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The clustering of mutations observed in cancer cells is reminiscent of the

stress-induced mutagenesis (SIM) response in bacteria. Bacteria deploy SIM

when faced with DNA double-strand breaks in the presence of conditions that

elicit an SOS response. SIM employs DinB, the evolutionary precursor to human

trans-lesion synthesis (TLS) error-prone polymerases, and results in mutations

concentrated around DNA double-strand breaks with an abundance that

decays with distance. We performed a quantitative study on single

nucleotide variant calls for whole-genome sequencing data from

1950 tumors, non-inherited mutations from 129 normal samples, and

acquired mutations in 3 cell line models of stress-induced adaptive

mutation. We introduce statistical methods to identify mutational clusters,

quantify their shapes and tease out the potential mechanism that produced

them. Our results show that mutations in both normal and cancer samples are

indeed clustered and have shapes indicative of SIM. Clusters in normal samples

occur more often in the same genomic location across samples than in cancer

suggesting loss of regulation over the mutational process during

carcinogenesis. Additionally, the signatures of TLS contribute the most to

mutational cluster formation in both patient samples as well as experimental

models of SIM. Furthermore, a measure of cluster shape heterogeneity was

associated with cancer patient survival with a hazard ratio of 5.744 (Cox

Proportional Hazard Regression, 95% CI: 1.824–18.09). Our results support

the conclusion that the ancient and evolutionary-conserved adaptive mutation

response found in bacteria is a source of genomic instability in cancer.

Biological adaptation through SIM might explain the ability of tumors to

evolve in the face of strong selective pressures such as treatment and

suggests that the conventional ‘hit it hard’ approaches to therapy could

prove themselves counterproductive.
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Introduction

Genomic instability is a well-known hallmark of cancer

manifested as higher than normal rates of genomic mutations.

However, these mutations do not typically arise at uniformly

random locations across the genome. Rather, they follow a non-

uniform distribution resulting in mutational clustering (Drake,

2007; Wang et al., 2007; Ye et al., 2010; Nik-Zainal et al., 2012;

Roberts et al., 2012; Alexandrov et al., 2013; Kamburov et al.,

2015; Nik-Zainal et al., 2016; Chen et al., 2019). This

phenomenon is observed in its extreme form as kataegis,

consisting of 6 or more mutations with inter-mutational

distances of 1 kb or less (Alexandrov et al., 2013; Nik-Zainal

et al., 2016). Given that most mutations are either neutral or

deleterious, the likelihood that randomly distributed mutations

would result in gains in fitness is considered to be low (Ram and

Hadany, 2019). But concerted patches of mutation, particularly

when occurring within a gene, are more likely to result in

alterations that could contribute to neofunctionalization and

increased cellular fitness (Drake, 2007; Ram and Hadany,

2019; Cortés-Ciriano et al., 2020). Recent work has shown

evidence of enrichment of clustered mutations in genes

relative to intergenic spaces in cancer samples even though

generally more mutations occur outside of genes than in them

(Cisneros et al., 2017; Supek and Lehner, 2017). In particular,

mutation clustering in non-coding regions has been associated

with structural changes that possibly cause elevated mutation

rates but by themselves very rarely constitute oncogenic drivers

(Nik-Zainal et al., 2016; Rheinbay et al., 2020).

Large mutational loads in human cancer have been

associated with replication repair deficiency (Campbell et al.,

2017; Ma et al., 2018; Campbell et al., 2021), and thus underlying

defects in the DNA repair machinery are thought to lead to biases

in the types and locations of passenger mutations and structural

events acquired during the progression of cancer. These general

ideas justify targeting DNA repair and checkpoint inhibitors in

cancer therapies (Murai, 2017; Forment and O’Connor, 2018;

Ubhi and Brown, 2019; Zhu et al., 2020). Previous studies have

identified the action of the AID/APOBEC family of cytosine

deaminases as well as the action of Pol-η as contributing

mechanisms to the phenomenon of mutational clustering

(Lada et al., 2012; Roberts et al., 2013; Taylor et al., 2013;

Supek and Lehner, 2017; Buisson et al., 2019; Roper et al.,

2019; Shi et al., 2020) and underlying kataegis in particular.

However, these processes only explain a subset of the mutational

clusters observed and thus a more general mechanism remains to

be determined.

Stress-induced mutagenesis (SIM) in bacteria occurs when

double-strand break damage (DSB) happens in the context of

sufficient cellular stress to initiate the SOS response (McKenzie

et al., 2000; McKenzie et al., 2001; Foster, 2007; Janion, 2008;

Rosenberg, 2010; Shee et al., 2012). SIM has been shown to

increase the mutation rates locally around DNA lesions as cells

strive to adapt to the challenging environment (Foster, 2007;

Rosenberg, 2010; Fitzgerald et al., 2017). During a double-strand

break mediated mutagenesis in bacteria, DNA repair switches

from high-fidelity homologous recombination to a repair

mechanism that relies on the error-prone DNA polymerase,

DinB. The result of this mechanism is a spectrum of both

single nucleotide variants (SNV) and copy number

amplifications, with a molecular signature consisting of

clustering of SNVs spanning several kilobases in size and with

a decaying frequency as a function of the distance from the DSB

site. This pattern remains above the background neutral noise for

up to a megabase (Rosenberg et al., 2012; Shee et al., 2012;

Fitzgerald et al., 2017). The evidence of mutational clustering

combined with the observation of intra-tumor chromosomal

structural heterogeneity that characterizes many cancers

(Roschke et al., 2002; Roschke et al., 2003; Roschke et al.,

2005) prompted us to inquire whether a process comparable

to bacterial SIM takes place during carcinogenesis. This idea was

previously suggested by Fitzgerald, Xia, Rosenberg, and others

(Fitzgerald et al., 2017; Xia et al., 2019). Expression of adaptive

mutagenesis has been shown in the context of the emergence of

drug resistance, with evidence of down-regulation of mismatch

repair (MMR) and homologous recombination (HR), and up-

regulation of error-prone polymerases in drug-tolerant colorectal

tumor cells (Russo et al., 2019). Furthermore, mTOR stress

signaling has been shown to facilitate SIM in multiple human

cancer cell lines exposed to non-genotoxic drug selection

(Cipponi et al., 2020).

In humans, the orthologous genes to DinB have become

specialized for translesion synthesis (TLS). The closest

orthologous protein to DinB is Pol-κ, one of several DNA

polymerases involved in TLS (Waters et al., 2009). These

error-prone DNA polymerases are capable of high-fidelity

synthesis against the damaged bases they recognize but exhibit

orders of magnitude less fidelity when the template is

undamaged. TLS is employed during normal replication as a

mechanism to bypass DNA damage (Waters et al., 2009) and as

part of microhomology-mediated breakage-induced repair

(Sakofsky et al., 2015), two processes active in cancer. The

dysregulation of cell cycle and DNA repair that characterizes

most tumors would also logically increase the need for TLS in

cancer.

We investigated SNV distributions, observed by whole

genome sequencing of non-inherited mutations in normal

samples and a wide variety of solid tumors, for evidence of

mutational clustering. We inquired whether the molecular signal

of SIM can be identified by measuring cluster geometry, and how

these observations relate to clinical outcomes. We found clear

evidence of mutational clustering as demonstrated by

enrichment of closer than expected mutations, particularly for

samples with low mutational loads. By characterizing the

distributions of clusters, we observed that there is a greater

consistency of cluster locations across normal samples than in
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cancer samples, suggesting a degree of regulation control for

mutations in normal tissue that breaks down during

carcinogenesis. We found that clusters displayed the

mutational geometry that characterizes SIM in bacteria. We

also studied the potential mechanisms that could have

resulted in the observed somatic mutation profile. We

concluded that TLS is the primary driving force behind

clusters with mutational geometries characteristic of SIM in

both cancer and non-inherited mutation in normal

individuals. Furthermore, we associated these findings with

clinical outcomes determining that the diversity of SNV

distribution within clusters in the tumor is a poor prognostic

factor for patients with cancer.

Methods

Data

We obtained variant calls for normal and cancer samples from

public repositories where all cases had been called by a standard

pipeline. For non-inherited mutations in normal tissue, we used

whole-genome sequencing data (WGS) from the Complete

Genomics Indices database in the 1000 Genomes Project (The

1000 Genomes Project Consortium et al., 2015) release 20130502

(RRID:SCR_006828, Supplementary Table S7 in Cisneros et al.

(2017) for a list of donors). We refer to this set as CGI. These data

have an average genome coverage of 47X. The variant call tables

(VCF) of 129 trios were analyzed using the vcf_contrast function

from the VCFTools analysis toolbox to compare each child with

the two corresponding parents. The resulting potential novel

variants were then filtered such that the child and both parents

must be flagged as PASS (i.e., the variant passed all filters in the

calling algorithm); the child must have a read depth of at least 20,

and the alternative (aka novel) allele frequency was VAF ≥ 0.35.
For cancer samples, we analyzed simple somatic mutations

and corresponding clinical data from the PCAWG coordinated

WGS calls for 1,950 tumor samples from 1,830 donors

representing 14 different primary sites (Campbell et al., 2017).

Somatic variants for all data sets were classified as previously

published (Cisneros et al., 2017). In addition to the pan-cancer

data, we obtained experimental data published in a recent study

about the role of MTOR in adaptive evolution in cancer by

Cipponi et al. (2020) (available in the NCBI’s BioProject database

accession: PRJNA623123). This corresponds to WGS calls

(average coverage 116X) on single cell-derived clonal

populations from SKMEL28 human melanoma and the

94T778 human liposarcoma cell lines exposed to different

treatments: SKMEL28 and 94T778 naïve and exposed to drug

lines (vemurafenib and tunicamycin correspondingly), plus a line

of 94T778 with MTOR silenced (via FRAP1 knockdown) and the

corresponding control. Each branch of the study consists of

5 samples giving a total of 30 samples. We call this set

KCCCG. Vemurafenib is an inhibitor of the V600E mutation

in BRAF. Tunicamycin inhibit protein glycosylation, leading to

an unfolded protein response. The MTOR signaling pathway is

an evolutionarily conserved sensor of environmental and

endogenous stress generally expressed in human tumors

(Saxton and Sabatini, 2017; Cipponi et al., 2020). These data

allow us to isolate the effect of SIM independent of DNA

damaging agents.

For our theoretical data, we generated 500 replicates for eight

groups of simulated mutations defined by their total mutational

load (NSNV � 500, 1000, 2500, 5000, 10000, 25000, 50000,

100000). We modeled a uniform, random distribution of

SNVs across the genome as a one-dimensional Bernoulli

Process. These simulations correspond to our null model used

to assess genomic heterogeneity in observed data.

Detection of mutation clusters and cluster
shapes

A group of n> 3 SNVs is deemed a “cluster” if it is set of

consecutive mutations with interevent distance closer than D+ �
15 kb (tuple) and its probability, according to the negative

binomial test (Roberts et al., 2012; Cisneros et al., 2017), is

less than 1% (Supplementary Materials). In other words, a

cluster is a group of variations that is statistically unlikely in

the mutational background of the sample. The specific value

D+ � 15 kb was chosen because it is an adequate balance

between signal and noise (Supplementary Materials).

To check if variations in background mutational density are

responsible for the observed clustering, we looked for an

association of clustering with various descriptions of

chromatin domain structure. We use chromatin domain

annotation as defined by Libbrecht et al. (2015) and

topologically associating domain annotation along with

boundaries as defined by Akdemir et al. (2020a). These two

annotations integrate multiple epigenetic marks with

transcriptional activity and replication timing across multiple

tissue types. In both normal and cancer data, while we did see the

previously established differences in mutational background as a

function of domain, there was no difference in the distribution of

SNVs found in our clusters versus those not residing in clusters

and their presence in various chromatin domains as defined by

Libbrecht, et al. (Chi-square = 30, simulated p-value after

1000 repetitions = 1 for both normal and cancer). The same

result was seen using the TAD classification data from Akdemir

et al. Therefore, the background effect of non-uniform

mutational density is sufficiently small as to not influence our

detection of clusters. Difference in mutational loads across the

genome reflects the activity of repair mechanisms and the ability

of cells to tolerate mutation at particular locations but does not in

and of itself predispose to mutations that are closer than would be

expected according to our null hypothesis.
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For each WGS sample in our database, all possible clusters

were identified and the “center of mass” (genomic location of

cluster centroid) in each case was calculated, along with other

properties such as start and end locations, length, and size

(number of variations) (Cisneros et al., 2017). We treated

cluster centroids as likely locations of the DSBs that induced

the accumulation of variations. Therefore, the expected signature

for stress-induced mutagenesis should be evident as a

concentration of mutations around these centroids that decays

with distance from it. Thus, for each cluster i, we computed the

cumulative distribution of SNV events Fi(X) as a function of the

distanceX from the cluster centroid up to 250 kb and in both the

3′ and the 5′ directions. This window size was chosen based on

the observations in E.coli that SIM led to elevated mutation rates

up to 1 MB away from the double-strand break (Shee et al., 2011).

By aggregating all cumulative distributions observed in each

sample we generated a representative overall curve F(X) �
∑Fi(X) that conveys the probability of finding a mutation at

a given distance from the cluster center. If the distribution of

SNV events is uniformly random (and therefore does not

typically decay) then F(X) is expected to increase

proportionally with X. This assumption gives us a background

of mutations against which we can compare the observed

distribution pattern. To define a useful score, we normalize X

by 250 kb and F by the number of events closer than 250 kb, thus

mapping all cluster-associated cumulative distribution curves to

a unit box:

X

250kb
→ xwithx ∈ [0, 1]

F(X)
F(250kb) → f(x)withf(x) ∈ [0, 1]

If the null hypothesis were correct for these events, f(x) � x.

We define a measure of the degree of deviation from the null

hypothesis by integrating the difference between the normalized

cumulative distribution f(x) and the expected value x as follows:

S(f(s)) � 2 ·∑
x�1

x�0
(f(x) − x)

The value of S is a signed statistic with a range S ∈ [−1, 1]
(Figure 1). As S approaches to one, smaller windows close to the

origin (i.e., cluster center) contain more events than expected

from a random uniform distribution, indicating that SNV events

concentrate near the center of the clusters and sharply decay with

the distance. A negative S value indicates that the events are

typically depleted from the center and concentrated on the edges

of the cluster, and S values close to zero indicate that events are

mostly uniformly distributed across the 250 kb interval length,

supporting the null hypothesis. We call this the Overall Stress

Introduced Heterogeneity (SItH) score of the distribution of

somatic SNVs and use it to represent the typical cluster geometry

in a sample.

Following the same definition for individual clusters we can

estimate a Cluster SItH score using the function Fi(X) instead
of F(X), thus leading to Si � S(f i(x)). This definition is

statistically less robust than the overall measure but allows

us to assess the diversity of behaviors in clusters within a

sample. We do this by estimating the quartile statistics on

the ensemble of Si values for each sample. We use the

interquartile range of Cluster SItH scores in each sample,

called SItH IQR, to score this diversity.

Mutation motif analysis

SNV mutant variants were compared to their corresponding

wild-type reference sequence to match each contextual

mutational pattern to motifs specific to TLS (REV1, POLH,

POLK, POLQ, POLM and POLI), APOBEC and AID

mechanisms according to the rules shown in Table 1 (Livneh,

2001; Goodman, 2002; Waters et al., 2009; Goodman and

Woodgate, 2013) Because the rules for REV1, POLH_1,

POLH_2, and POLK can also result from a failure of

mismatch repair, we do not include those motifs in our

analysis. Therefore, our results slightly underestimate the TLS

contribution to the mutational load.

Mutational signature analysis

Mutational signature analysis of clustered SNVs was done

in R (version 4.1.2) using Bioconductor (version 3.14), the

MutationalPatterns package (version 3.14) and the reference

genome BSgenome.Hsapiens.UCSC.hg19. As the purpose of

this analysis was to compare signatures found in the

clustered SNVs to known catalogs of signatures COSMIC

v2 [https://cancer.sanger.ac.uk/signatures/signatures_v2/,

(Alexandrov et al., 2013)] and the 82 substitution reference

signatures from the SIGNAL project [https://signal.

mutationalsignatures.com/explore/cancer, (Degasperi et al.,

2022)], we did not optimize for de novo signature extraction,

but designated 30 (the number of COSMIC v2 signatures) as the

number of signatures to extract to facilitate comparison to the

two reference signature profiles.

Statistical analysis

All statistical analysis was done in R (version 4.1.2). Two

tailed Fisher tests, ANOVA, and Benjamini-Hochberg multiple

comparison adjustments to p-values were done using the stats

package (version 4.1.2). Survival analysis was performed using

the survival package (version 3.2-13). Kaplan-Meir curves and

Cox Proportional Hazard Regressions were calculated using the

survminer package (version 0.4.9).
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Results

Clustering as a function of totalmutational
load

We began our study by looking at the patterns of mutational

density across the genome in non-inherited mutations from

129 normal individuals (CGI), somatic mutations in

1950 tumors from 14 different tissues (PCAWG) and somatic

mutations in 30 cancer cell line samples exposed to different drug

conditions (KCCCG). When looking at the distributions of

groups of SNVs with inter-SNV distances of ≤15 kb (which

we deem “tuples”), we observed an enrichment in the number

of tuples and an under-representation of singletons (SNVs that

do not belong to a tuple, or equivalently a tuple of just one

element) for normal and cancer data, indicating the number of

proximal SNVs is larger than expected in all cases (Figure 2A).

This result was particularly significant for samples with a small

number of mutations. At low total number of SNVs only a

handful of tuples are expected yet dozens to hundreds were

typically observed in cancer samples.

If the mutational process was dependent on genomic location

tuple locations would be more frequent across samples. We

compared the tuple locations across samples for which tuple

enrichment was most obvious (Figure 2A): Ns � 129 normal

samples and Ns � 784 cancer samples with NSNV < 5100. We

identified all regions in the genome containing tuples in at least

8.8% of the normal samples and 3.5% of the cancer samples

(providing confidence that the observation is above the Poisson-

counting error statistic in each case). For normal samples we

found 128 overlapping regions, some containing tuples in as

many as 30% of the samples. Many of these regions are located

close together, as shown in Figure 2B, none of them were longer

than 30 kb, and about a quarter of them involved and overlap of

just single base mutations across the samples. In contrast, cancer

samples had few overlaps. We observed only 19 regions grouped

into five distinct ranges (Figure 2B): an 117-kb region in

chromosome 6 associated with the human leukocyte antigen

(HLA) complex, which contained tuples in 7% of the samples;

two ~ 1-kb regions in chromosomes 2 and 3 in 3.5% of the

samples; a single point mutation in chromosome 1, associated

with the zinc finger protein ZNF678, overlapping in ~ 4% of the

FIGURE 1
SItH Scores: Different outcomes for distributions of mutations as a function of the distance d to cluster centroids. (A) When S ~ 0, uniformly
distributed mutations yield a linear cumulative distribution. (B) S >0 signifies a bell-shaped distribution of mutations around the centroid. (C) S <0
signifies a distribution of mutations that increases with the distance to the centroid.
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samples; and a half-kb region in chromosome Y with 11%

overlap in the 479 male samples. This analysis excluded the

cell line data because the number of variations in those was large

and the number of samples too small.

These observations suggest that a differential mutational rate

across the genome is likely a combination of bias in recovery,

differential DNA repair efficiencies, genomic location, and

interdependency between mutational events, as recognized by

others (Martincorena and Campbell, 2015; Supek and Lehner,

2015; Supek and Lehner, 2017; Akdemir et al., 2020b). As the

total number of mutations increases the distributions

approached the predicted curve, but then departed again. In

fact, for large mutational loads the relationship between the

proportion of tuples and singletons with respect to the

expectation was inverted. In this case the conclusion is that

certain regions in the genome are protected from accumulation

of mutations, a process that renders sections with fewer than the

expected number events.

SItH scores in normal tissue, cancer, and
cancer cell lines

Most algorithms for finding mutational signatures linked to

mutational mechanisms look for patterns in the actual sequence

changes. However, SIM’s predicted pattern is not one of specific

TABLE 1 Contextual rule motifs for each mutational mechanism. The
character “N” indicates a wild-card (i.e., any nucleotide) and
characters between parentheses indicate synonymous options
(i.e., “(A|T)” means “A” or “T”).

Mechanism Motif name Wild match Mutant match

TLS REV1_1 (A|T|G) C

REV1_2 (T|A|C) G

POLH_1 T C

POLH_2 A G

POLH_3 NN (A|G)A

POLH_4 NN T (T|C)

POLK_1 G A

POLK_2 C T

POLQ_3 NNN AG (C|T)

POLQ_4 NNN (G|A)CT

POLM_1 G -

POLM_2 C -

POLI_1 GNN CAG

POLI_2 CNN CTG

APOBEC APOBEC_1 TC (A|T) TT (A|T)

APOBEC_2 (T|A)GA (T|A)AA

AID AID_1 (A|T) (A|G)C (A|T) (A|G)T

AID_2 G (T|C) (A|T) A (T|C) (A|T)

FIGURE 2
(A) Observed number of tuples and singletons as a function of the total mutational load. A tuple is a set of consecutive mutations with inter-
event distance x≤ 15 kb. A singleton is amutation farther than 15 kb from any othermutation (1-tuple). Black dots are simulated data, dashed lines are
the expected curves according to Poisson statistics. (B) Susceptible regions for samples with NSNV <5100, defined as genomic regions that overlap
with tuples in at least 8.8% of the normal samples (blue) and 3.5% of the cancer samples (red) (percentages based on the square root of the
number of samples in each set). These regions are evidently more common in normal than in cancer samples. Outer track in circos plot is the
chromosomal ideogram, representing cytogenetic bands in grey and centromeres in and red. Second track shows a set of COSMIC gene labels and
locations.
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sequence change, but rather SNV distribution geometry.

Previous work demonstrates that SNVs cluster together in

both normal tissues and cancer, and the sequence contexts of

both the reference and mutant calls can be used to infer

mechanism (Roberts et al., 2012). The association of APOBEC

cytosine deaminases with clusters is well established (Lada et al.,

2012; Burns et al., 2013; Roberts et al., 2013; Taylor et al., 2013),

but it only accounts for at most 50% of the clusters observed

(Roberts et al., 2013). Furthermore, nothing in the mechanism of

APOBEC suggests a characteristic shape of the mutational

clusters. In contrast, the SIM response of bacteria, mediated

by the Pol IV polymerase (encoded byDinB), leads to a clustering

pattern in which more SNVs are found at the center of the cluster

than at the edges (Shee et al., 2012). Therefore, we developed a

score that measure how SNVs are distributed within a cluster.

Called the Stress-Introduced Heterogeneity (SItH) score (see

Methods), it discriminates between clusters where SNVs are

uniformly distributed, those where the density of SNVs is

toward the edges of the cluster (negative scores) and those

where the density of SNVs is concentrated in the middle of

the cluster (positive scores, Figure 1). SIM is predicted to result in

clusters with positive scores. SItH scores can be computed as

single score based on all clusters found in a sample and

representing the average cluster “shape,” or can be computed

on a cluster-by-cluster basis to define how variable cluster shape

is within a sample. In this situation, we compute the inter-

quartile range as we have no reason to believe that SItH

scores will be normally distributed.

The overall SItH scores ranged from 0.145 to 0.999

(Figure 3A) and varied significantly by organ site and whether

the tumor was one of multiple tumors from a single donor

(ANOVA, organ site, F = 136.70, p< 2.2x10−16; multiple tumor,

F = 3.07, p = 0.0799; maximum SItH Score, F = 16.14,

p � 6.098x10−5). We observed SItH scores declined as a

function of the total number of SNVs (Figure 3A) in tumors.

This decay is not really observed in normal samples because the

range of change of mutational burden is too narrow, but it follows

the lower end of the general trend of the cancer samples. Cancer

cell lines have a different behavior all together, evidently having

higher values of SItH at intermediate mutational burdens. In

contrast, in cancer samples the SItH IQR increased as the total

number of SNVs decreased (Figure 3B) while normal samples

seem to show abnormally large IQR values compared with

tumors with the same number of mutations. On the other

hand, cell line samples have smaller IQR values than tumors

with the same number of mutations. We should notice that the

largest difference with Overall SItH values calculated from

simulated data happens for both low and large mutational

burdens, while IQR values are larger across the board, except

for tumor cell lines, which seem to generally be more consistently

peaked (high Overall SItH and low SItH IQR). All this likely

reflects the increased contribution of additional mutational

processes, beyond SIM, that contribute to increased

mutational burdens, in addition to reflecting greater

intratumor heterogeneity. SItH score varies by tissue type,

with cancer that are characterized by high mutational

burdens, like melanoma, showing lower SItH scores (Figure 4

and Figure 5A).

In the study by Cipponi et al. (2020), cells from three cell-

lines were put under strong selective pressure - tunicamycin

resulting in endoplasmic reticulum stress and an unfolded-

protein response, vemurafenib which inhibits BRAF signaling,

and FRAP1 knockdown, which affects mTOR signaling.

Selection was carried out under continuous pharmacological

stress. Single-cell clones grown out from surviving cells, along

with parental controls that spent the same time in culture but

were not subject to selection, were expanded and sequenced by

WGS (Cipponi et al., 2020). We analyzed the SNVs that were

unique to each condition, representing those that arose as either a

result of selection or ongoing instability in tissue culture, for SIM

through computing SItH scores and SItH IQR. Like the data from

tumors, we observed clustering among SNVs that resulted in

positive SItH scores in both parental and selected lines. The

selected lines were characterized by SItH scores that were similar

to those found in the parental lines event, though the number of

SNVs in the selected lines was approximately half those present

in the parental lines (Figure 6A). SItH IQR was generally

increased in the selected lines, and the diversity of SItH IQR

between replicates was also increased (Figure 6E). Selection

followed by single-cell cloning resulted in clones with different

mutational histories after vermurafenib and tunicamycin

induced SIM. This is reflected in the SItH IQR becoming

larger for both these conditions and more diverse across

clones, as is expected with new rounds of SIM induced

through selection. In contrast, the FRAP1 knockdown

prohibits the induction of SIM, and therefore individual

clones are similar in their cluster formation because no new

clusters are introduced during selection, which is reflected in the

SItH IQR becoming smaller (Figure 6E).

TLS drives sharply peaked clusters

Many of the TLS polymerases, as well as APOBEC and AID,

have both sequence specific context as well as characteristic

mutational profiles (Table 1). We looked at the sequence

context of all SNVs identified in both normal and cancer

samples to tease out potential mutational mechanisms that

contribute to the shape of the clusters we observed. We must

note that this analysis is conservative because we only attributed

those contexts for which the given enzyme is the only one to

fulfill both the wild-type sequence and the resulting mutation;

therefore, this analysis under-estimates the role of each

mechanism in the generation of clusters.

We computed overall SItH scores using just those SNVs

assigned to a particular mechanism. We then assessed how well
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these scores recapitulated the overall SItH score. As can been seen

in Figures 5B–D and Figures 6B–D, in both the data from the

PCAWG tumors as well as the cell lines, SNVs that can be

attributed uniquely to the activity of TLS polymerases show a

near perfect linear relationship with the overall SItH score, while

those attributable to APOBEC or AID do not. This consistent

with the proposed mechanism of SIM driven by TLS activity.

We analyzed the SNV calls from clusters for nucleotide

substitution pattern enrichment in clusters (Figure 7). Normal

non-inherited mutations were enriched in A>C, C>G, G>T, T >
C, A>G, and G>T and depleted in G>A, G>C, and T>G. These
changes are consistent with the activity of the TLS polymerases, Pol-η,
Pol-ι, and Pol-θ. In contrast, clusters in cancer samples were enriched

for C>T and G>A but excluded all other changes. This is consistent

with Pol-κ activity driving the G>A, while the already recognized

activity of APOBEC, AID and Pol-η likely drive the C>T enrichment.

In the cell lines, as a general result, both tunicamycin and

vemurafenib induced less depletion or enrichment when compared

to their respective parental lines. This effect was not found in the

FRAP1 knockdown (Table 2; Supplementary Figures S5–S7).

Tunicamycin selection resulted in clusters that were enriched in

G>A, A>G, T>C, and C>T and depleted in A>C, A>T, C>G,
G>T, C>A, and T>A. There was no enrichment in G>C and T>G.
The parental line showed similar enrichment patterns except it was

enriched in C>G and G>C. Vermurafenib selection demonstrated

clusters enriched in G>A, T>C, A>G, and C>T. SNVs in clusters were
depleted in A>C, A>T, G>T, C>A, and T>A variants. The parental

line showed a similar enrichment and depletion patterns except for

C>G and G>C changes. Finally, in the FRAP1 knockdown, SNVs in

clusters were enriched in G>A, T>C, and C>T changes. They were

depleted in A>C, A>T, C>G, G>T, C>A, T>A, and T>G. The pattern
the parental line was extremely similar except for the C>G, which
showed enrichment in the parental cell line but marginal depletion in

the knockdown line.

Mutational signature analysis and SIM

To further establish mutational mechanisms underlying SIM,

we performed a mutational signature analysis of the SNVs found

in clusters and used in our SItH score calculations. In the

PCAWG data, we initially extracted 30 signatures to compare

to COSMIC v2 signatures, but discovered that 4 signatures were

redundant in the information they contained. We repeated the

analysis and identified 26 mutational signatures from clustered

mutations. These were compared to both the COSMIC

v2 signatures as well as the 82 reference signatures from the

SIGNAL project (Figure 8) (Alexandrov et al., 2013; Degasperi

et al., 2022). Six signatures had a cosine similarity of 0.85 or

greater to the COSMICv2 pattern: signature 1-like, signature 7-

like, signature 13—like, signature 17-like, signature 26-like, and

signature 28 like. In comparison with the 82 reference signatures,

an additional 8 signatures have cosine similarities of greater that

0.8 (Supplementary Table S5). Most of the signatures have

unknown etiologies and are characterized by T>C and C>T
changes. The activity of Pol-κ and Pol-η results in G>A and

A>G alterations. Because of the way mutational signatures are

handled computationally, calls that are G>A or A>G on the

FIGURE 3
SItH scores by number of SNVs. (A)Overall-SItH score as a function of mutational load. (B) Inner-quartile range (IQR) of cluster SItH scores as a
function of mutational load. In both plots, red, grey and blue circles represent scores calculated from observed data for PCAWG, KCCG and CGI
respectively, while dashed lines with error bars show the scores (and dispersion) calculated from simulated uniform mutations for 5 mutational
burdens.
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reference strand would be assigned to C>T and T>C respectively.

Thus, the activity of TLS polymerases, particularly Pol-κ, would
be expected to lead to an abundance of T>C and C>T that could

be teased out by looking at whether most of the calls contributing

to those signatures come from the reference call (e.g., originally

C>T) or from a reference call converted to its complement (e.g.,

originally G>A). We investigated this by running a

transcriptional strand bias analysis, setting the annotation up

such that G and A reference calls would be annotated as being on

the “untranscribed” strand. We see that the abundance of C>T
changes present in clustered SNVs are derived from G>A
changes and likely represent the activity of Pol-κ as part of

SIM (Figure 9, Supplementary Figures S8, S9).

We further explored the relationship between SItH score,

SItH IQR, and the mutational signatures we identified in the

clustered SNVs to determine whether both types of scores

capture the same information. To do this, we ran a Spearman

correlation on the signature contribution across samples with

either SItH score or SItH IQR (Table 3). SItH score is inversely

correlated with all identified signatures, confirming that SItH

score is measuring a different aspect, geometric distribution, of

the mutational processes taking place in the tumor that the

mutational signatures are not detecting. In contrast, the SItH

IQR was positively correlated with mutational signatures, further

supporting that this score measures intratumor heterogeneity

generated by multiple mutational processes.

FIGURE 4
SItH scores for different tissue types in the PCAWG data, showing median values in each set (red line) and how the sample scores spread varies
significantly between tissues. Numbers on top indicate the number of samples for each tissue type.
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Survival analysis

A key characteristic of SNV clusters that result from SIM

mechanisms is a decay in the frequency of incidental SNVs as a

function of distance from the DSB that triggered error-prone

repair response (Shee et al., 2012). We postulated that a more

positive overall SItH score reflects a greater contribution of SIM

to the mutational landscape of the tumor. Therefore, SItH

provides a measure of the evolutionary response, or the

adaptive capacity, of a tumor to a source of stress, such as

chemotherapy.

To determine the relationship between SItH scores and

clinical outcome, we conducted Cox proportional hazard

analysis of the overall SItH score as well as the IQR of the

cluster SItH. We used the tissue of origin to account for

differences in mutational load, age of onset, and general

overall survival. The model for overall SItH is specified as follows:

Overall Survival ~ SItH +multiple.tumor + is.Max .SItH

+ strata(Organ)

where the data analyzed were either primary tumors or the group

of metastases and recurrences. Similarly, for IQR of the cluster

SItH the model is:

Overall Survival ~ SItH IQR +multiple.tumor + is.Max .SItH

+ strata(Organ)

After controlling for organ site and multiple tumor status,

we found that overall SItH scores predict patient survival,

with different effects depending on whether the sample was a

primary tumor or from a metastasis or recurrence. For

primary tumors, more positive overall SItH scores

predicted better patient survival (Cox Proportional Hazard

Regression (CPHR), Hazard Ratio (HR) = 0.4516, 95% CI:

0.2274–0.8968, p = 0.0231). However, when the recurrences

and metastatic tumors were considered as a group, more

positive overall SItH scores predicted worse survival, with a

HR of 14.84 (CPHR, 95% CI: 1.934–113.876, p = 0.00947).

These results suggest that in the context of a primary tumors

SIM can lead to tumors being too mutable and evolving in

ways that do not promote survival. In contrast, in metastases

and recurrent tumors, the strong selective pressure of therapy

or distant organ location selects for SIM, leading to higher

SItH scores, indicative of a stronger contribution of SIM to

the mutational landscape, being associated with poorer

survival.

In looking at the diversity of SItH scores on a cluster basis,

the type of tumor sample was no longer relevant. Wider IQR of

cluster-level SItH scores was associated with worse survival,

with a HR of 5.744 (CPHR, 95% CI: 1.824–18.09, p = 0.00283).

We then examined whether there was a difference in survival

between patients with SItH IQRs above or below the median

SItH IQR, as clinical translation will likely require creating a

FIGURE 5
SItH Score as a function of motif-derived SItH scores in cancer and normal samples. (A)Overall SItH as a function of total mutational burden. (B)
Overall SItH as a function of TLS-SItH. (C) Overall SItH as a function of APOBEC-SItH, (D) Overall SITH as a function of AID-SItH.
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cut-off value above which one would predict poor prognosis. As

seen in Figure 10, there is a significant difference in survival,

even after accounting for the baseline differences in survival by

tissue of origin (CPHR, HR = 1.37, 95% CI: 1.10–1.7, p = 0.006).

Discussion

Our study provides evidence that a signature of stress-

induced mutagenesis, characterized by clustering of SNVs

with a defined cluster geometry, is widespread across multiple

cancer types. Both the strength of SIM and the diversity of

mutational processes within a tumor are expected to impact

disease outcome (Andor et al., 2016). Our results show an

association of both overall cluster shape (overall SItH) and

increased cluster shape diversity (SItH IQR) with patient

survival. We submit that SItH IQR predominantly represents

the amount of time SIM has been active during carcinogenesis

and clonal diversification, while overall SItH represents the ratio

of the intensity of SIM relative to other mutational processes.

This is supported by the behavior of the score in experimental

models of stress-induced mutation. Our work shows that an

increase in mutational load leads to increases in both cluster size

and the percentage of SNVs involved in clusters, but only up to a

point. In tumors with high mutational burdens, the number of

clusters, the genomic distance covered by clusters, and the

number of SNVs contained within a cluster all level out. This

implies that under high mutational burden the variations in

mutation density across the genome flatten out, likely due to

alterations in DNA repair pathways, such as a loss of mismatch

repair (Campbell et al., 2017; Supek and Lehner, 2017) that

obscures the detection of clusters.

The influence of intra-tumor diversity on clinical outcome is

an area of active investigation. Evidence from measures of clonal

diversity and copy number diversity are associated with both

worse outcome and therapeutic response (Andor et al., 2016;

FIGURE 6
SItH Score and SItH IQR in cell lines under various conditions. (A) Overall SItH as a function of total mutational burden. (B) Overall SItH as a
function of TLS-SItH. (C)Overall SItH as a function of APOBEC-SItH, (D)Overall SITH as a function of AID-SItH. (E) Distribution of SItH IQR of single
cell clones in parental versus selected lines.
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FIGURE 7
Mutational enrichment in clusters by Fisher’s exact test and adjusted p-values for multiple comparisons in normal and cancer data. Dot
represents the odds ratio while wings indicate the 95% confidence interval of the odds ratio. The dotted vertical line represents 1.0. Confidence
intervals that span 1.0 indicate that the odds ratio is not significantly different from 1.0 at an alpha of 0.05.

FIGURE 8
Clustered Cosine Similarity of 26 mutational signatures for Clustered SNVs to the 82 reference signatures from SIGNAL. Signatures that also
share a cosine similarity of 0.85 or greater with COSMIC, version 2, are labeled as being “Signature X-like”.

Frontiers in Genetics frontiersin.org12

Cisneros et al. 10.3389/fgene.2022.932763

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.932763


Dagogo-Jack and Shaw, 2017; Davoli et al., 2017; Roh et al., 2017;

Ben-David and Amon, 2019; Turajlic et al., 2019). Cancer must

balance the introduction of genomic rearrangements that

contribute to cellular diversity with a sufficient level of

genome stability to avoid a genomic error catastrophe. Our

results are consistent with this idea, in that large positive

overall SItH scores in primary tumor samples are associated

with better patient survival. The SItH IQR represents a measure

of mutational heterogeneity that ties intra-tumor diversity to an

underlying evolutionarily conserved process in response to

cellular stress. In other words, the SItH IQR is a measure of

the heterogeneity of adaptive strategies within a patient. This

diversity manifests as a broad ensemble of mutational cluster

shapes within a tumor, driven by the heterogeneity in mutational

processes to generate genomic diversification. This in turn

increases the substrates available for broad phenotypic

plasticity, including transcriptional responses. Such responses

have been shown to be important in the rapid acquisition of

resistance to Doxorubicin (Wu et al., 2015). In this case high

diversity results in a direct survival advantage for the tumor,

allowing it to respond to a wider range of stresses and leading to

poorer outcomes for patients.

FIGURE 9
Strand-bias between calls that matched reference and those that were converted to complement for clustered SNVs in the PCAWG data. As
others have found there is preponderance of C>T calls. However, more of these calls are coming from the complement strand, indicating that in the
data they are G>A calls. (A) The proportion of calls coming from either the reference or the complement strand. (B) The log2 ratio comparing number
of calls coming from either reference or complement. Scores of 0 indicate equivalence. Scores above 0 show an enrichment for reference calls,
while those below 0 demonstrate an enrichment for complement calls. * indicates the enrichment is statistically significant at an alpha of 0.05.
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Others have proposed mechanisms for clustered mutations

in cancer (Lada et al., 2012; Roberts et al., 2012; Burns et al., 2013;

Roberts et al., 2013; Taylor et al., 2013; Supek and Lehner, 2017).

In particular, Supek and Lehner showed that Pol-η, a TLS

polymerase closely related to Pol IV, is involved in the

generation of clustered mutations that preferentially locate at

TABLE 2 Patterns of base-change enrichment observed in cell-lines.

Base change Tunicamycin Parental Vermurafenib Parental FRAP1 Parental

A>C depleted depleted depleted depleted depleted depleted

A>G enriched enriched enriched enriched

A>T depleted depleted depleted depleted depleted depleted

C>A depleted depleted depleted depleted depleted depleted

C>G depleted enriched depleted enriched

C>T enriched enriched enriched enriched enriched enriched

G>A enriched enriched enriched enriched enriched enriched

G>C enriched

G>T depleted depleted depleted depleted depleted depleted

T>A depleted depleted depleted depleted depleted depleted

T>C enriched enriched enriched enriched enriched enriched

T>G depleted depleted

TABLE 3 Spearman correlation between signature contributions across samples and corresponding SItH scores and SItH IQR scores. Correlation
factor (ρ), p-value and adjusted p-value are shown in each case.

Signature SITH_rho SITH_p SITH_adj_p IQR_rho IQR_p IQR_adj_p

SBSA −0.46 9.39E-101 3.62E-100 0.33 6.60E-49 2.55E-48

SBSB −0.74 0.00E+00 0.00E+00 0.53 1.47E-138 7.35E-137

Signature.1-like −0.66 1.24E-242 1.25E-241 0.49 2.97E-115 4.95E-114

SBSC −0.67 1.31E-258 1.88E-257 0.44 2.55E-92 1.97E-91

Signature.28-like −0.53 3.61E-143 1.64E-142 0.37 1.46E-61 6.08E-61

SBSD −0.65 7.96E-237 7.25E-236 0.46 6.25E-101 5.70E-100

SBSE −0.53 9.94E-141 4.33E-140 0.38 4.55E-65 2.07E-64

Signature.26-like −0.64 3.43E-221 2.65E-220 0.39 6.99E-71 3.50E-70

SBSF −0.64 1.79E-221 1.50E-220 0.42 5.86E-84 3.67E-83

SBSG −0.66 8.22E-248 9.16E-247 0.48 4.76E-108 5.97E-107

Signature.13-like −0.69 4.57E-274 7.63E-273 0.58 2.49E-170 2.50E-168

SBSH −0.58 1.48E-176 8.25E-176 0.43 1.25E-86 8.91E-86

SBSI −0.52 1.82E-133 7.61E-133 0.33 5.24E-49 2.10E-48

Signature.17-like −0.74 0.00E+00 0.00E+00 0.52 2.99E-134 9.99E-133

SBSJ −0.56 6.92E-163 3.47E-162 0.41 4.95E-80 2.92E-79

SBSK −0.61 2.48E-199 1.78E-198 0.45 4.09E-96 3.41E-95

SBSL −0.73 0.00E+00 0.00E+00 0.49 7.95E-116 1.59E-114

SBSM −0.73 0.00E+00 0.00E+00 0.47 2.79E-106 3.11E-105

SBSN −0.60 7.60E-192 5.08E-191 0.43 4.66E-85 3.11E-84

SBSO −0.57 1.72E-167 9.05E-167 0.40 1.14E-75 6.03E-75

SBSP −0.58 6.32E-178 3.96E-177 0.37 3.54E-63 1.54E-62

Signature.7-like −0.58 4.22E-177 2.49E-176 0.47 1.01E-103 1.01E-102

SBSQ −0.71 4.34E-300 8.69E-299 0.48 4.77E-110 6.82E-109

SBSR −0.67 8.21E-256 1.03E-254 0.49 1.13E-117 2.82E-116

SBSS −0.55 5.15E-155 2.46E-154 0.41 3.99E-79 2.22E-78

SBST −0.46 1.75E-104 7.01E-104 0.39 1.21E-70 5.76E-70
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the 3′-end of active genes (Supek and Lehner, 2015). Although

our method uses a broader definition of mutational clusters than

previously proposed (Shee et al., 2012; Fitzgerald et al., 2017) we

were able to confirm this key finding.

An open question that remains is whether the clusters we,

and others, have detected arose from singular events reflective of

bursts of mutational activity, or were accumulated over time. The

latter scenario would identify distinct regions of the genome

prone to mutation. Measuring allele fraction has been suggested

as one way to address this question. However, the limited

precision of most allele fraction measurements prevents the

accurate discrimination of varying degrees of heterogeneity

across a tumor. For example, the 95/95 binomial tolerance

interval for a true allele fraction of 0.5 at a read depth of 60x

ranges from 0.25 to 0.75 (Supplementary Material). This interval

represents the bounds in which we are 95% confident that 95% of

the measurements of a true allele fraction of 0.5 would lie. If we

have a cluster where the allele fractions of multiple SNVs all fall

within this range, we cannot rule out whether these represent a

true allele fraction of 0.5 and therefore all come from the same

event. Experimental evidence in mammalian systems leading to

cluster formation is necessary to answer this question. This is an

important study to pursue as the strategies one might propose for

influencingmutational patterns with impact on clinical outcomes

will depend on whether the target is the mutational process itself

or the regions of the genome being acted upon by the mutational

process.

In conclusion, cancer is notorious for outsmarting

physicians. To make progress, we need to factor in how

cancer cells evolve and adapt in the face of the challenges

of medical treatment. A deeper understanding of the

mechanisms of mutation and adaptation in cancer is

therefore an essential pre-requisite for improving patient

outcomes. Stress-induced mutagenesis, an ancient and

evolutionarily conserved adaptive mutation mechanism

well-characterized in E. coli, comprises some part of the

genomic instability seen in cancer and contributes to the

ability of the tumor to evolve resistance to therapy

(Fitzgerald et al., 2017). We have described a way to

quantify this biological response and shown that SIM has a

strong association with poor prognosis.

Further investigations into the process of SIM in cancer

should lead to better patient outcomes by giving clinicians a

metric by which they can tailor treatments to regulate tumor

progression and minimize the risk of triggering an aggressive

evolutionary response.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: 1- PCAWG cancer data: https://dcc.icgc.

org/pcawg 2- Normal tissue variant data from the Complete

Genomics Indices database in the 1000 Genomes Project (release

20130502): ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release

/20130502/supporting/cgi\_variant\_calls/} 3- Cell-line data:

NCBI’s BioProject database (https://www.ncbi.nlm.nih.gov/

bioproject) accession number PRJNA623123. Processed data

FIGURE 10
Survival difference based on SItH IQR being above or below the median score. (A) Kaplan-Meir curves for tumors with cluster-level SItH IQR
above and below the median SItH IQR for 1895 tumors. (B) Results from the Cox proportional hazard analysis. Survival data from 1,950 tumors from
14 different cancer types. Hazard ratio for IQR group was controlled for maximum IQR value, tissue of origin, and multiple tumor samples for the
same donor.
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sets along with R code can be found at https://github.com/

kjbussey/SItH.
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