (2014). Functional polarization of tumour-associated macrophages by
tumour-derived lactic acid. Nature 513 (7519), 559–563. doi:10.1038/nature13490

Daneshmandi, S., Wegiel, B., and Seth, P. (2019). Blockade of lactate
dehydrogenase-A (LDH-A) improves efficacy of anti-programmed cell death-1
(PD-1) therapy in melanoma. Cancers (Basel) 11 (4), E450. doi:10.3390/
cancers11040450

Emens, L. A. (2018). Breast cancer immunotherapy: facts and hopes. Clin. Cancer
Res. 24 (3), 511–520. doi:10.1158/1078-0432.CCR-16-3001

Feichtinger, R. G., and Lang, R. (2019). Targeting L-lactate metabolism to
overcome resistance to immune therapy of melanoma and other tumor entities.
J. Oncol. 2019, 2084195. doi:10.1155/2019/2084195

Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M.,
et al. (2007). Inhibitory effect of tumor cell-derived lactic acid on human T cells.
Blood 109 (9), 3812–3819. doi:10.1182/blood-2006-07-035972

Gabrilovich, D. I., Ostrand-Rosenberg, S., and Bronte, V. (2012). Coordinated
regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12 (4), 253–268. doi:10.
1038/nri3175

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next
generation. Cell 144 (5), 646–674. doi:10.1016/j.cell.2011.02.013

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24
(10), 1550–1558. doi:10.1038/s41591-018-0136-1

Jiao, L., Zhang, H. L., Li, D. D., Yang, K. L., Tang, J., Li, X., et al. (2018). Regulation
of glycolytic metabolism by autophagy in liver cancer involves selective autophagic
degradation of HK2 (hexokinase 2). Autophagy 14 (4), 671–684. doi:10.1080/
15548627.2017.1381804

Joyce, J. A., and Fearon, D. T. (2015). T cell exclusion, immune privilege, and the
tumor microenvironment. Science 348 (6230), 74–80. doi:10.1126/science.aaa6204

Larionova, I., Tuguzbaeva, G., Ponomaryova, A., Stakheyeva, M., Cherdyntseva,
N., Pavlov, V., et al. (2020). Tumor-associated macrophages in human breast,

colorectal, lung, ovarian and prostate cancers. Front. Oncol. 10, 566511. doi:10.
3389/fonc.2020.566511

Mahmoud, S. M., Paish, E. C., Powe, D. G., Macmillan, R. D., Grainge, M. J., Lee,
A. H. S., et al. (2011). Tumor-infiltrating CD8+ lymphocytes predict clinical
outcome in breast cancer. J. Clin. Oncol. 29 (15), 1949–1955. doi:10.1200/JCO.
2010.30.5037

Mahmoud, S. M., Lee, A. H. S., Paish, E. C., Macmillan, R. D., Ellis, I. O., and
Green, A. R. (2012). Tumour-infiltrating macrophages and clinical outcome in
breast cancer. J. Clin. Pathol. 65 (2), 159–163. doi:10.1136/jclinpath-2011-200355

Morrot, A., da Fonseca, L. M., Salustiano, E. J., Gentile, L. B., Conde, L., Filardy, A.
A., et al. (2018). Metabolic symbiosis and immunomodulation: how tumor cell-
derived lactate may disturb innate and adaptive immune responses. Front. Oncol. 8,
81. doi:10.3389/fonc.2018.00081

Motzer, R. J., Rini, B. I., McDermott, D. F., Redman, B. G., Kuzel, T. M., Harrison,
M. R., et al. (2015). Nivolumab for metastatic renal cell carcinoma: results of a
randomized phase II trial. J. Clin. Oncol. 33 (13), 1430–1437. doi:10.1200/JCO.2014.
59.0703

Motzer, R. J., Tannir, N. M., McDermott, D. F., Aren Frontera, O., Melichar, B.,
Choueiri, T. K., et al. (2018). Nivolumab plus ipilimumab versus sunitinib in
advanced renal-cell carcinoma. N. Engl. J. Med. 378 (14), 1277–1290. doi:10.1056/
NEJMoa1712126

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al.
(2015). Robust enumeration of cell subsets from tissue expression profiles. Nat.
Methods 12 (5), 453–457. doi:10.1038/nmeth.3337

Nishino, M., Ramaiya, N. H., Hatabu, H., and Hodi, F. S. (2017). Monitoring
immune-checkpoint blockade: response evaluation and biomarker
development. Nat. Rev. Clin. Oncol. 14 (11), 655–668. doi:10.1038/
nrclinonc.2017.88

Noy, R., and Pollard, J. W. (2014). Tumor-associated macrophages: from
mechanisms to therapy. Immunity 41 (1), 49–61. doi:10.1016/j.immuni.2014.06.010

Ohashi, T., Akazawa, T., Aoki, M., Kuze, B., Mizuta, K., Ito, Y., et al. (2013).
Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic
acid and increases antitumor immunoreactivity. Int. J. Cancer 133 (5), 1107–1118.
doi:10.1002/ijc.28114

Qian, B. Z., and Pollard, J. W. (2010). Macrophage diversity enhances tumor
progression and metastasis. Cell 141 (1), 39–51. doi:10.1016/j.cell.2010.03.014

Qiu, S. Q., Waaijer, S. J. H., Zwager, M. C., de Vries, E. G. E., van der Vegt, B., and
Schroder, C. P. (2018). Tumor-associated macrophages in breast cancer: innocent
bystander or important player? Cancer Treat. Rev. 70, 178–189. doi:10.1016/j.ctrv.
2018.08.010

Quail, D. F., and Joyce, J. A. (2013). Microenvironmental regulation of tumor
progression and metastasis. Nat. Med. 19 (11), 1423–1437. doi:10.1038/nm.3394

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015).
Limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J. M.,
Desrichard, A., et al. (2014). Genetic basis for clinical response to CTLA-
4 blockade in melanoma. N. Engl. J. Med. 371 (23), 2189–2199. doi:10.1056/
NEJMoa1406498

Sotiriou, C., Wirapati, P., Loi, S., Harris, A., Fox, S., Smeds, J., et al. (2006). Gene
expression profiling in breast cancer: understanding the molecular basis of

Frontiers in Genetics frontiersin.org15

Yin et al. 10.3389/fgene.2022.943849

https://www.frontiersin.org/articles/10.3389/fgene.2022.943849/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.943849/full#supplementary-material
https://doi.org/10.1371/journal.pmed.1002194
https://doi.org/10.1371/journal.pmed.1002194
https://doi.org/10.1242/jcs.116392
https://doi.org/10.1016/j.cmet.2016.08.011
https://doi.org/10.1016/j.cmet.2016.08.011
https://doi.org/10.1038/s41591-020-0839-y
https://doi.org/10.1038/nature21349
https://doi.org/10.1038/s41416-020-0886-7
https://doi.org/10.1038/nature13490
https://doi.org/10.3390/cancers11040450
https://doi.org/10.3390/cancers11040450
https://doi.org/10.1158/1078-0432.CCR-16-3001
https://doi.org/10.1155/2019/2084195
https://doi.org/10.1182/blood-2006-07-035972
https://doi.org/10.1038/nri3175
https://doi.org/10.1038/nri3175
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1080/15548627.2017.1381804
https://doi.org/10.1080/15548627.2017.1381804
https://doi.org/10.1126/science.aaa6204
https://doi.org/10.3389/fonc.2020.566511
https://doi.org/10.3389/fonc.2020.566511
https://doi.org/10.1200/JCO.2010.30.5037
https://doi.org/10.1200/JCO.2010.30.5037
https://doi.org/10.1136/jclinpath-2011-200355
https://doi.org/10.3389/fonc.2018.00081
https://doi.org/10.1200/JCO.2014.59.0703
https://doi.org/10.1200/JCO.2014.59.0703
https://doi.org/10.1056/NEJMoa1712126
https://doi.org/10.1056/NEJMoa1712126
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/nrclinonc.2017.88
https://doi.org/10.1038/nrclinonc.2017.88
https://doi.org/10.1016/j.immuni.2014.06.010
https://doi.org/10.1002/ijc.28114
https://doi.org/10.1016/j.cell.2010.03.014
https://doi.org/10.1016/j.ctrv.2018.08.010
https://doi.org/10.1016/j.ctrv.2018.08.010
https://doi.org/10.1038/nm.3394
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1056/NEJMoa1406498
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.943849


histologic grade to improve prognosis. J. Natl. Cancer Inst. 98 (4), 262–272. doi:10.
1093/jnci/djj052

Terlizzi, M., Casolaro, V., Pinto, A., and Sorrentino, R. (2014). Inflammasome:
cancer’s friend or foe? Pharmacol. Ther. 143 (1), 24–33. doi:10.1016/j.pharmthera.
2014.02.002

Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D., Bortone, D. S., Ou Yang, T. H.,
et al. (2018). The immune landscape of cancer. Immunity 48 (4), 812–830 e14.
doi:10.1016/j.immuni.2018.03.023

Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D., Bortone, D. S., Ou Yang, T. H.,
et al. (2019). The immune landscape of cancer. Immunity 51 (2), 411–412. doi:10.
1016/j.immuni.2019.08.004

Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C.,
McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-
PD-1 antibody in cancer. N. Engl. J. Med. 366 (26), 2443–2454. doi:10.1056/
NEJMoa1200690

Turley, S. J., Cremasco, V., and Astarita, J. L. (2015). Immunological hallmarks of
stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15 (11),
669–682. doi:10.1038/nri3902

Vander Heiden, M. G., and DeBerardinis, R. J. (2017). Understanding the
intersections between metabolism and cancer biology. Cell 168 (4), 657–669.
doi:10.1016/j.cell.2016.12.039

Waldman, A. D., Fritz, J. M., and Lenardo, M. J. (2020). A guide to cancer
immunotherapy: from T cell basic science to clinical practice.Nat. Rev. Immunol. 20
(11), 651–668. doi:10.1038/s41577-020-0306-5

Warburg, O., Wind, F., and Negelein, E. (1927). The metabolims of tumors in the
body. J. Gen. Physiol. 8, 519–530. doi:10.1085/jgp.8.6.519

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: a class
discovery tool with confidence assessments and item tracking. Bioinformatics 26
(12), 1572–1573. doi:10.1093/bioinformatics/btq170

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16 (5), 284–287.
doi:10.1089/omi.2011.0118

Zeng, D., Li, M., Zhou, R., Zhang, J., Sun, H., Shi, M., et al. (2019). Tumor
microenvironment characterization in gastric cancer identifies prognostic and
immunotherapeutically relevant gene signatures. Cancer Immunol. Res. 7 (5),
737–750. doi:10.1158/2326-6066.CIR-18-0436

Frontiers in Genetics frontiersin.org16

Yin et al. 10.3389/fgene.2022.943849

https://doi.org/10.1093/jnci/djj052
https://doi.org/10.1093/jnci/djj052
https://doi.org/10.1016/j.pharmthera.2014.02.002
https://doi.org/10.1016/j.pharmthera.2014.02.002
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2019.08.004
https://doi.org/10.1016/j.immuni.2019.08.004
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1038/nri3902
https://doi.org/10.1016/j.cell.2016.12.039
https://doi.org/10.1038/s41577-020-0306-5
https://doi.org/10.1085/jgp.8.6.519
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1158/2326-6066.CIR-18-0436
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.943849

	Lactate score predicts survival, immune cell infiltration and response to immunotherapy in breast cancer
	Introduction
	Methods
	Data sources
	Selection of potential lactate-related genes
	Consensus clustering analysis of lactate-related genes
	Assessment of tumor microenvironment immune cell infiltration and chemokine expression
	Association of lactate subtypes with breast cancer clinical characteristics as well as prognostic outcome
	Differentially expressed genes identification and functional enrichment
	Construction and validation of the lactate score
	Nomogram construction and validation
	Immunotherapeutic and drug susceptibility analysis
	Statistical analyses

	Results
	Lactate-related genes screening in breast cancer
	Genetic and transcriptional alterations of lactate-related genes in breast cancer
	Identification of lactate subtypes and biological characteristics in breast cancer
	Characteristics of infiltrating immune cells in the tumor microenvironments of distinct lactate subtypes
	Identification of lactate gene subtypes and clinical characteristics
	Lactate score establishment and clinicopathological feature evaluation
	Development of a nomogram based on the lactate score to predict survival
	Lactate score in the prediction of response to therapies

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


