AUTHOR=Ding Yuxin , Chen Yuhong , Yang Xiaoshuang , Xu Piaopiao , Jing Jing , Miao Yujie , Mao Meiqi , Xu Jiali , Wu Xianjie , Lu Zhongfa TITLE=An integrative analysis of the lncRNA-miRNA-mRNA competitive endogenous RNA network reveals potential mechanisms in the murine hair follicle cycle JOURNAL=Frontiers in Genetics VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.931797 DOI=10.3389/fgene.2022.931797 ISSN=1664-8021 ABSTRACT=
Alopecia is a common progressive disorder associated with abnormalities of the hair follicle cycle. Hair follicles undergo cyclic phases of hair growth (anagen), regression (catagen), and rest (telogen), which are precisely regulated by various mechanisms. However, the specific mechanism associated with hair follicle cycling, which includes noncoding RNAs and regulation of competitive endogenous RNA (ceRNA) network, is still unclear. We obtained data from publicly available databases and performed real-time quantitative polymerase chain reaction validations. These analyses revealed an increase in the expression of miRNAs and a decrease in the expression of target mRNAs and lncRNAs from the anagen to telogen phase of the murine hair follicle cycle. Subsequently, we constructed the ceRNA networks and investigated their functions using enrichment analysis. Furthermore, the androgenetic alopecia (AGA) microarray data analysis revealed that several novel alopecia-related genes were identified in the ceRNA networks. Lastly, GSPT1 expression was detected using immunohistochemistry. Our analysis revealed 11 miRNAs (miR-148a-3p, miR-146a-5p, miR-200a-3p, miR-30e-5p, miR-30a-5p, miR-27a-3p, miR-143-3p, miR-27b-3p, miR-126a-3p, miR-378a-3p, and miR-22-3p), 9 target mRNAs (