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The identification of immune-related prognostic biomarkers opens up the possibility

of developing new immunotherapy strategies against tumors. In this study, we

investigated immune-related biomarkers in the tumor microenvironment to

predict the prognosis of cervical cancer (CC) patients. ESTIMATE and CIBERSORT

algorithms were used to calculate the abundance of tumor-infiltrating immune cells

(TICs) and the amount of immune and stromal components in cervical samples (n =

309) from The Cancer Genome Atlas. Ten immune-related differentially expressed

genes associated with CC survival were identified via intersection analyses of

multivariate Cox regression and protein-protein interactions. CD79B was chosen

for further study, and its prognostic value and role in anti-CC immune functionswere

analyzed. Differential expression analysis and qRT-PCR validation both revealed that

CD79B expression was down-regulated in CC tissues. Survival analysis suggested

that a high level of CD79B expression was associated with good prognosis. In the

clinical correlation analysis, CD79B expression was found to be related to primary

therapy outcome, race, histological type, degree of cell differentiation, disease-

specific survival, and progression-free interval. GSEA showed that the function and

pathway of CD79B were mainly related to immune activities. Meanwhile, CD79B

expression was correlated with 10 types of TICs. Based on CD79B-associated

immunomodulators, a novel immune prognostic signature consisting of 10 genes

(CD96, LAG3, PDCD1, TIGIT, CD27, KLRK1, LTA, PVR, TNFRSF13C, and TNFRSF17)

was established and validated as possessing good independent prognostic value for

CC patients. Finally, a nomogram to predict personalized 3- and 5-year overall

survival probabilities in CC patients was built and validated. In summary, our findings

demonstrated thatCD79Bmightbeapotential prognostic biomarker forCC.The 10-

gene prognostic signature independently predicted the overall survival of patients

with CC, which could improve individualized treatment and aid clinical decision-

making.
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1 Introduction

Cervical cancer (CC) is the fourth most common cancer in

women (Arbyn et al., 2020), and its occurrence is associated with

persistent infection with high-risk human papillomavirus (HPV)

(Cohen et al., 2019). Approximately 90% of cervical cancer

deaths occur in developing regions of the world (Torre et al.,

2015). In recent years, substantial progress has been made in

controlling cervical cancer due to widespread screening and

extensive vaccination against HPV infection (Ventriglia et al.,

2017). However, recurrent and advanced-stage disease is not

amenable to radical treatment, and de novo metastatic disease is

still considered incurable, with poor prognosis (Ventriglia et al.,

2017; Liontos et al., 2019). Fortunately, immunotherapy is

emerging as a potential novel therapeutic approach to

improving outcomes in CC patients (Dyer et al.,

2019).Biomarkers associated with cancer may represent critical

targets for improving cancer therapies (Liu, 2019). Thus, there is

an urgent need to investigate novel immune-related biomarkers

in CC to develop new immunotherapy strategies.

Over the past few decades, immunotherapy has become a

powerful clinical strategy in the treatment of cancer (Riley et al.,

2019). It works primarily by harnessing an anti-tumor immune

response (Sanmamed and Chen, 2018). Today, there are many types

of tumor immunotherapies, such as checkpoint inhibitors,

lymphocyte-promoting cytokines, cancer vaccines, oncolytic

viruses, and bispecific antibodies (Riley et al., 2019).

Immunotherapy with immune checkpoint inhibitors, especially

those that target the programmed death-ligand 1/programmed

death-1 (PD-L1/PD-1) and cytotoxic T-lymphocyte-associated

antigen-4 (CTLA-4) pathway, has improved the effects of

treatment on various types of tumors (Apolo et al., 2017). In

recent years, anti-PD-1/PD-L1 checkpoint blockade

immunotherapy (CBI) has been approved to treat metastatic

squamous cell carcinomas, including head and neck squamous

cell carcinoma, lung cancer, and cervical cancer (Lyu et al., 2020).

It has been proven that PD-1/PD-L1 inhibitors benefit cervical cancer

treatment by markedly reinvigorating the anti-tumor immune

response of T cells (Wang et al., 2019; Balanca et al., 2020; Lyu

et al., 2020). However, the sustained therapeutic effect of anti-PD-

L1 treatment alone on CC was limited (Liu et al., 2016).

The effectiveness of tumor immunotherapy is largely influenced

by the tumor microenvironment (TME) (Binnewies et al., 2018).

The TME is a complex ecosystem comprising tumor cells, immune

cells, stromal cells, abnormal vasculature, chemokines, and

cytokines, which may have an effect on tumor occurrence,

progression, and metastasis (Fridman et al., 2017; Wu et al.,

2019). The TME carries out essential functions that aid the

tumor in tolerating immune surveillance (Qiu et al., 2020). In

cervical cancer, it influences prognosis, with higher ratios of

tumor-infiltrating CD8+ T cells being associated with improved

survival (Otter et al., 2019). An in-depth analysis of the complexity

of the tumor immune microenvironment in cervical cancer may

therefore reveal biomarkers that will help identify novel targets for

immunotherapeutic regulation (Binnewies et al., 2018).

CD79B is aB-cell receptor–associated protein, physiologically

expressed inB cells and mostB-cell malignancies (Visco et al.,

2020). According to three recent studies,B cells are vital immune

components within tumors and are associated with immunotherapy

outcomes (Bruno, 2020). At present, antibody-drug conjugates

targeting the pan–B cell biomarker of CD79B have been proven

effective in clinical applications for hematological malignancies, such

as different subtypes of molecular diffuse largeB-cell lymphoma

(Pfeifer et al., 2015; Bruno, 2020; Harris et al., 2020). However,

the function of CD79B in CC has not yet been investigated.

In this study, we explored the role of CD79B in anti-CC

immune function and its potential as a prognostic marker for CC.

We conducted multiple bioinformatics analyses, starting from

the differentially expressed genes (DEGs) generated by

comparing the immune and stromal components of cervical

samples in the Cervical Squamous Cell Carcinoma and

Endocervical Adenocarcinoma (CESC) dataset of The Cancer

Genome Atlas (TCGA). Furthermore, we systematically

evaluated the correlation between CD79B and immune cell

infiltration, as well as the signaling pathways regulating the

CD79B-mediated immune response. Finally, we used CD79B-

associated immunomodulators to create the immune prognostic

signature, and we constructed a nomogram by integrating the

risk score in the signature and other clinical characteristics.

2 Methods and materials

2.1 Raw data preparation and workflow

Transcriptome RNA sequencing (RNA-seq) data (HTSeq-

FPKM) of 309 cervical samples, including 306 cancerous and three

normal samples, and the data of the 306 corresponding clinical cases

(Supplementary Table S1), was downloaded from the TCGA portal

maintained by GDC (https://portal.gdc.cancer.gov/; up to 4 July

2021). The limma package of R software was used to further

process the RNA expression data (Ritchie et al., 2015). Meanwhile,

we used the RNA sequencing expression data from the Gene

Expression Profiling Interactive Analysis 2 (GEPIA2) database

(http://gepia2.cancerpku.cn/#index) to analyze the differential

expression of CD79B between cervical tissues and normal tissues,

as well as the link betweenCD79B expression andCCpatient survival.

The GEPIA2 dataset for analysis included 13 normal samples from

the TCGA and the Genotype-Tissue Expression (GTEx) database

(https://gtexportal.org/home/), respectively, as well as 306 tumor

samples from the TCGA database. Furthermore, after determining

the differential expression ofCD79B inCCusing theGEPIA2data,we

validated this determination using 30 cervical tissue samples from the

local hospital and the gene expression array dataset from the

ONCOMINE database (https://www.oncomine.org). This

validation dataset included 28 cervical samples (20 cancerous
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samples and eight normal samples). The workflow of our study is

shown in Figure 1.

2.2 Generation of immunescore,
stromalscore, and ESTIMATEScore

Infiltrating stromal and immune cells form a significant part

of the tumor tissue and play vital roles in cancer biology

(Yoshihara et al., 2013). Here, we used the ESTIMATE

algorithm in the R language and loaded the “Estimate” R

package to evaluate the proportion of immune matrix

components of each transcriptome data sample in the TME,

including ImmuneScore, StromalScore, and ESTIMATEScore.

2.3 Identification and enrichment analysis
of differentially expressed genes

According to the comparison of the median StromalScore and

ImmuneScore values, 306 CC samples were labeled as high-scoring or

low-scoring, respectively. A differential expression analysis of these

genes was performed using the “limma” R package, and DEGs were

obtained by comparing high-scoring samples with low-scoring

samples. A false discovery rate (FDR) adjusted p-value < 0.05 and |

log2 (fold change)| > 1 were considered statistically significant. The

results were plotted using the “heatmap”package in R. Finally, to better

understand the function of the DEGs shared by ImmuneScore and

StromalScore, pathway enrichment analyses were performed on Gene

Ontology (GO) (Subramanian et al., 2005) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Kanehisa et al., 2017) data using the

“clusterProfiler, enrichplot, and ggplot2” package in R software. GO

and KEGG terms with p- and q-values < 0.05 were considered

significantly enriched. The top five results of the enrichment

analysis were visualized via bubble charts.

2.4 Intersection analysis of the PPI
network and multivariate cox regression

Analysis of protein-protein interaction (PPI) is a powerful

method for characterizing and inferring the potential

FIGURE 1
Study design and workflow.
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interactions between proteins (Goehler et al., 2004). In this study,

based on the TCGA data, the PPI network of the DEGs was

constructed using the STRING database (https://string-db.org/

cgi/input.pl), then visualized with Cytoscape software (version 3.

6.1). Nodes whose interactive relationships had a confidence

interval greater than 0.95 were used for building networks.

Meanwhile, the top 25 DEGs were selected to create bar plots

according to the number of nodes. Univariate and multivariate

Cox regression analyses using R software with the “survival”

package were applied to evaluate the DEGs’ prognostic values in

CC. Statistical significance was defined as a p-value < 0.05 in the

univariate Cox regression analysis and a p-value < 0.001 in the

multivariate Cox regression analysis. Consequently, the top

25 DEGs in the PPI network were intersected with the most

significant factors obtained from the multivariate Cox regression

analysis.

2.5 Differential expression analysis of
CD79B based on the qRT-PCR experiment
and online databases

We analyzed the CESC dataset from the GEPIA2 database for

the differential expression analysis of CD79B in normal and

cancerous cervical tissues. Meanwhile, to validate the differential

expression of CD79B from the GEPIA2 analysis, we analyzed the

dataset in the ONCOMINE database and conducted a quantitative

real-time reverse transcription polymerase chain reaction (qRT-

PCR) experiment using 30 clinical samples (15 cancerous samples;

15 normal samples) from CC patients. For the qRT-PCR

experiment, total RNA was isolated from 30 samples of cervical

cancer and normal tissues using Trizol reagent (Takara, Dalian,

China) according to the manufacturer’s instructions. The extracted

RNA was reverse transcribed into cDNA using a Reverse

Transcription Kit (Takara). SYBR Green qPCR Master Mix

(Vazyme, Nanjing, China) was applied to perform the qRT-PCR

analysis. Primer sequences for CD79B and β-actin (the internal

reference gene) were as follows: CD79B (forward primer: 5′-GGG
CTGGAGACAAATGGCAG-3′; reverse primer: 5′- TGAAGTGGT
CTGTAGGTGAGCA-3′); β-actin (forward primer: 5′-ATGTGG
CCGAGGACTTTGATT-3′; reverse primer: 5′-AGTGGGGTG
GCTTTTAGGATG-3′). The CD79B gene expression value was

normalized to the expression value of the β-actin gene. Relative

mRNA expression levels were calculated using the 2−ΔΔCt method,

and the data result was analyzed by unpaired t-test with Welch’s

correction using SPSS Statistics software.

2.6 Survival analysis and clinical
correlation analysis of CD79B

We analyzed the effect of CD79 B on survival in CC patients

using the CESC dataset on the GEPIA2 database. Moreover, to

further explore the correlation between CD79B expression and

clinicopathological characteristics, the clinical data and CD79B

expression data of 306 CESC samples were obtained from the

TCGA database. In the analysis of these data, the CD79B

expression levels were respectively divided into high and low

groups based on their median levels. The Wilcoxon rank-sum

test was used to analyze the differences for continuous variables.

For categorical variables, the Fisher’s exact test or chi-squared

test was used to differentiate the rates of different groups.

Statistical significance was considered at p < 0.05.

2.7 Gene set enrichment analysis

To explore the biological functions and signaling pathways of

the CD79B gene, we used Gene Set Enrichment Analysis (GSEA)

embodied in a freely available software package (version 4.0.3)

(Subramanian et al., 2005) to identify enriched GO terms and

KEGG pathways associated with high CD79B expression. The

number of random sample alignments was set at 1,000. Gene sets

with | NES | ≥ 1, NOM p-value < 0.001, and FDR q-value <
0.001 were defined as statistically significant.

2.8 Analysis between CD79B and tumor-
infiltrating immune cells

The CIBERSORT algorithm was applied to characterize the

cell composition of complex tissues according to their gene

expression profiles and to estimate the profile and abundance

of tumor-infiltrating immune cells (TICs) in all tumor samples

with immune infiltration scores. CIBERSORT can thus be used to

perform large-scale RNA mixtures analysis to find therapeutic

targets and cellular biomarkers (Newman et al., 2015). In this

study, the CIBERSORT R script (https://cibersort.stanford.edu/)

was applied to qualify and quantify 22 types of immune cells

(seven T cell types, naïve and memoryB cells, plasma cells, NK

cells, and myeloid subsets) in cervical tissues. After excluding

samples with p ≥ 0.05, the remaining samples were selected for

further analysis. The results were visualized using bar charts, corr

plots, violin plots, and heatmaps, respectively, by the

corresponding R packages.

2.9 Analysis of CD79B-associated
immunomodulators

Multiple types of data resources in oncoimmunology, such as

lymphocytes, immunomodulators, and chemokines, were

available on the TISIDB online platform (http://cis.hku.hk/

TISIDB/). The TISIDB online tool can be used to

comprehensively investigate the interactions between the

tumor and immune cells (Ru et al., 2019). To analyze the
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correlation between CD79B expression and immunomodulators,

we extracted 45 immunostimulators and 24 immunoinhibitors

from the TISIDB online portal. Additionally,

57 immunomodulators that were significantly correlated with

CD79B expression (per the Spearman correlation test, p < 0.05)

were chosen for analysis. Out of these, 52 immunomodulators

that were highly likely to be actively involved were used to

establish a PPI network via the STRING database and

visualized by Cytoscape software. At the same time, KEGG

pathway enrichment and GO analyses for these 52 CD79B-

related immunomodulators were performed using WebGestalt

(http://www.webgestalt.org), a gene set enrichment analysis tool

(Zhang et al., 2005).

2.10 Establishment of the
immunomodulator prognostic signature
and survival analysis

Based on the CD79B-related immunomodulators, we

attempted to develop a multiple immune gene signature to

predict the prognosis of CC patients. The Akaike Information

Criterion in the Cox models was used for the stepwise variable

selection (Choi et al., 2011). After screening the immune genes,

we calculated the risk score of the immune gene signature in each

CESC patient via the following formula: risk score = [Expression

level of Gene A × coefficient] + [Expression level of GeneB ×

coefficient] + . . .+ [Expression level of Gene N × coefficient](Dai

et al., 2021). According to the prognostic model, we calculated

the risk score of each cervical cancer patient and used the

medium value of the risk score to divide the patients into a

high-risk group and a low-risk group. At the same time, we also

drew the Kaplan–Meier survival curve and the receiver operating

characteristic (ROC) curve to evaluate the signature’s prediction

accuracy. Additionally, to assess whether the immune-related

gene signature has an independent prognostic value, univariate

and multivariate Cox regression analysis was performed for the

risk score, with adjustments for age, stage, histological type, and

body mass index (BMI).

2.11 Construction and validation of the
nomogram

Nomograms are widely used to estimate cancer prognosis or

other clinical outcomes because they can simplify statistical

predictive models into a single numerical estimate of the

probability of an event (Iasonos et al., 2008). We therefore

plotted the nomogram, according to clinical characteristics

and risk score, via the “rms” R package to predict the

probability of three- and five- year overall survival (OS) for

CC patients. To measure the predictive accuracy of the

nomogram model, the concordance index (C-index) was

calculated. Then, the discriminative ability of the nomogram

was determined by a calibration curve using the bootstrap

method (1,000 replicates) to test the reliability between the

predicted and actual OS rates (Wang et al., 2013). All analyses

were performed using R software.

2.12 Statistical analysis

Statistical analysis was performed using R software (version

4.0.4) and complemented by IBM SPSS Statistics 23.0. The

threshold of statistical significance was set at p < 0.05 (*p < 0.05).

3 Results

3.1 Identification and enrichment analysis
of DEGs shared by immunescore and
stromalscore

To determine the exact alterations of the gene profiles in the

immune and stromal components, we performed a comparative

analysis of the gene expression in samples with high and low

ImmuneScore/StromalScore values. A total of 1,067 DEGs were

obtained from ImmuneScore, comprising 643 up-regulated and

424 down-regulated genes (Figure 2A). Similarly, 947 DEGs were

obtained from StromalScore, comprising 917 up-regulated and

30 down-regulated genes (Figure 2B). The Venn diagram results,

obtained by intersecting the DEGs from ImmuneScore and

StromalScore, indicated that 408 genes were up-regulated and

17 genes were down-regulated (Figures 2C,D).

We also predicted the functions of 425 intersecting DEGs.

The results of the GO enrichment analysis showed that these

DEGs were mainly involved in immune-related GO terms, such

as T cell activation, regulation of lymphocyte activation, and

regulation of T cell activation (Figure 2E). KEGG enrichment

analysis revealed that these DEGs were significantly enriched in

cytokine–cytokine receptor interaction, hematopoietic cell

lineage, viral protein interaction with cytokines and cytokine

receptors, chemokine signaling pathways, and cell adhesion

molecules (Figure 2F). Thus, the overall function of 425 DEGs

was focused on immune-related activities, which suggests that

the involvement of immune factors and components plays a

crucial role in the TME status of CC patients.

3.2 Intersection analysis of the PPI
network and Multivariate Cox regression

To explore the possible mechanisms underlying the

425 DEGs, a PPI network based on the STRING platform was

constructed. The 146 DEGs in the PPI network with a high

likelihood of interaction (score > 0.95) are shown in Figure 3A,
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and the top 25 DEGs selected using the number of nodes and

edges in the PPI network are shown in Figure 3B. Univariate Cox

regression analysis on the 425 DEGs showed that 146 of them

were considered statistically significant (p < 0.05)

(Supplementary Table S2). The multivariate Cox regression

analysis, based on the 146 DEGs in the univariate Cox

regression analysis, showed that 122 DEGs were considered

statistically significant for the survival of CC patients (p <
0.001) (Supplementary Table S3). Ultimately, 10 DEGs (CCL5,

CD3E, CXCL9, CD28,BTK, CD3D, CD79A, CD79B, CXCR3,

FIGURE 2
Heatmaps, Venn plots, and enrichment analysis of GO and KEGG terms for the CESC dataset. (A and B) Heatmaps for the DEGs obtained from
ImmuneScore (A) and StromalScore (B), generated by comparing high-scoring and low-scoring groups of immune and stromal cells. (C and D) Venn
diagram analysis of up-regulated (C) and down-regulated (D) DEGs shared by the ImmuneScore and StromalScore. (E and F)Biological functions (E)
and pathway (F) enrichment analyses for DEGs in the CESC dataset with p-value and q-value < 0.05.
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CCR2) (Figures 3C,D) were identified based on the intersection

of the top 25 DEGs in the PPI network and the 122 significant

DEGs in the multivariate Cox regression analysis.

3.3 Differential expression of CD79B,
survival, and clinical correlation analysis

The analysis of the GEPIA2 data showed that the expression

of CD79B mRNA in tumor tissues was significantly lower than

that in normal cervical tissue (p < 0.05; Figure 4A). Meanwhile,

the results of the validation sets from the ONCOMINE database

and the qRT-PCR experiment showed that CD79 B expression

was markedly lower in tumor tissues than that in normal cervical

tissues (p = 0.0247 and p = 0.0077, respectively; Figures 4B,C).

Regarding the survival analysis, the results showed that the

prognosis of CC patients with high CD79B expression was better

than that of patients with low CD79 B expression (p = 0.0076;

Figure 4D). The association between CD79B expression and

clinicopathological features is shown in Table 1. CD79 B

expression was significantly correlated with primary therapy

outcome, race, histological type, the degree of differentiation

(i.e., keratinizing squamous cell carcinoma present), disease-

specific survival (DSS), and progression-free interval (PFI).

CD79 B expression did not significantly correlate with age,

tumor depth, distant metastasis, lymph node metastasis,

clinical stage, histologic grade, radiation therapy, orBMI.

3.4 Identification of CD79B-Related
functions and signaling pathways

The potential functions of the CD79 B were explored by a

GSEA analysis. The results showed that the top 15 significant

signaling pathways associated with high CD79 B expression were

mainly immune-related pathways, such as antigen processing

and presentation,B cell receptor signaling pathways, cell adhesion

molecule pathways, chemokine signaling pathways,

FIGURE 3
PPI network and multivariate Cox regression analysis. (A) PPI network constructed using nodes with interaction confidence value >0.95, as
visualized byCytoscape. (B) The top 25DEGs, ordered by the number of nodes. (C)Venn diagramof the common intersectionDEGs based on the top
25 DEGs in the PPI network and the most significant DEGs with p < 0.001 in multivariate Cox regression analysis. (D) Multivariate Cox regression
analysis of 10 common intersecting DEGs.
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cytokine–cytokine receptor interactions, T cell receptor signaling

pathways, and Toll-like receptor signaling pathways (p < 0.001,

q < 0.001; Figure 4E). Highly expressed CD79 B genes were

significantly enriched in 15 GO terms, such as the adaptive

immune response based on somatic recombination of immune

receptors and built from immunoglobulin superfamily domains;

immune receptor activity;B cell activation; cell recognition;

defense response against bacteria; and the humoral immune

response. In total, 12 of the GO terms wereBiological Process

terms, two were Cellular Component terms, and one was a

Molecular Function term (p < 0.001, q < 0.001; Figure 4F).

3.5 Association between CD79B
expression and tumor immune infiltrates

To further clarify the correlation between CD79 B

expression and the tumor immune infiltrates, the

CIBERSORT algorithm was applied to analyze the

proportion of tumor-infiltrating immune subsets. A p-value

for the deconvolution of each sample was counted out by

Monte Carlo sampling. Removing the samples with p ≥
0.05 revealed the infiltrating immune cell profiles among

the CESC samples (Figures 5A,B). The difference in the

infiltrating immune cells between cancerous and normal

tissues in the TCGA-CESC cohorts is displayed in Figure 5C.

Compared with normal cervix tissues, CD8 T cells,

M0 macrophages, M1 macrophages, and naiveB cells were

increased in cancerous tissues; however, resting mast cells were

reduced somewhat in most cancerous tissues (Figure 5C). The

difference in the abundance of TICs between the high–CD79B

expression and low–CD79 B expression groups was investigated.

The results showed that 10 of the 22 TICs were significantly

different between the two groups (p < 0.05, Figure 5D), including

naiveB cells, plasma cells, CD8 T cells, regulatory T cells (Tregs),

activated natural killer (NK) cells, M0 macrophages,

M1 macrophages, activated dendritic cells (DCs), activated mast

cells, and eosinophils. Among the TICs with different abundances,

naiveB cells, plasma cells, CD8 T cells, Tregs, and M1 macrophages

were positively correlated with CD79B expression, whereas activated

NK cells, M0 macrophages, activated dendritic cells, activated mast

cells, and eosinophils were negatively correlated with CD79B

expression (Figure 5E).

The potential CD79B-associated immunomodulators

(including immunoinhibitors and immunostimulators) in the

CESC data were investigated in hopes of producing insights into

the relationship between CD79B and immune infiltration and

regulation. A total of 38 immunostimulators (C10orf54,CD27,

CD28, CD40, CD40LG, CD48,CD70, CD80, CD86, CD276,

CXCL12, CXCR4, ENTPD1, ICOS, ICOSLG, IL2RA, IL6,

KLRC1, KLRK1, LTA, MICB, PVR, TMEM173, TMIGD2,

TNFRSF4, TNFRSF8, TNFRSF9, TNFRSF13B, TNFRSF13C,

FIGURE 4
Differential expression of CD79B, survival analysis, and GSEA analysis of highly expressed CD79B. (A) ThemRNA expression level of CD79B in CC
tissues and normal tissues was analyzed using the GEPIA2 online datasets. These datasets included 13 normal samples from the TCGA and GTEx
databases, respectively, as well as 306 tumor samples from the TCGA database (*p < 0.05). (B)mRNA expression of CD79B in CC tissues and normal
tissues from the ONCOMINE database. (C) The mRNA expression of CD79 B was examined in CC tissues and compared to normal tissues by
qRT-PCR using 30 samples from patients. An unpaired t-test with Welch’s correction evaluated the significance of the data. (D) Association between
CD79B expression and overall survival in CC, based on the GEPIA2 online database. (E and F)GSEA analysis of the top 15 significant pathways (E) and
enriched gene sets in c5. go.v7.4. Symbols (F) associated with high CD79B expression.
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TABLE 1 Relationship between CD79B expression in cervical cancer and clinicopathological factors.

Characteristics Total (n = 306) CD79B p-value

Low (n = 153) High (n = 153)

Age, median (IQR) 46 (38, 56) 47 (39, 58) 0.450a

T stage, n (%) 0.404b

T1 140 (57.6%) 73 (30.0%) 67 (27.6%)

T2 72 (29.6%) 29 (11.9%) 43 (17.7%)

T3 21 (8.6%) 10 (4.1%) 11 (4.5%)

T4 10 (4.1%) 4 (1.6%) 6 (2.5%)

N stage, n (%) 1.000c

N0 134 (68.7%) 63 (32.3%) 71 (36.4%)

N1 61 (31.3%) 29 (14.9%) 32 (16.4%)

M stage, n (%) 0.534b

M0 116 (91.3%) 50 (39.4%) 66 (52.0%)

M1 11 (8.7%) 6 (4.7%) 5 (3.9%)

Clinical stage, n (%) 0.881c

Stage I 162 (54.2%) 84 (28.1%) 78 (26.1%)

Stage II 69 (23.1%) 32 (10.7%) 37 (12.4%)

Stage III 46 (15.4%) 22 (7.4%) 24 (8.0%)

Stage IV 22 (7.4%) 11 (3.7%) 11 (3.7%)

Radiation therapy, n (%) 0.726c

No 122 (39.9%) 63 (20.6%) 59 (19.3%)

Yes 184 (60.1%) 90 (29.4%) 94 (30.7%)

Primary therapy outcome, n (%) 0.042b

PD 23 (10.5%) 16 (7.3%) 7 (3.2%)

SD 6 (2.7%) 2 (0.9%) 4 (1.8%)

PR 8 (3.7%) 6 (2.7%) 2 (0.9%)

CR 182 (83.1%) 81 (37%) 101 (46.1%)

Race, n (%) 0.039c

Other 51 (19.5%) 19 (7.2%) 32 (12.2%)

White 210 (80.1%) 112 (42.9%) 98 (37.5%)

BMI, n (%) 0.852c

< = 25 100 (38.5%) 52 (20.0%) 48 (18.5%)

>25 160 (61.5%) 80 (30.8%) 80 (30.8%)

Histological type, n (%) 0.034c

Adenosquamous 53 (17.3%) 34 (11.1%) 19 (6.2%)

Squamous cell carcinoma 253 (82.7%) 119 (38.9%) 134 (43.8%)

Histologic grade, n (%) 0.579b

G1 19 (6.9%) 11 (4.0%) 8 (2.9%)

G2 135 (49.3%) 69 (25.2%) 66 (24.1%)

G3 119 (43.4%) 55 (20.1%) 64 (23.4%)

G4 1 (0.4%) 0 (0.0%) 1 (0.4%)

Keratinizing squamous cell carcinoma present 0.047c

No 120 (39.2%) 51 (16.7%) 69 (22.5%)

Yes 186 (60.8%) 102 (33.3%) 84 (27.5%)

DSS event 0.006c

Alive 247 (81.2%) 113 (37.4%) 134 (44.4%)

Dead 55 (18.2%) 37 (12.3%) 18 (6.0%)

(Continued on following page)
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TNFRSF14, TNFRSF17, TNFRSF18, TNFRSF25, TNFSF4,

TNFSF13, TNFSF13B, TNFSF14, and ULBP1) and

19 immunoinhibitors (ADORA2A,BTLA, CD96, CD160, CD244,

CD274, CSF1R, CTLA4, HAVCR2, IDO1, IL10, KDR, KIR2DL3,

LAG3, LGALS9, PDCD1, PDCD1LG2, TGFBR1, and TIGIT) that

were significantly related to CD79B expression in the CESC data

were identified (p < 0.05, Figure 6A). Among these 57 CD79B-

associated immunomodulators, 52 were deemed highly likely to be

involved in an interactive relationship (as supported by a strong

confidence value), and these were used to build the PPI network

(Figure 6B). Furthermore, GO enrichment analyses of these 52 genes

demonstrated that their functions weremainly involved in biological

regulation and stimulus response (Figure 6C). The results of the

KEGG pathway analysis showed that the NF-kappaB signaling

pathway, T cell receptor signaling pathway, and natural killer

cell-mediated cytotoxicity were correlated with CD79 B-mediated

immune events (Figure 6D).

Overall, the results described above indicate that CD79B widely

participates in modulating tumor immune cells and affects the

immune activity in the tumor microenvironment of cervical cancer.

3.6 Establishment and validation of gene
prognostic signature

In the TCGA CESC dataset, 24 CD79 B-associated

immunomodulators were found to correlate with the OS of CC

patients by univariate Cox proportion hazard regression analysis

(p < 0.05, Supplementary Figure S1). Meanwhile, the Akaike

information criterion (AIC) was applied to screen important

prognostic immune genes from the CD79 B-associated

immunomodulators in the multivariate Cox proportion hazard

regression analysis. We selected 10 genes (CD96, LAG3, PDCD1,

TIGIT, CD27, KLRK1, LTA, PVR, TNFRSF13C, and TNFRSF17)

(log-rank test, p = 2.0598e-08) (Figure 7A) and established a 10-gene

optimal prognostic signature to investigate the prognostic values of

CD79B-associated immunomodulators in CC. The biological

functions and the risk coefficients of the 10 genes are shown in

Table 2. We obtained the risk scores of the immune gene signature

in each CESC patient according to the proposed formula (Dai et al.,

2021) and divided the patients into the high-risk and low-risk

groups. The survival time of patients with low-risk scores was

significantly longer than those with high-risk scores, which

confirmed the prognostic value of the risk score (p = 1.526e−06,

Figure 7B).

We also calculated the area under the ROC curve (AUC) value

of the risk score to assess its predictive sensitivity and specificity in

the prognosis of CC patients (AUC = 0.864, Figure 7C). These

results demonstrated that the prognostic risk model based on the

10 CD79B-related immunomodulators was considered reliable. The

distribution of the risk scores, the survival status of the patients, and

the 10-gene expression profiles were also acquired and these results

showed that the occurrence of mortality depended on the risk score

(Figures 7D–F). In addition, CD96, LAG3, PDCD1, TIGIT, CD27,

KLRK1, LTA, TNFRSF13C, and TNFRSF17 were highly expressed

in the low-risk group, and PVR was up-regulated in the high-risk

group (Figure 7F).

We conducted univariate and multivariate Cox regression

analyses to assess whether the risk model of the above 10 CD79B-

related immunomodulators is an independent prognostic factor

for CC. In the univariate model, the hazard ratio (HR) of the risk

score was 1.514 and the 95% confidence interval (CI) was

1.362–1.682 (p < 0.001; Figure 8A), indicating that risk score,

age, stage, andBMI were significantly associated with the survival

of patients with CC. In the multivariate model, the HR of the risk

score was 1.521, and the 95% CI was 1.341–1.725 (p < 0.001),

indicating that the risk score and stage were significant

independent prognostic predictors (Figure 8B).

3.7 Construction and evaluation of a
prognostic nomogram

To predict the 3-year and 5-year OS probability of CC

patients, a prognostic nomogram, including the features of

risk score, age, stage, histological type, andBMI, was

TABLE 1 (Continued) Relationship between CD79B expression in cervical cancer and clinicopathological factors.

Characteristics Total (n = 306) CD79B p-value

Low (n = 153) High (n = 153)

PFI event 0.043c

Alive 234 (76.5%) 109 (35.6%) 125 (40.8%)

Dead 72 (23.5%) 44 (14.4%) 28 (9.2%)

IQR, interquartile range; M, distant metastasis; N, lymph node metastasis; T, tumor depth; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease;BMI,

body mass index; DSS, disease-specific survival; PFI, progression-free interval.
aWilcoxon rank-sum test.
bFisher’s exact test.
cChi-square test. A asf.
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FIGURE 5
Correlation analysis of CD79B expression and TICs. (A) The proportions of 22 types of TICs in the TCGA-CESC cohorts. (B) Corrplots for the
correlation among the 21 TICs populations. (C) Heatmaps showing the differences in TIC abundance between tumor and normal tissues in CESC
cohorts. (D) Violin plots for the proportions of 22 TICs in samples with low and high CD79B expression. (E) Scatter plot showing Pearson’s correlation
between TICs and CD79B expression (p < 0.05). The 10 types of TICs were significantly different between the high and low CD79B expression
groups. The blue lines in each plot denote the best-fit linear models.
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established using the multivariate Cox regression analysis

(Figure 9A). The concordance index (C-index), i.e., the

indicator for evaluating the predictive discrimination of the

prognostic nomogram, was 0.83. The calibration curves

showed acceptable accuracy: the nomogram-predicted

probability (solid line) closely matched the actual reference

line (dashed line) for the 3-year and 5-year survival (Figures

9B,C). Taken together, these results indicate that the risk model

nomogram was effective for predicting the OS in CC patients.

4 Discussion

Immunotherapy is one of the best strategies for cancer

treatment (Riley et al., 2019). In addition to the factors

intrinsic to the tumor itself, the tumor microenvironment can

influence the efficacy of immunotherapy (Wang et al., 2018).

Thus, the use of immunotherapeutic strategies to target the tumor

microenvironment has attracted more and more interest (Yang

et al., 2021). In this study, we explored prognosis-related genes in

the TME that contributed to overall survival in cervical cancer

patients. Ten differential genes (CD79A, CD79B, CCR2, CD3D,

CD3E, CXCL9, CXCR3,BTK, CD28, CCL5) were identified as

associated with patient survival, but further analysis revealed that

all but one—CD79B—were not significantly associated with the

prognosis of CC (data not shown). CCR2(Santos et al., 2016),

CD28 (Escarra-Senmarti et al., 2017), and CXCR3 (Chen et al.,

2021) were shown to play an important immunological role in

CC in other studies. Therefore, we selected CD79B for the

subsequent series of bioinformatics analyses and investigated

whether CD79B might be a prognostic and therapeutic

biomarker in CC patients.

CD79B, a transmembrane heterodimer, is a part of theB-cell

antigen receptor (BCR), which is key to the successful

FIGURE 6
Identification and analysis of the CD79B-associated immunomodulators. (A)Heatmaps of CD79B-associated immunoinhibitors (left panel) and
immunostimulators (right panel) in the CESC cohorts. (B) The PPI network concerning the 52 CD79B-associated immunomodulators, including
immunoinhibitors (blue node) and immunostimulators (red node), as visualized by Cytoscape (C and D) GO (C) and KEGG pathway (D) enrichment
analysis results for 52 immunomodulators from the PPI network based on the CESC cohorts that are highly likely to have an interactive
relationship.
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FIGURE 7
Construction and validation of a prognostic signature based on CD79B-associated immunomodulators. (A) The hazard ratios of the 10 genes
used to establish the prognostic signature. (B) Kaplan-Meier curve between the high-risk-score and low-risk-score groups from the CESC cohorts
(p = 1.526e-06). (C) ROC curve describing the predictive accuracy of the prognostic signature in the CESC cohorts. (D) Distribution of risk scores in
the CESC cohorts. (E) Survival status of CESC patients in the low-risk and high-risk groups. (F) Expression profile of 10 CD79B-associated
immunomodulatory genes from the CESC cohorts.
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development and maintenance of matureB cells (Chu and Arber,

2001; Ormhoj et al., 2019). It has also been reported that CD79B

was differentially expressed in tumor tissues; for example, CD79B

expression was found to be low inB cell chronic lymphocytic

leukemia (B-CLL) (Contri et al., 2005). However, it maintains

high expression in most subtypes of non-Hodgkin lymphoma,

such as mantle cell lymphoma, diffuse largeB-cell lymphoma,

andBurkitt’s lymphoma (Ormhoj et al., 2019). In our study,

based on the results of public database analyses and clinical

specimen validation experiments, we found that CD79B

expression was lower in CC tissues than in normal cervical

tissues, which means that higher expression of CD79B may

play a potential role in controlling the development of CC.

The analysis of CD79B expression and clinicopathological

factors demonstrated that CD79B expression was related to

primary therapy outcome, race, histological type, the degree of

differentiation, disease-specific survival, and progression-free

interval, whereas there was no statistically significant

correlation between CD79B expression and age, tumor depth,

distant metastasis, lymph node metastasis, clinical stage,

histologic grade, radiation therapy, orBMI. These results

suggest that detecting CD79B expression may be significant

for differentiating cervical cancer types and for predicting

patient outcomes and prognosis, but not for indicating the

extent of metastasis, progression, or infiltration. Furthermore,

the survival analysis revealed that CD79B was a protective factor

for patients with CC. This is the first study to report that a high

level of CD79 B expression is related to better prognosis, which

indicates that high CD79B expression is necessary for efficacious

anti-tumor responses.

TABLE 2 Function and risk coefficients of the genes involved in the prognostic signature.

Gene
symbol

Full name Function Risk
coefficient

CD96 CD96 Adhesive interactions of activated T and NK cells 1.29380 during the late phase of
the immune response

LAG3 Lymphocyte activating 3 Inhibitory receptor on antigen-activated T-cells –0.63862

PDCD1 Programmed cell death 1 Inhibitory receptor on antigen activated T-cells to induction and maintenance of
immune tolerance to self

0.87924

TIGIT T cell immunoreceptor with and Ig and ITIM
domains

Binds to PVR, decreases the secretion of IL12B, suppresses T-cell activation –1.24275

CD27 CD27 Receptor for CD70/CD27L to promote the survival of activated T cells and induce
apoptosis

–1.17728

KLRK1 Killer cell lectin like receptor K1 Activating and costimulatory receptor in immunosurveillance –1.89030

LTA Lymphotoxin alpha Cytokine binding to TNFRSF1A/TNFR1, TNFRSF1B/TNFBR, and TNFRSF14/
HVEM

1.64513

PVR Poliovirus receptor Cell adhesion and regulation of immune response 0.31694

TNFRSF13C TNF receptor superfamily member 13C B-cell receptor specific for TNFSF13B/TALL1/BAFF/BLyS to promote theB-cell
response

–0.92140

TNFRSF17 TNF receptor superfamily member 17 PromotesB cell survival and plays a role in the regulation of humoral immunity 0.65649

FIGURE 8
Cox regression analysis of the association between clinical factors and OS in the CESC cohorts. (A) The forest map from the univariate Cox
regression analysis. (B) The forest map from the multivariate Cox regression analysis.
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FIGURE 9
A nomogram (inclusive of risk score) for predicting OS in cervical cancer patients. (A) A nomogram comprising the risk score and other clinical
factors for predicting the 3-year and 5-year OS of CC patients. (B and C) Calibration plots of the nomogram for predicting 3-year (B) and 5-year (C)
survival of CC patients. The x-axis represents nomogram-predicted survival, and the y-axis represents actual survival. The C-index of the nomogram
for predicting survival is 0.83.
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Previous studies have reported thatB-cell receptor (BCR)

activation was essential forB cells’ differentiation, activation,

and function (Tsui et al., 2018; Jing et al., 2020). CD79B is

one of the components of theBCR signaling complex, and

theBCR signaling pathway is dependent on CD79B activity

(Nayyar et al., 2019). In this study, we found that a high level

of CD79B expression was significantly associated with immune-

related pathways, especially theB-cell receptor, T-cell receptor,

and Toll-like receptor signaling pathways. We also observed that

the functions of high CD79B expression were primarily involved

in the adaptive immune response,B cell activation, cell

recognition, and immune receptor activity. Thus, the above

findings strongly suggest that CD79B-mediated immune-

related activities participate in controlling CC.

The tumor microenvironment may facilitate

immunosuppression and lead to the immune escape of cancer

cells (Nakamura and Smyth, 2020). Moreover, tumor-infiltrating

immune cells, as a component of the TME, are associated with

tumor progress, prognosis, and response to immunotherapy in

many cancers (Lei et al., 2020; Zhang and Zhang, 2020).

Cytotoxic CD8+ T cells can kill tumor cells and control tumor

growth. In most cancer types, CD8+ T cell infiltration in tumors

predicts a good prognosis (Disis et al., 2019; Shimizu et al., 2019),

while regulatory T (Treg) cells are known to suppress the anti-

tumor immune responses and are usually correlated with a poor

outcome (Sharma et al., 2019). The role ofB lymphocytes in

mediating the anti-tumor immune response (cytokine

production, antibody production from plasma cells, and

induction of T cell activation, as well as proliferation via

antigen presentation) has been widely demonstrated (Chen

et al., 2020). NaiveB cells can differentiate into plasma cells

with a stronger antibody-secreting ability, which is the basis

for generating humoral immunity (Akkaya et al., 2020). In

addition, tumor-induced regulatoryB (Breg) cells, which

produce pro-inflammatory factors and promote Treg-cell

differentiation, can promote immune suppression and support

tumor progression (Matsushita, 2019).

A recent study showed that infiltratingB cells in tumors can

be considered a predictor of patient survival (Wouters and

Nelson, 2018). In breast cancer,B cells play a role in

negatively regulating immune responses and promoting tumor

evasion by PD-L1, which is associated with poor prognosis (Guan

et al., 2016). However, in other solid cancers (ovarian cancer,

colorectal cancer, and some types of non–small-cell lung cancer),

tumor-infiltratingB cells are essential for good prognosis (Flynn

et al., 2017). We found that CD79B expression was positively

correlated with the infiltration level of naiveB cells, plasma cells,

and CD8+ T cells. This finding may explain why CD79B plays a

protective role in CC. We also found that CD79B expression was

positively correlated with Treg infiltration levels, which may

indicate that they can suppress the anti-tumor immune

response. Although the number of infiltrating cytotoxic CD8+

T cells is increased in CC samples with high levels of CD79B

expression, their anti-tumor function may be limited to some

degree due to the increased Treg infiltration.

Macrophages can stimulate the proliferation and

differentiation of naive CD8+ T cells into memory T cells, and

tumor-infiltrating M1 macrophages, the anti-cancer phenotype

of macrophages, play an antitumoral role (Gardner and Ruffell,

2016; Vitale et al., 2019). We showed that CD79B expression was

positively correlated with the infiltration level of

M1 macrophages and negatively correlated with

M0 macrophages, suggesting that CD79B may have an

influence on the polarization of macrophages. A

NK cells play a critical role in anti-tumor immunotherapy by

directly killing tumor cells (Watkins-Schulz et al., 2019). The

infiltration density of NK cells in tumors such as hepatocellular

carcinoma, renal cell carcinoma, and breast cancer has been

correlated with better clinical outcomes (Verma et al., 2015;

Kremer et al., 2017; Park et al., 2020). Dendritic cells are antigen-

presenting cells and can regulate cell-mediated immune

responses (Gardner and Ruffell, 2016). Several studies have

reported that mature tumor-infiltrating dendritic cells are also

associated with a favorable prognosis in various cancers (Laoui

et al., 2016). Our results showed that CD79B expression was

negatively correlated with activated NK cells and activated

dendritic cells. This represents a contrast to other recent

findings. In future studies, we will continue to focus on and

verify the relationship between CD79B expression and NK cells,

as well as dendritic cells. Our study also revealed that CD79 B

expression was significantly associated with tumor-infiltrating

immunomodulators (19 immunoinhibitors and

38 immunostimulators) in CC. Taken together, we could

speculate from these results that CD79B may affect or

regulate the immune cells in the TME of CC patients.

Therefore, CD79B might be a potential immunotherapeutic

target for CC.

Immune-related gene signatures have been shown to have

prognostic value for clinical outcomes in various cancer types

(Catacchio et al., 2018). Nomograms can generate individual

probabilities of clinical events by integrating different prognostic

and deterministic variables to facilitate personalized medicine

and aid clinical decisions (Balachandran et al., 2015), and they

are therefore widely used as prognostic tools in oncology.

CD79B, as we have seen, is also associated with immune

response activities. Through a series of bioinformatics

analyses, we found that CD79B might be a prognostic and

therapeutic biomarker in CC patients. We therefore

established a ten-gene immune prognostic signature from

CD79B-related immunomodulators. The prognostic signature

had a high degree of accuracy whenmeasured against the TCGA-

CESC dataset, as confirmed by an AUC of 0.864 in the ROC

curve, and the risk scores derived from the signature were

significantly correlated with survival in CC patients. Finally,

with the addition of clinical features, we constructed a

nomogram with a C-index of 0.83. This nomogram may
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provide clinicians with a convenient and accurate method for

assessing the individualized prognosis of CC patients.

To our knowledge, this is the first time a 10-gene prognostic

signature based on CD79B-related immunomodulators has been

established, and the first time that the resulting nomogram has

been applied to obtain personalized prognoses for CC patients.

However, this study has some limitations: First, it is not enough

to verify the differential expression of CD79B in cervical tissue by

RT-qPCR experiments; its core mechanism should be

investigated with follow-up experiments. Second, although our

results have shown good predictive potentiality and clinical value

of the 10-gene prognostic signature, prospective studies will be

needed to prove the clinical application and prognostic value of

this model in patients with CC.

In conclusion, our findings suggested that CD79B expression

was down-regulated in CC tissues compared to normal cervical

tissues, and that high CD79B expression in CC patients predicts a

good prognosis. In CC tissues, CD79B expression was associated

with infiltration of multiple immune cells, such asB cells, T cells,

and macrophages, suggesting it may play a role in regulating the

tumor immune microenvironment. The 10-gene prognostic

signature based on CD79B-associated immunomodulators

independently predicted overall survival. In the future, with

prospective validation, the 10-gene immune signature may

improve predictive accuracy and guide individualized

treatment and medical decisions for CC patients.

Furthermore, the prognostic genes associated with the

immune activity ofB cells should be identified; this may be a

new research direction for CC.
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