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There is a great deal of importance to SNARE proteins, and their absence from

function can lead to a variety of diseases. The SNARE protein is known as a

membrane fusion protein, and it is crucial for mediating vesicle fusion. The

identification of SNARE proteins must therefore be conducted with an accurate

method. Through extensive experiments, we have developed amodel based on

graph-regularized k-local hyperplane distance nearest neighbor model

(GHKNN) binary classification. In this, the model uses the physicochemical

property extraction method to extract protein sequence features and the

SMOTE method to upsample protein sequence features. The combination

achieves the most accurate performance for identifying all protein

sequences. Finally, we compare the model based on GHKNN binary

classification with other classifiers and measure them using four different

metrics: SN, SP, ACC, and MCC. In experiments, the model performs

significantly better than other classifiers.
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1 Introduction

SNAREsmediate most of the intracellular membrane fusion events, andmammalian cells

have over 30 members of the SNARE family, each found in a different subcellular

compartment (Jahn and Scheller, 2006; van Dijk et al., 2008). SNAREs may encode

aspects of membrane transport specificity, but the mechanisms by which they achieve

specificity remain controversial (Ferro-Novick and Jahn, 1994; Rothman, 1994). Studies

have shown that SNAREs are targets of CNT proteases, thus establishing the importance of

SNAREproteins for synaptic neurotransmission (Schiavo et al., 1992; Blasi et al., 1993; Schiavo

et al., 1993; Yamasaki et al., 1994a; Yamasaki et al., 1994b; Schiavo et al., 1995). Therefore, the

accurate identification of SNARE proteins is particularly necessary and important. Up to now,

experimenters have used a number of methods to identify SNARE proteins from a biological
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perspective. Traditional biological experiments have the

disadvantage of long lead times and high costs. Machine learning

and data mining have ushered in a new era of protein prediction

(Xiong et al., 2012; Cao et al., 2014;Wei et al., 2014; Chen et al., 2016;

Ding et al., 2016; Wei et al., 2016; Zou et al., 2016; Zeng et al., 2017a;

Zhang et al., 2017; Xiong et al., 2018a; Bu et al., 2018; Liao et al., 2018;

Wei et al., 2018; Cao et al., 2019; Chao et al., 2019; Chen et al., 2019;

Le and Nguyen, 2019; Liu et al., 2019; Małysiak-Mrozek et al., 2019;

Meng et al., 2019; Ghulam et al., 2020; Guo et al., 2021; Qian et al.,

2022; Tiwari et al., 2022).

In this paper, a classification model based on the GKHNN

algorithm is adopted to accurately identify SNARE proteins. Three

datasets are used: a cross-training dataset, an independent-validation

dataset, and the all-dataset containing all samples. To obtain 188-

dimensional sample attribute features, the physicochemical property

extraction method was used in this study to extract the sample

features from three datasets. The sample sets of the three datasets

were very unbalanced. In order to minimize the interference of the

unbalanced datasets on the binary classification accuracy, this

experiment uses the SMOTE upsampling method to make the

positive and negative samples balanced. The GKHNN classifier

model performs binary classification on each of the three datasets

while comparing the classification results with the 2DCNN

algorithm. Meanwhile, the binary classification experimental

results are compared with other four classifiers on the complete

dataset to verify the high accuracy of this model in classifying

SNARE proteins; different feature extraction methods are used to

compare the experimental results obtained using the 188D feature

extraction method selected in this experimental model to verify the

effectiveness of this experimental model feature extraction method;

two other protein datasets in this field are selected for classification,

and the generalizability of this experimental model was verified by

comparing with previous experiments. This study uses four

measures, namely, accuracy (ACC), sensitivity (SN), specificity

(SP), and the Mathews correlation coefficient (MCC), to measure

the degree of accuracy of the algorithmic model classification.

The structure and content of this paper are as follows: Section

1 describes the importance of identifying SNARE proteins as well as

the structure and distribution of this paper. Section 2 describes the

construction of the experimental dataset, preprocessing, and

number of samples, as well as the specific experimental

procedure of this experiment. Also, the physical and chemical

property extraction method, the SMOTE dataset balancing

method, and the classifier algorithm GKHNN are described in

detail. Section 3 describes the comparison of experimental results

when the specific parameters of this experimental model are taken at

different values, the comparison of experimental results between this

experimental model and other classifiers, the comparison of

experimental results using the 188D feature extraction method

used in this experiment and the four other common feature

extraction methods, and the comparison of experimental results

when this experimental model is applied to other datasets. The

discussion of the current work is given in Section 4.

2 Materials and methods

2.1 Data retrieval and pretreatment

2.1.1 Dataset
Datasets were collected from the UniProt database

(Consortium, 2015), which is one of the most comprehensive

database resources for protein sequences. First, all proteins

annotated with the keyword “snare” were collected from the

UniProt database. It is worth noting that the proteins collected

were all reviewed (extracted from the literature and assessed by the

administrator for calculation and analysis). Subsequently, more than

30% of the redundant sequences were removed by the BLAST

database (Altschul et al., 1997). After this process, only 245 SNARE

proteins remained, and the number of proteins was not sufficient to

build an accurate deep learning model. Therefore, we used a

truncation level of 100% in the cross-training dataset to build a

significant model. In the independent dataset, we still used a 30%

similarity level to assess the classification performance of the model.

This is critical for testing the model (Le and Nguyen, 2019).

In order to build a classification model with high

classification accuracy, the dataset has a crucial role to play.

The negative dataset collected should be similar to the positive

dataset in terms of structure and function of the proteins. After

considering the structure and function of the positive protein

sequence, SNARE, the vesicle transporter protein, which is a

general protein that includes the SNARE protein, was chosen as

the positive dataset for this experiment. Thus, the problem was

transformed into a binary classification problem for SNARE

proteins and vesicular transporter proteins (vesicular transport

proteins are referred to as non-SNARE proteins). We removed

redundant datasets and those with greater than 30% similarity

between the two datasets. Finally, we divided the data into cross-

training, independent-validation, and the all-dataset. The details

of the three datasets used in this study are shown in Table 1.

TABLE 1 Number of raw SNARE and non-SNARE proteins in the cross-training dataset, independent-validation dataset, and all-dataset.

Dataset Cross-training Independent-validation All-dataset

SNARE 644 38 682

Non-SNARE 2,234 349 2,583
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2.1.2 Experimental procedure
The specific process for this experiment is as follows:

(1) After obtaining the data shown in Table 1, the cross-

training dataset, the independent-validation dataset, and

the negative and positive samples in the all-dataset were

extracted using the physicochemical property extraction

method to obtain 188-dimensional sample attribute

features, respectively. In the cross-training dataset, there

are 644*188-dimensional SNARE protein attributes and

2,234*188-dimensional non-SNARE protein attributes. In

the independent-validation dataset, there are 38*188-

dimensional SNARE proteins and 349*188-dimensional

non-SNARE proteins. In the all-dataset, there are

682*188 dimensional SNARE proteins and

2,583*188 dimensional non-SNARE proteins.

(2) Due to the high imbalance in the number of positive and

negative samples in the dataset, the cross-training dataset,

the independent-validation dataset, and the all-dataset were

upsampled separately using SMOTE. The number of positive

and negative samples for the cross-training dataset was

2,200 and 2,234, respectively; the number of positive and

negative samples for the independent-validation dataset was

350 and 349; and the number of negative and positive

samples for the all-dataset was 2,550 and 2,583,

respectively. This resulted in a balance of negative and

positive samples. The specific numbers of negative and

positive samples in the three datasets are shown in Table 2.

(3) Positive and negative samples from the independent-

validation dataset, the cross-training dataset, and the

all-dataset were classified using the GKHNN classifier

and measured using four metrics based on specificity

(spec), sensitivity (recall), Matthews correlation

coefficient (mcc), and accuracy (acc). Specific results on

the accuracy of the classification model are given in detail

in Section 3.

TABLE 2 Number of SNARE and non-SNARE proteins in the cross-training dataset, the independent-validation dataset, and the all-dataset after
SMOTE equilibration.

Dataset Cross-training Independent-validation All-dataset

SNARE 2,200 350 2,550

Non-SNARE 2,234 349 2,583

FIGURE 1
Experimental procedure diagram.
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The exact procedure of the experiment is shown in Figure 1.

2.2 Physicochemical property extraction
method

To extract sample features, we used the physicochemical

property extraction method. The composition and position of

protein molecules as well as its physicochemical characteristics

have been used by previous researchers to extract protein features

(Dubchak et al., 1995; Shen et al., 2017; Wang et al., 2017; Yu

et al., 2017; Xiong et al., 2018b; Qiao et al., 2018; Zhang et al.,

2018; Shen et al., 2019; Zou et al., 2019; Liu et al., 2020). Cai et al.

(2003) used a physicochemical property feature extraction

method to extract protein features, where the composition,

distribution, and physical properties of amino acids were

included. In one category, there are 20 amino acid features

denoted as F1...F20, calculated using the following Eq. 1:

Fi � ni
L
(i � 1, ..., 20). (1)

Here, the 20 features are represented by F, L denotes the

length of the protein sequence, and ni represents the frequency of

each amino acid.

The other category is the physicochemical properties

represented by 168 features, which are extracted from eight

physicochemical properties of the protein, including polarity,

secondary structure, polarizability, normalized van der Waals

volume, and hydrophobicity. Each property has 21 features, for

e.g., the 21 features of polarity are represented by F21–F41;

hydrophobicity features are represented by F42–F52,

calculated using the following Eq. 2:

(F21, F22, F23) � (CA1

L
,
CA2

L
,
CA3

L
). (2)

According to the surface tension, the 20 amino acids are

divided into three groups (Cai et al., 2003). Therefore, CA1, CA2,

and CA3 denote the content of the three groups, respectively.

(F24, ...F28;F29, ...F33;F34 , ...F38) � (DA11

L
, ...

DA15

L
;
DA21

L
, ...

DA25

L
;
DA31

L
, ...

DA35

L
),
(3)

where DAij (the range of values for i is from 1 to 3 and the

range of values for j is from 1 to 5) indicates the position of

the first 25%, 50%, and 75% of the chain length of the AAs of

the GQDNAHR group among the three groups (Zou et al.,

2013).

(F39, F40, F41) � ( FA1

L − 1
,
FA2

L − 1
,
FA3

L − 1
). (4)

Here, the numerator FAi (i = 1,2,3) indicates the number of

bivalent seeds in different groups, where bivalent seeds contain

two AAs. The denominator L-1 denotes the number of bivalent

seeds.

This results in 20 features of amino acid composition and

21 features represented by each of the eight physicochemical

properties of the protein, for a total of 168 features. This gives a

total of 188 protein features (Gao and Li, 2020).

2.3 Sampling method

2.3.1 SMOTE upsampling technique
The negative and positive samples in the cross-training

dataset, the independent-validation datasets and all-datasets

are: 2,234, 349, and 644; 38,682, and 2,583, respectively. The

positive and negative samples are quite unbalanced. To calculate

the k nearest neighbors of an instance x in each of the few classes,

the Euclidean distance between the instance x and the other

instances in that class is calculated using SMOTE algorithm. The

sampling rate N is determined by the imbalance rate. Several

instances are chosen from the k nearest neighbors of x (Gao and

Li, 2020). Finally, the following Eq. 5 is used to build an instance

xnew based on x and xn:

xnew � x + rand(0, 1)*|x − xn|. (5)

2.4 Graph-regularized k-local hyperplane
distance nearest neighbor model

Although HKNN algorithm incorporates a local hyperplane

classification algorithm for better classification prediction

performance, it is still in the original input space in terms of

feature measurement. Its objective function is the distance from

the sample x to the cth hyperplane:

(LHc
k(x))2 �

���������x −Nc
− −∑k

i�1
αci V

c
i

���������
2

+ λ∑k
i�1
(αci )2), (6)

αc(λI + Vc(Vc)T) � (x −Nc
−

)(Vc)T, (7)
where H in Eq. 6 denotes the hyperplane; k is the nearest

neighbor, which refers to the nearest sample threshold of the

test sample x; V denotes the matrix consisting of k nearest

neighbor sample vectors of the test sample x; and N is the

center of mass of the k nearest samples to the sample point x.

The GHKNN introduces kernel learning techniques and

graph regularization terms to improve the generalization

ability of the model and the association between samples. If

the dimensionality of the original feature space is low, the model

is not able to find a reasonable classification hyperplane.

Therefore, by mapping the features in the original space to a

suitable high-dimensional feature space and solving (6) using the

kernel technique, the model is not able to find a reasonable

classification hyperplane as the dimensionality of the original

feature space is low, so it needs to be spatially projected to a high-
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dimensional space to find a reasonable classification hyperplane.

Let x be mapped to f (let φ: x → F) and x � x− Nc , which is the

de-priming of the original data that serve to reduce the influence

of noisy samples on the model. (6) can be reformulated as:

arg min
αc
(LHc

k(x))2 � λ∑k
i�1
(αci )2 + μ∑k

p�1
∑k
q�1

ωc
p,q(αcp − αcq)2

+
���������φ(x

−) −∑k
i�1
φ(Vc

i )zci
���������
2

, (8)

where φ(x) is the invisible mapping function, ω refers to the

weight between samples, and μ is the regularization factor.

In order to solve the parameters of the model, let the

derivative of the left-hand side of the equation is 0 and
z((LHc

k(x))2)
zαc � 0, αc, we obtain:

z[λαc(αc)T + (φ(x−) − φ(Vc)αc)(φ( x )
−φ(Vc)αc)T] + μtrace(Lαc(αc)T)]/φαc � 0, (9a)

−φ(Vc)Tφ( x ) + φ(Vc)Tφ(Vc)αc + λαc + μLαc � 0, (9b)
(φ(Vc)Tφ(Vc) + λI + μL)αc � φ(Vc)Tφ( x ), (9c)

αc � φ(Vc)Tφ( x)
(μL + λI + φ(Vc)Tφ(Vc)) , (9d)

αc � K(Vc, x )
(λI +K(Vc, Vc) + μL) ,

where K(Vc, Vc) is a positive semi-definite lattice matrix for RBF

calculations of k*k dimensions and K(Vc, x) is a vector of k*1

dimensions. The inner product form represents the kernel

matrix, and the RBF kernel matrix is calculated as follows:

K(xi, xj) � exp( − γ
����xi − xj

����2), (10)

where γ indicates the bandwidth (the variance of the Gaussian

distribution), xi and xj are the eigenvectors of sample i and

sample j, respectively, and the RBF values of these two samples

are obtained by an exponential function with e as the base.

The following equation calculates the distance between the

cth hyperplane and the test sample x. Here, pc denotes the cth

hyperplane and dist_c is the distance from sample x to the

hyperplane of category c. Since a high-dimensional projection

is involved, the kernel function trick is used to convert the inner

product operation of the vector into the RBF value operation of

the sample.

distc � dist(x, pc)
�
������φ(x − Nc

− ) − φ(Vc)αc
������
2

� (φ(x−) − φ(Vc)αc)(φ(x−) − φ(Vc)αc)T (11)
� K(x− , x−) + αc(αc)TK(Vc, Vc) − 2K(Vc, x)(αx)T.

Finally, when assigning the test sample x to class c, the

following results are obtained (Sun et al., 2021; Ding et al.,

2022):

classc � min dist(x, pc), c � 1, 2, ...C. (12)

3 Results

3.1 Model assessment

This experiment used several commonly used evaluation

metrics to measure the accuracy of model classification,

FIGURE 2
Line graphs of the four metrics, namely, acc, spec, mcc, and
sn, as the variable parameters λ, γ, and μ change. (A) Line graph of
Acc, Spec, Mcc, and Sn of GHKNN with the change in parameter λ.
(B) Line graph of Acc, Spec, Mcc, and Sn of GHKNN with the
change in parameter γ. (C) Line graph of Acc, Spec, Mcc, and Sn of
GHKNN with the change in parameter μ.
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including sensitivity (SN) (Chou, 2001; Chou, 2011; Lai et al.,

2017; Liu et al., 2017; Ding et al., 2022), specificity (SP), accuracy

(ACC), and Matthews correlation coefficient (MCC) (Matthews,

1975; Yu et al., 2015; Zeng et al., 2017b; Wei et al., 2017; Jia et al.,

2018; Zhang et al., 2019a; Zhang et al., 2019b; Shan et al., 2019;

Zeng et al., 2019; Hong et al., 2020). The four evaluation

indicators are given in the following four formulas:

SN � TP

FN + TP
, (13)

SP � TN

FP + TN
, (14)

MCC � TP*TN − FP*FN(FN + TN)(EN + TP)(FP + TN)(FP + TP)√ , (15)

ACC � TN + TP

FN + FP + TN + TP
. (16)

A false-positive, a true-negative, a false-negative, and a true-

positive are, respectively, referred to as FP, TN, FN, and TP (Hou

et al., 2020).

3.2 Parameter adjustment

The GKHNN classifier has three variable parameters:

λ, γ, and μ. Figure 2 represents line graphs of the four metrics,

acc, spec, mcc, and sn, as the variable parameters λ, γ, and μ

change.

Figure 2A shows a line graph of the GKHNN classifier

bifurcating the positive and negative sample sets as the

parameter λ increases from an initial value of 0.01 to 20,

with the change in four metrics, acc, spec, mcc, and sn, when

μ is 0.1 and γ is [2̂-6]. It can be seen from the figure that, with

the continuous increase in λ, the four indicators, acc, spec,

mcc, and sn, all declined. Among them, mcc and sn dropped

significantly, and the spec line showed a gentle upward

trend. Mcc decreased from 0.7288 to 0.6179; sn decreased

from 0.6758 to 0.4625; the acc and spec indicators, on the

other hand, were less affected by the increase, with the acc

values falling more gently but still decreasing; and the spec

TABLE 3 Values of parameters α,μ, γ of the GHKNN classifier.

Parameter λ γ β

Parameter values 0.01 [2̂-15] 0.1

TABLE 4 Values of Sn, Acc, Spec, and Mcc of the GHKNN and 2DCNN
classifiers on the Iv dataset and Ct dataset.

Ct dataset Iv dataset

Spec Acc Mcc Sn Spec Acc Mcc Sn

GHKNN 0.969 0.934 0.806 0.814 0.946 0.900 0.470 0.588

2DCNN 0.935 0.897 0.7 0.766 0.903 0.897 0.460 0.658

FIGURE 3
Histograms of the four metrics, namely, sn, acc, spec andmcc, obtained from the classification of the dataset by the five classifiers: GHKNN, RF,
SVM, HKNN, and KNN.
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line showed a slightly rising trend. Therefore, from

Figure 2A, it can be seen from the four indicators that

when λ is at a minimum value of 0.01, the model has the

best classification ability on positive and negative sample

sets (Zou et al., 2017; Zhao, 2020; Zhu et al., 2021; Zou,

2021).

Figure 2B shows a line graph of the four metrics, acc, spec,

mcc, and sn, continuously changing as the parameter γ rises

from the initial value [2̂-15] to [2̂-6] and the GKHNN

classifier bifurcates the set of positive and negative

samples, when μ is 0.1 and λ is 0.01. The graph shows that

the three indicators, acc, mcc, and sn, all decrease in the

course of the rise in the index, while spec increases very

slowly; the mcc and sn folds decrease with a clear slope, with

sn decreasing from 0.6758 to 0.5274 and mcc decreasing from

0.72880 to 0.6384, while acc is less affected by the change,

with a more gentle slope of the folds but still shows a

decreasing trend. Figure 2B, combining the four metrics,

shows that the model performs best in terms of classification

ability on the positive and negative sample sets when γ takes

the maximum value [2̂-15].

Figure 2C shows a line graph of how the four metrics, acc,

spec, mcc, and sn, change as μ rises from an initial value of

0.1 to 7 for the GKHNN classifier for positive and negative

sample set binary classification, when λ is 0.01 and γ is [2̂-6].

The graph shows that as μ continued to increase, all three

indicators, acc, mcc, and sn, declined, and the spec curve

gradually increased. The slope of the decreasing curve of mcc

and sn is obvious, with mcc decreasing from 0.7288 to

0.6416 and sn decreasing from 0.6758 to 0.5305, while two

other indicators, acc and spec, are less affected by the

increasing μ value. Figure 2C, combining the four metrics,

shows that the model performs best in terms of classification

ability on the positive and negative sample sets when μ takes

the minimum value of 0.1.

Ultimately, based on the aforementioned line graphs, it

was concluded that GKHNN classification performed best

when the values of 0.01, [2̂-15], and 0.1 were set for λ, γ,

and μ, respectively. The specific values taken are shown in

Table 3.

3.3 Comparison with other methods

Table 4 shows the comparison of the classification results

of GKHNN with 2DCNN on the all-dataset, the

independent-validation dataset (Iv dataset), and the cross-

training dataset (Ct dataset). As shown in the table, on the Ct

dataset, the classification result values of this experimental

model are higher than those of 2DCNN; on the Iv dataset,

only the experimental result value of Sn is slightly lower than

that of 2DCNN, and the other three metrics are higher than

those of 2DCNN. Therefore, it seems that the present

experimental model outperforms 2DCNN in terms of

binary classification on these datasets in a comprehensive

manner.

Figure 3 shows the comparison of the classification effect

of the GHKNN classifier with four other classifiers: random

forest (RF), support vector machine (SVM), k-local

hyperplane distance nearest neighbor (HKNN), and k

nearest neighbor (KNN), on the three datasets. As can be

seen from the graph, the Acc, Spec, and Mcc values of

GHKNN are higher than those of the other four classifiers,

and only the Sn value is slightly lower.

Collectively, it seems that the classification effect of the

GHKNN classifier exceeds that of the other classifiers, and

thus, this experimental model has the best classification effect

on the three datasets.

3.4 Comparison with other feature
extraction methods

Table 5 shows the experimental comparison results of the

188D feature extraction method used in this experiment with

four other common feature extraction methods with

representative values: AAC, CTDC, GAAC, and CKSAAGP.

From the table, it can be seen that the values of Acc, spec, mcc,

and sn of the 188D feature extraction method used in this

experiment are much higher than those of the other four

extraction methods

TABLE 5 Comparison of Sn, Acc, Spec, and Mcc values obtained by
using GHKNN-based classification on this experimental dataset
using five extraction feature methods: 188D, AAC, CTDC, GAAC, and
CKSAAGP.

Acc Spec Mcc Sn

188D 0.960 0.987 0.729 0.676

AAC 0.936 0.990 0.495 0.350

CTDC 0.925 0.989 0.388 0.252

GAAC 0.903 0.976 0.172 0.134

CKSAAGP 0.939 0.987 0.540 0.420

TABLE 6 Classification results using this experimental model on the
GPCR and vesi datasets and the comparison with the previous
experimental results.

GPCR Vesi

Spec Acc Mcc Sn Spec Acc Mcc Sn

GHKNN 0.937 0.934 0.865 0.930 0.952 0.879 0.623 0.618

Others 0.972 0.833 0.692 0.694 0.829 0.823 0.520 0.792
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3.5 Comparison with previous
classification results on other datasets

Table 6 shows the results of this experimental model on the G

protein-coupled receptor (GPCR) dataset compared with those of

Liao et al. (2016) and on the vesicular transport protein (vesi) dataset

compared with those of Le and Nguyen (2019). As can be seen from

the table, on the GPCR dataset, the values of the present experimental

model is lower than the predicted value of Liao only on spec, which is

about 0.04, and outperforms Liao on all three measures of acc, mcc,

and sens; on the vesi dataset, the values of the present experimental

model is lower than those of Nguyen on the index of sens, and the

other three measures are higher than those of Nguyen. Collectively, it

seems that the present experimental model outperforms the previous

experimental results in classification on both GPCR and vesi datasets.

4 Discussion

This study shows that the GKHNN-based binary classifier has

good classification results for proteins. Compared to several other

classifiers, the four metrics, spec, recall, mcc, and acc, reached high

values on the three datasets of this study, which have some application

value. In the study of the binary classification problem of protein

sequences, both in thefield ofmachine learning and deep learning, the

classification accuracy of protein sequences is highly variable due to

the individual performance of each protein sequence, resulting in

significant differences in the classification results using different

classifiers. As a result, we are committed to finding more general

classification models with wider applicability in the future.
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