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Background: Studies have reported that RNA-binding proteins (RBPs) are

dysregulated in multiple cancers and are correlated with the progression

and prognosis of disease. However, the functions of RBPs in non-small cell

lung cancer (NSCLC) remain unclear. The present study aimed to explore the

function of RBPs in NSCLC and their prognostic and therapeutic value.

Methods: ThemRNA expression profiles, DNAmethylation data, genemutation

data, copy number variation data, and corresponding clinical information on

NSCLC were downloaded from The Cancer Genome Atlas, Gene Expression

Omnibus, and the University of California Santa Cruz Xena databases. The

differentially expressed RBPs were identified between tumor and control

tissues, and the expression and prognostic value of these RBPs were

systemically investigated by bioinformatics analysis. A quantitative

polymerase chain reaction (qPCR) was performed to validate the

dysregulated genes in the prognostic signature.

Results: A prognostic RBP-related signature was successfully constructed

based on eight RBPs represented as a risk score using least absolute

shrinkage and selection operator (LASSO) regression analysis. The high-risk

group had a worse overall survival (OS) probability than the low-risk group (p <
0.001) with 1-, 3-, and 5-year area under the receiver operator characteristic

curve values of 0.671, 0.638, and 0.637, respectively. The risk score was

associated with the stage of disease (p < 0.05) and was an independent

prognostic factor for NSCLC when adjusted for age and UICC stage (p <
0.001, hazard ratio (HR): 1.888). The constructed nomogram showed a good

predictive value. The P53, focal adhesion, and NOD-like receptor signaling

pathways were the primary pathways in the high-risk group (adjusted p

value <0.05). The high-risk group was correlated with increased immune

infiltration (p < 0.05), upregulated relative expression levels of programmed

cell death 1 (PD1) (p = 0.015), cytotoxic T-lymphocyte-associated protein 4

(CTLA4) (p = 0.042), higher gene mutation frequency, higher tumor mutational

burden (p = 0.034), and better chemotherapy response (p < 0.001). The
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signaturewas successfully validated using theGSE26939, GSE31210, GSE30219,

and GSE157009 datasets. Dysregulation of these genes in patients with NSCLC

was confirmed using the qPCR in an independent cohort (p < 0.05).

Conclusion: An RBP-related signature was successfully constructed to predict

prognosis in NSCLC, functioning as a reference for individualized therapy,

including immunotherapy and chemotherapy.
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Introduction

Non-small cell lung cancer (NSCLC) is the leading cause of

cancer-related death worldwide with an incidence rate of

1.3 million cases per year (Bray et al., 2018). NSCLC remains

asymptomatic during the early stage, and only 25% of patients

with NSCLC are diagnosed at this stage (Ni et al., 2018).

However, approximately 80% of patients are diagnosed in

metastatic stages with a 5-year survival rate below 15%

(Goldstraw et al., 2016). Despite constant progress in novel

therapies for NSCLC, including targeted therapy,

immunotherapy, and chemotherapy, the therapeutic efficacy is

still unsatisfactory (Facchinetti et al., 2016). Thus, the

identification of effective biomarkers to accurately predict the

overall survival (OS) probability and guide therapy in NSCLC is

of great importance.

RNA-binding proteins (RBPs) are a group of proteins that

function with an RNA-binding domain to distinguish and

bind to target RNAs, including coding RNAs and non-coding

RNAs (Hong, 2017). To date, more than 1,500 RBPs have been

identified in the human genome through high-throughput

screening (Cook et al., 2011; Gerstberger et al., 2014). RBPs

modulate the fate of binding RNAs by regulating

transcription, editing, splicing, polyadenylation,

translocation, and turnover (Müller-McNicoll and

Neugebauer, 2013). In recent years, studies in genetics and

proteomics have shown that most RBPs exhibit functional

abnormalities in lung cancer. Quaking I-5 (QKI-5), RALY

heterogeneous nuclear ribonucleoprotein (RALY), and KH-

type splicing regulatory protein (KHSRP) promote cancer cell

proliferation and invasion, and they are associated with OS

probability in NSCLC (Yan et al., 2019; Liang et al., 2020a;

Song et al., 2020). Musashi1 (MSI1) promotes NSCLC

malignancy and chemoresistance (Lang et al., 2017). RNA-

binding motif protein 47 (RBM47) inhibits NSCLC metastasis

through modulation of AXIN1 mRNA stability and Wnt/β-
catenin signaling (Shen et al., 2020). However, the molecular

mechanism of RBPs and their prognostic predictive ability in

NSCLC remain unknown. A systematic analysis of RBPs has

reported novel and comprehensive insights into the

underlying mechanism during cancer progression, and

prognostic signatures using RBPs have been constructed in

multiple tumors (Li et al., 2020a; Li et al., 2020b; Li et al.,

2020c; Kang et al., 2020; Wang et al., 2020). However, a

prognostic RBP-related signature in NSCLC has not been

reported. Thus, the present study aimed to explore the

function of RBPs in NSCLC and their prognostic and

therapeutic value.

In the present study, mRNA expression profiles, DNA

methylation data, gene mutation data, copy number variation

data, and clinical information on NSCLC were obtained from

The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.

gov/repository), Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/), and the University of

California Santa Cruz (UCSC) Xena (https://xenabrowser.

net/) databases. The differentially expressed RBPs

(DERBPs) were screened and then applied to perform

functional enrichment analysis and to construct a

prognostic RBP-related signature. A nomogram was

created, and Kaplan–Meier survival analysis and Cox

regression analysis were performed to explore its

prognostic value. The underlying molecular mechanisms

between the different risk groups were investigated using

gene set enrichment analysis (GSEA). The correlations of

risk score with clinical characteristics, DNA methylation

levels, tumor mutational burden (TMB), immune

infiltration, and chemotherapy sensitivity were analyzed

using R software packages. Finally, dysregulated expression

levels of these genes were validated using the quantitative

polymerase chain reaction (qPCR).

Materials and methods

Data preprocessing and identification of
DERBPs

The following data were downloaded from TCGA database:

mRNA expression profiles of 1,037 NSCLC samples and

108 control samples; DNA methylation data on 807 NSCLC

samples and 71 control samples; gene mutation data on

1,059 NSCLC samples; and clinical information (age, gender,
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smoking history, Union for International Cancer Control

(UICC) stage, survival time, and survival status) on

1,027 tumor samples. Moreover, the GSE31210, GSE26939,

GSE30219, and GSE157009 datasets were obtained from the

GEO database. The GSE31210, GSE30219, and

GSE157009 datasets were generated using the GPL570 [HG-

U133_Plus_2] Affymetrix Human Genome U133 Plus

2.0 Array, whereas the GSE26939 dataset was generated

using the GPL9053 Agilent-UNC-custom-4X44K. The

GSE31210 dataset included mRNA expression profiles of

226 NSCLC samples and 20 control samples, as well as

clinical information on 226 NSCLC samples. The

GSE26939 dataset included mRNA expression profiles of

116 NSCLC samples and 0 control samples, as well as

clinical information on 116 NSCLC samples. The

GSE30219 dataset included mRNA expression profiles of

293 NSCLC samples and 14 control samples, as well as

clinical information on 293 NSCLC samples. The

GSE157009 dataset included mRNA expression profiles of

249 NSCLC samples and 0 control samples, as well as

clinical information on 249 NSCLC samples. Copy number

variation data on 1079 NSCLC samples were downloaded from

the UCSC Xena database. The inclusion criteria were as follows:

1) NSCLC; 2) mRNA expression profiles, and 3) complete

follow-up data. Therefore, 978 patients from TCGA,

226 patients from the GSE31210 dataset, 114 patients from

the GSE26939 dataset, 264 patients from the GSE30219 dataset,

and 248 patients from the GSE157009 dataset were enrolled in

the present study. The baseline characteristics of the patients

are shown in Table 1. A total of 1,542 RBPs were included in the

present study (Cook et al., 2011; Gerstberger et al., 2014).

DERBPs were identified based on |log2 fold change (FC)| ≥
0.7 and adjusted p value <0.05 using the “limma” package in R

(Version 4.0.2) when two groups were compared. The “ggplot2”

and “gplots” packages in R were used to generate the volcano

plots and heatmap.

Functional enrichment analyses

Functional enrichment analyses of the DERBPs were

performed by Gene Ontology (GO) and Kyoto Encyclopedia

TABLE 1 Clinical features of patients with NSCLC from TCGA and GEO databases.

Clinical characteristic TCGA cohort (978) GSE31210 (226) GSE26939 (114) GSE30219 (264) GSE157009 (248)

Age (years)

≥65 590 (60.33%) 62 (0.27%) 61 (53.51%) 104 (39.39%) 182 (73.39%)

<65 388 (39.67%) 164 (72.57%) 53(46.49%) 159 (60.23%) 66 (26.61%)

Unknown 0 0 0 1 (0.38%) 0

Gender

Male 585 (59.82%) 105 (46.46%) 52 (46.61%) 223 (84.47%) 160 (64.52%)

Female 393 (40.185) 121 (53.54) 62 (54.39%) 41 (15.53%) 88 (35.48%)

Unknown 0 0 0 0 0

T classification

T1–T2 819 (83.74%) 226 (100%) — 218 (82.58%) 230 (92.74%)

T3–T4 156 (15.95%) 0 — 44 (16.67%) 18 (7.26%)

Unknown 3 (0.31%) 0 — 2 (0.76%) 0

N classification

N0 629 (64.31%) — — 188 (71.21%) —

N1–N3 333 (34.05%) — — 74 (28.03) —

Unknown 16 (1.64%) — — 2 (0.76%) —

M classification

M0 722 (73.82%) — — 257 (97.35%) —

M1 31 (3.17%) — — 4 (1.52) —

Unknown 225 (23.01%) — — 3 (1.14%) —

UICC stage

Stage I–II 772 (78.94%) 226 (100%) 81 (71.05%) 208 (78.79%) —

Stage III–IV 194 (19.84%) 0 20 (17.54%) 52 (19.70%) —

Unknown 12 (1.23%) 0 13 (11.40%) 4 (1.52%) —

TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; NSCLC, non-small cell lung cancer; UICC, Union for International Cancer Control.
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of Genes and Genomes (KEGG) pathway analyses using the

“clusterProfiler,” “org.Hs.eg.db,” “enrichplot,” “ggplot2,” and

“GOplot” packages in R. GO analysis included biological

processes (BPs), cellular components (CCs), and molecular

functions (MFs). The adjusted p value <0.05 was considered

statistically different.

Construction and validation of the
prognostic RBP-related signature

The prognostic RBPs were screened using DERBPs

through univariate Cox regression analysis, and p <
0.05 was selected as the statistical threshold. The least

absolute shrinkage and selection operator (LASSO)

regression analysis was applied to identify hub DERBPs to

minimize the risk of overfitting among the signatures. The

changing trajectory of each independent variable was first

analyzed, and fivefold cross-validation was used to build a

model and analyze the confidence interval under each

lambda value. The following formula was utilized: risk

score = expression for each gene x coefficient for each

gene. The patients were divided into low- and high-risk

groups, according to the median risk score. A

Kaplan–Meier survival curve was constructed between the

two risk groups and was compared using the log-rank test. A

receiver operating characteristic (ROC) curve was used to

assess the predictive value of the Kaplan–Meier survival

curves, and 1-, 3-, and 5-year area under the curve (AUC)

values were calculated. The prognostic signature was

validated using the following independent cohorts:

GSE31210, GSE26939, GSE30219, and GSE157009.

Correlation of the risk score with clinical
characteristics

The risk score was compared in different age groups

(≥65 and <65 years), genders (female and male), UICC

stages (stage I–II and stage III–IV), T stages (T1–2 and

T3–4), N stages (N0 and N1–3), and M stages (M0 and

M1) by the Mann–Whitney test in TCGA cohort.

Univariate and multivariable Cox regression analyses were

performed to screen independent prognostic factors for

NSCLC in TCGA, GSE31210, and GSE26939 datasets by R

software.

Nomogram and calibration plots

A nomogram was applied to forecast the likelihood of OS

probability using independent prognostic factors for NSCLC

through the “rms” package in R. Calibration plots of the

nomogram were generated to evaluate the conformity of the

nomogram predicted and actual OS probability.

Gene set enrichment analysis

GSEA is a computational method that determines whether a

previously defined set of genes shows a significant difference

between two biological states (Subramanian et al., 2005). The “c2.

cp.kegg.v7.5.1. symbols.gmt” file was downloaded from the

GSEA database (http://www.gsea-msigdb.org/gsea/index.jsp).

The “limma,” “GSEABase,” “GSVA,” and “pheatmap”

packages in R were applied to perform KEGG pathway

analysis between the two risk groups. The adjusted p

value <0.05 was considered statistically significant.

DNA methylation, TMB, and copy number
variation analyses

DNA methylation data on NSCLC were obtained by

Strawberry Perl (5.32.1.1–64-bit). DNA methylation levels of

prognostic genes were extracted using the “limma” package in

R and compared between the two risk groups by the

Mann–Whitney test. Gene mutation data on lung

adenocarcinoma (LUAD) and lung squamous cell carcinoma

(LUSC) were allocated in different “maf” files in TCGA database,

and the gene mutation frequencies in the two risk groups in

LUAD and LUSC were evaluated using the “maftools” package in

R. The correlation of risk score with TMB was evaluated by the

Mann–Whitney test and Spearman’s rank correlation analysis.

Kaplan–Meier survival curve analysis was performed on the

high-risk score + high TMB group and the low-risk score +

low TMB group, and the curves were compared by the log-rank

test by R software. Copy number variation matrixes of NSCLC

were obtained by Strawberry Perl. The copy number variation

levels and positions of prognostic genes were analyzed using the

“RCircos” package in R.

Immune infiltration analysis

The mRNA expression matrix of NSCLC was converted into

a tumor microenvironment (TME) score matrix using the

“limma” and “estimate” packages in R. TME scores, including

immune score, stromal score, and estimate score, were compared

between the two risk groups using the “reshape2” and “ggpubr”

packages in R. Immune infiltration profiles were compared

between the two risk groups and visualized by a violin plot

using the “vioplot” package in R. The correlations of immune

cells with risk scores were evaluated using the “limma,”

“reshape2,” “tidyverse,” “ggplot2,” “ggpubr,” and “ggExtra”

packages in R. Comparisons were performed by Spearman’s
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rank correlation analysis based on p-value <0.05 and |r| > 0.1.

Relative expression levels of immune checkpoint inhibitors

(programmed cell death 1 (PD1), programmed cell death

ligand 1 (PDL1), and cytotoxic T-lymphocyte-associated

protein 4 (CTLA4)) were compared between the two risk groups.

Sensitivity of chemotherapy drugs

Nine chemotherapy drugs, namely, axitinib (Solomon et al.,

2022), dasatinib (Kim et al., 2021), docetaxel (Xiao et al., 2022),

erlotinib (Wang et al., 2022), gemcitabine (Guo et al., 2022),

metformin (Arrieta et al., 2022), paclitaxel (Saito et al., 2022),

parthenolide (Li et al., 2020d; Sun et al., 2020), and shikonin (Pan

et al., 2021), were screened from the previous literature that

demonstrated their antitumor efforts on lung cancer, and they

were selected for the present study. The half inhibitory

concentration (IC50) of the chemotherapy drugs was

compared between the two risk groups in NSCLC using the

“pRRophetic” package in R. A p-value < 0.05 was considered

statistically significant.

RNA extraction and qPCR validation

Lung tissue samples from patients with NSCLC were

obtained from the West China Hospital of Sichuan University.

Histologically normal tissues were used as controls. Total RNA

was extracted from the lung tissues (14 control and 13 NSCLC

samples) using the E. Z.N.A. HP Total RNA Kit (OMEGA,

United States), according to the manufacturer’s protocol.

Complementary DNA (cDNA) was synthesized using the

PrimeScript™ RT reagent Kit (TaKaRa, Japan), following the

manufacturer’s instructions. Quantitative PCR was performed in

triplicate using the Iq™ SYBR Green SuperMix (BIO-RAD,

United States), according to the manufacturer’s protocol. The

relative gene expression levels were normalized via the β-actin Ct

value, applying the 2−ΔΔCt relative quantification method. The

following qPCR primers were used:

ZC3H12C-forward, 5′-GGCTTTTGAGTCGGACGGTA-3′;
ZC3H12C-reverse, 5′-TCAGGGGGCATGAACTTGTC-3′; SM

AD9-forward, 5′-GTTTGTTACGAGGAGCCCCA-3′; SMAD9-

reverse, 5′-AGGGTCGGTGAACCCATCTA-3′; MRPL15-forwa

rd, 5′-GAGAGGTGTGACCATCCAGC-3′; MRPL15-reverse, 5′-
TTGGAATGGGTTGTCCACGAA-3′; MBNL2-forward, 5′-ATA
CGGCAGACGGCTTTCAG-3′; MBNL2-reverse, 5′-CTCTGCCTG
TCCTTCCCATT-3′; FASTKD3-forward, 5′-GATGGAAACCCT
GCCTGACA-3′; FASTKD3-reverse, 5′-CCAGGTTCAGCAACA
GGCTA-3′; SNRPB-forward, 5′-AAGGGAAGAGAAGCGAGT
CC-3′; SNRPB-reverse, 5′-GCAAGTGGAACTCGAGCAAT-3′;

IGF2BP1-forward: 5′-TAGCTCCTTTATGCAGGCTCC-3′;
IGF2BP1-reverse, 5′-CGGGAGAGCTGTTTGATGTG-3′; INT

S7-forward, 5′-CACTATCAGGGACCATCGCC-3′;

INTS7-reverse, 5′-GGTAACAGCACTCTTGGGCT-3′; β-

actin-forward, 5′-CCACGAAACTACCTTCAACTCC-3′; β-

actin -reverse, 5′-GTGATCTCCTTCTGCATCCTGT-3′.

Statistical analysis

Statistical analysis was performed by R (Version 4.0.2) and

GraphPad Prism (Version 7.00) software. Levels of mRNA

expression were expressed as the median (interquartile range),

according to the data distribution type. Comparisons between the

two groups were determined by the Mann–Whitney test for

nonparametric data. Survival curves were compared by the log-

rank test. Correlation analysis was performed by Spearman’s

rank correlation analysis. p < 0.05 was considered statistically

significant.

Results

Identification of DERBPs and functional
enrichment analysis

The study flowchart is shown in Figure 1. A total of

273 DERBPs (173 upregulated RBPs and 100 downregulated

RBPs) were identified when NSCLC samples were compared to

control samples (Figures 2A,B). GO analysis using 273 DERBPs

identified the following enriched terms: BPs, including the

ncRNA metabolic process, ncRNA processing, and regulation

of the mRNA metabolic process (adjusted p value <0.05,
Figure 2C); CCs, including those located in cytoplasmic

ribonucleoprotein granules, ribonucleoprotein granules, and

ribosomes (adjusted p value <0.05, Figure 2C); and MFs,

including the catalytic activity, acting on RNA, mRNA

3’−UTR binding, and single−stranded RNA binding (adjusted

p value <0.05, Figure 2C). KEGG pathway analysis identified

ribosome biogenesis in eukaryotes, the mRNA surveillance

pathway, and influenza A as the primary pathways in NSCLC

(adjusted p value <0.05, Figure 2D).

Construction and validation of the
prognostic RBP-related signature

A total of 16 prognostic RBPs were screened from

273 DERBPs using univariate Cox regression analysis (p <
0.05, Figure 3A). An eight-RBP signature (zinc finger CCCH-

type containing 12C (ZC3H12C), mitochondrial ribosomal

protein L15 (MRPL15), muscleblind-like splicing regulator 2

(MBNL2), SMAD family member 9 (SMAD9), insulin-like

growth factor 2 mRNA binding protein 1 (IGF2BP1), FAST

kinase domains 3 (FASTKD3), integrator complex subunit 7

(INTS7), and small nuclear ribonucleoprotein polypeptides B
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and B1 (SNRPB)) were generated utilizing LASSO regression

analysis (Figures 3B–D). The formula for calculating the risk

score was as follows: Risk score = (0.20 * ZC3H12Cexp) + (0.31 *

MRPL15exp) + (0.45 * MBNL2exp) + (-0.27 * SMAD9exp) +

(0.15 * IGF2BP1exp) + (-0.37 * FASTKD3exp) + (0.22 *

INTS7exp) + (0.34 * SNRPBexp).

All patients with NSCLC were divided into low-or high-risk

groups, according to the median risk score of 0.9867 (Figure 3G).

The high-risk group had a worse OS probability than the low-risk

group (p < 0.001; Figure 3E), and the 1-, 3-, and 5-year AUC

values were 0.671, 0.638, and 0.637, respectively (Figure 3F). The

high-risk group had higher mortality than the low-risk group

(Figure 3G). A heatmap was generated to show the different

expression profiles of the eight RBPs between the two risk groups

(Figure 3H). Kaplan–Meier survival curve analysis showed that

the OS probability was significantly worse in the high-risk group

than in the low-risk group in the GSE31210 (p < 0.001;

Figure 4A), GSE26939 (p < 0.001; Figure 4B), GSE30219 (p <
0.001; Figure 4C), and GSE157009 (p < 0.001; Figure 4D)

datasets. The 5-year AUC value was 0.655 in the

GSE31210 dataset (Figure 4E), 0.630 in the GSE26939 dataset

(Figure 4F), 0.595 in the GSE30219 dataset (Figure 4G), and

0.548 in the GSE157009 dataset (Figure 4H). The risk score and

survival status in the GSE31210, GSE26939, GSE30219, and

GSE157009 datasets are shown in Figures 4I–K and 4M,

respectively.

Association of risk scores with clinical
characteristics

The risk score in patients with stage III-IV cancer was

increased compared to that in patients with stage I-II cancer

(p = 0.004, Figure 5A). The risk score was higher in patients

with T3-4 cancer than in patients with T1-2 cancer (p = 0.003,

Figure 5B), and the risk score was increased in patients with

N1–3 cancer compared to patients with N0 cancer (p = 0.009,

Figure 5C). The risk score of male patients was higher than that

of female patients (p = 0.020, Figure 5D), and the risk score did

not differ in different age groups (p = 0.340, Figure 5E) or M

stages (p = 0.921, Figure 5F). Univariate Cox regression analysis

showed that age, UICC stage, and risk score were correlated

with prognosis of NSCLC in TCGA database (hazard ratio

[HR]: 1.014, p = 0.025; HR: 1.475, p < 0.001; and HR: 1.939, p <
0.001, Figure 5G), which was confirmed by multivariate Cox

regression analysis (for age: HR: 1.025, p < 0.001; for UICC

FIGURE 1
Study flowchart and the main findings of the study. The numbers within the parentheses indicate the size of the sample obtained. DERBPs,
differentially expressed RNA-binding proteins; GSEA, gene set enrichment analysis; NSCLC, non-small cell lung cancer; PCR: polymerase chain
reaction; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; TMB, tumor mutational burden; UCSC, University of California
Santa Cruz.
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stage: HR: 1.457, p < 0.001; and for risk score: HR: 1.888, p <
0.001, Figure 5J). The risk score was correlated with prognosis

in the GSE26939 dataset by univariate Cox regression analysis

(HR: 1.647, p = 0.020, Figure 5H) and multivariate Cox

regression analysis (HR: 1.765, p = 0.013, Figure 5K). The

UICC stage and risk score were correlated with the

prognosis of NSCLC in the GSE31210 dataset by univariate

Cox regression analysis (HR: 4.232, p < 0.001; HR: 1.000, p =

0.004, Figure 5I) and multivariate Cox regression analysis (HR:

3.734, p < 0.001; HR: 1.000, p = 0.069, Figure 5L).

Nomogram and calibration plots

A nomogram was constructed using the independent

prognostic factors (age, UICC stage, and risk score) to

predict OS probability after 1, 3, and 5 years, which was

calculated by plotting a vertical line between the total point

axis and each prognostic axis (Figure 6A). Calibration plots of

the nomogram showed high conformity of the nomogram

predicted and actual OS probability at 1, 3, and 5 years

(Figure 6B).

FIGURE 2
Identification of DERBPs and functional enrichment analysis. (A) Volcano plots. (B) Heatmap. (C) BPs, CCs, and MFs. (D) KEGG pathways. BPs,
biological processes; CCs, cellular components; DERBPs, differentially expressed RNA-binding proteins; FC, fold-change; FDR, false discovery rate;
KEGG, Kyoto Encyclopedia of Genes and Genomes; MFs, molecular functions; N, normal samples; T, tumor samples.
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GSEA

The results of the GSEA showed that the P53, focal

adhesion, and NOD-like receptor signaling pathways were

the primary enriched pathways in the high-risk group of

patients with NSCLC (adjusted p-value <0.05, Figure 7).

DNA methylation, TMB, and copy number
variation analyses

The DNA methylation levels of the eight prognostic genes

were not significantly different between the two risk groups

(Supplementary Figure S1). Mutation analysis revealed that

TP53 and TTN were the most frequently mutated genes in

both risk groups of LUAD (Figures 8A,B) and LUSC (Figures

8C,D). The high-risk group had a higher TMB than the low-risk

group in NSCLC (p = 0.034, Figure 8E), and Spearman’s rank

correlation analysis showed the positive correlation of TMB with

risk score (rho = 0.12 and p < 0.001; Figure 8F). The

Kaplan–Meier survival curve showed that the OS probability

was lower in the high-risk score + high TMB group than in the

low-risk score + low TMB group (p < 0.001, Figure 8G). Copy

number variations were significantly increased in FASTKD3,

MBNL2, INTS7, IGF2BP1, and MRPL15, and they were

significantly decreased in NRPB, ZC3H12C, and SMAD9

(Figure 8H). The positions of the prognostic genes in the

chromosome are illustrated in Figure 8I.

Immune infiltration analysis

Because the stromal score (p < 0.001), immune score (p < 0.01),

and estimate score (p < 0.001) were all increased in the high-risk

group compared to the low-risk group (Figure 9B), the correlations

of immune cell with risk score were evaluated. The boxplot showed

that the high-risk group had increased activated memory CD4+

T cells (p < 0.001), resting natural killer (NK) cells (p < 0.001), M0

and M1 macrophages (p < 0.01), neutrophils (p < 0.01), reduced

memory B cells (p < 0.001), follicular helper T cells (p < 0.001),

regulatory T (Treg) cells (p < 0.01), monocytes (p < 0.05), resting

dendritic cells (p < 0.05), and resting mast cells (p < 0.05) compared

to the low-risk group (Figure 9A). The risk score was positively

correlated with activated memory CD4+ T cells (rho = 0.16; p <
0.001), resting NK cells (rho = 0.11; p < 0.001), M1 macrophages

(rho = 0.16; p < 0.01), and neutrophils (rho = 0.12; p < 0.01) (Figures

9C–F), and it was negatively correlated with memory B cells (rho =

–0.15; p < 0.001), follicular helper T cells (rho = –0.13; p < 0.001),

Treg cells (rho = –0.12; p < 0.01), and monocytes (rho = –0.1; p =

0.004) (Figures 9G–J). In addition, the relative expression levels of

FIGURE 3
Construction of the prognostic RBP-related signature. (A) Univariate Cox regression analysis. (B–D) LASSO regression analysis. (E)
Kaplan–Meier survival curve. (F) Receiver operating characteristic curve. (G) Risk score distribution and survival status. (H) Heatmap of prognostic
genes. AUC, area under the curve; LASSO, least absolute shrinkage and selection operator; RBPs, RNA-binding proteins; *p < 0.05; **p < 0.01; ***p <
0.001.
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PD1 (p = 0.015) and CTLA4 (p = 0.042) were higher in the high-risk

group than the low-risk group (Figures 9K,L). However, the relative

expression levels of PDL1 were not significantly different between

the two risk groups (p = 0.087, Figure 9M).

Sensitivity of chemotherapy drugs

To further explore the clinical value of the prognostic

signature, the sensitivity of nine chemotherapy drugs was

analyzed and compared between the two risk groups in

NSCLC. The results showed that the IC50 values of dasatinib,

docetaxel, erlotinib, gemcitabine, paclitaxel, parthenolide, and

shikonin were lower in the high-risk group than those in the low-

risk group (p < 0.001, Figures 10A–G), whereas the IC50 values of

axitinib and metformin were lower in the low-risk group than

those in the high-risk group (p < 0.001, Figures 10H,I).

Quantitative PCR validation

The mRNA expression levels of FASTKD3 (p = 0.013),

IGF2BP1 (p = 0.026), MRPL15 (p < 0.001), SNRPB (p =

0.005), and INTS7 (p = 0.027) were higher in tumor tissues

than in control tissues (Figures 11A–E); however, the mRNA

expression levels ofMBNL2 (p = 0.015), SMAD9 (p < 0.001), and

FIGURE 4
Validation of the prognostic RBP-related signature. (A–D) Kaplan–Meier survival curves for the GSE31210, GSE26939, GSE30219, and
GSE157009 datasets. (E–H) Receiver operating characteristic curves for the GSE31210, GSE26939, GSE30219, and GSE157009 datasets. (I–M) Risk
score distribution and survival status for the GSE31210, GSE26939, GSE30219, and GSE157009 datasets. AUC, area under the curve; RBPs: RNA-
binding proteins.
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FIGURE 5
Correlation of the risk score with clinical characteristics. (A) UICC stages. (B) T stages. (C) N stages. (D) Gender groups. (E) Age groups. (F) M
stages. Univariate and multivariate Cox regression analyses in (G,J) TCGA, (H,K) GSE26939, and (I,L) GSE31210. Data are presented as the median
(interquartile range). TCGA, The Cancer Genome Atlas; UICC, Union for International Cancer Control; ns, no significance; *p < 0.05; **p < 0.01;
***p < 0.001.
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ZC3H12C (p < 0.001) were decreased in tumor tissues compared

to control tissues (Figures 11F–H).

Discussion

In the present study, an RBP-related signature was

successfully constructed to predict prognosis. The increased

risk score was associated with more advanced tumor stages

and lower OS probability. The risk score was an independent

prognostic factor for NSCLC when adjusted for age and UICC

stage. Moreover, the constructed nomogram better predicted

prognosis. In addition, the high-risk group had increased

immune infiltration, upregulated relative expression levels

of PD1 and CTLA4, higher TMB, and lower IC50 of

chemotherapy drugs than the low-risk group.

KEGG pathway analysis was performed to explore the

underlying molecular mechanisms of RBPs in NSCLC.

Previous studies have demonstrated that the mRNA

surveillance pathway is involved in the initiation and

FIGURE 6
Nomogram and calibration plots. (A)Nomogram to predict OS probability at 1, 3, and 5 years. (B)Calibration plots of the nomogram. OS, overall
survival; **p < 0.01; ***p < 0.001.

FIGURE 7
Primary KEGG pathways between the two risk groups according to GSEA. GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of
Genes and Genomes.
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progression of cancer (Long et al., 2017; Popp and Maquat,

2018; Zhang et al., 2019a), which was confirmed in NSCLC in

the present study. In addition, the present study showed that

ribosome biogenesis in eukaryotes played an important role in

NSCLC. RPL15, a large ribosomal subunit protein, is

significantly upregulated in human cancer tissues and

cultured cell lines, and it is closely correlated with

clinicopathological characteristics (Dong et al., 2019).

Interestingly, the present study demonstrated that influenza

A was correlated with NSCLC. A previous study has reported

that exposure to the influenza virus is associated with an

increased risk of lung cancer and that the risk increases with

cumulative exposure to influenza (Weng et al., 2019). Thus,

the annual influenza vaccination administration may reduce

FIGURE 8
Genemutation and copy number variation. (A,B)Genemutation frequencies in the low-risk and high-risk groups of LUAD. (C,D)Genemutation
frequencies in the low-risk and high-risk groups of LUSC. (E,F) Correlation of the risk score with TMB. (G) Kaplan–Meier survival curve between the
high-risk score + high TMB group and the low-risk score + low TMB group. (H) Copy number variations of prognostic genes. (I) Positions of
prognostic genes in the chromosome. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TMB, tumor mutational burden.
Data are presented as the median (interquartile range). *p < 0.05.
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FIGURE 9
Correlations of the risk score with immune infiltration. (A)Comparison of the different immune infiltration profiles between the two risk groups.
(B) TME scores of the two risk groups. A positive correlation with the risk score was observed for (C) activated memory CD4+ T cells, (D) resting NK
cells, (E) M1 macrophages, and (F) neutrophils. A negative correlation with the risk score was observed for (G) memory B cells, (H) follicular helper
T cells, (I) Treg cells, and (J)monocytes. (K–M) Relative expression levels of PD1, CTLA4, and PDL1 in the two risk groups. Data are presented as
the median (interquartile range). CTLA4, cytotoxic T-lymphocyte-associated protein 4; NK, natural killer; PD1, programmed cell death one; PDL1,
programmed cell death one ligand 1; TME, tumor microenvironment; ns, no significance; *p < 0.05; **p < 0.01; ***p < 0.001.
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the incidence of lung cancer in patients with COPD (Chen

et al., 2019). However, the precise molecular mechanisms need

to be further explored in future studies.

The molecular mechanisms through which these RBPs

contribute to the pathogenesis of cancer remain poorly

understood. IGF2BP1 has been shown to function as an

oncogene in multiple cancers (Ohdaira et al., 2012; Huang

et al., 2020a; Glaß et al., 2020). Low IGF2BP1 expression

inhibits cell proliferation and migration but induces cell cycle

arrest and apoptosis in NSCLC, and it correlates with a good

prognosis (Huang et al., 2019; Huang et al., 2020b; Zhang et al.,

2020). MRPL15 is associated with the progression of LUAD

(Deng et al., 2020). SMAD9 is involved in the progression of

NSCLC by miR-744 delivered by cancer-derived extracellular

vehicles (Gao et al., 2021). Moreover, SMAD9mRNA expression

is decreased in LUAD, which is correlated with worse OS (Dai

et al., 2020). SNRPB promotes tumor cell proliferation and

stemness by mediating RNA splicing (Zhan et al., 2020). In

NSCLC, SNRPB facilitates tumorigenesis via regulation of RAB26

expression, and it is correlated with prognosis (Liu et al., 2019).

MBNL2 inhibits tumor growth and metastasis (Lee et al., 2016;

Zhang et al., 2019b). MBNL2 controls lung cancer cell responses

to hypoxia by regulating the expression and alternative splicing

of hypoxia-induced genes (Fischer et al., 2020). However, there

FIGURE 10
Correlation of the risk score with chemotherapy sensitivity. (A) Dasatinib. (B) Docetaxel. (C) Erlotinib. (D) Gemcitabine. (E) Paclitaxel. (F)
Parthenolide. (G) Shikonin. (H) Axitinib. (I) Metformin. Data are presented as the median (interquartile range). IC50, half inhibitory concentration;
***p < 0.001.
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are few reports on FASTKD3 and ZC3H12C involved in cancer.

The results of the present study showed that the relative

expression levels of FASTKD3, IGF2BP1, MRPL15, SNRPB,

and INTS7 were higher in NSCLC tissues than those in

control tissues but that the relative expression levels of

MBNL2, SMAD9, and ZC3H12C were reduced in NSCLC

tissues compared to those in control tissues.

The prognostic RBP-related signatures have been

constructed in LUAD (Meng et al., 2020; Yang et al., 2021)

and LUSC (Li et al., 2020a; Zhao et al., 2021). However, the

constructed RBP-related signatures for LUAD and LUSC only

use simple bioinformatics analysis and lack experimental

validation, and each signature is suitable for only one type of

NSCLC. Thus, a prognostic RBP-related signature should be

generated and validated for NSCLC. In the present study, a

prognostic RBP-related signature was successfully constructed

using LASSO regression analysis rather than multivariable Cox

regression analysis based on eight RBPs that were validated using

qPCR, which minimized the risk of overfitting among the

signature and increased the reliability of the signature. Thus,

the present signature was superior to the previously reported

prognostic signatures for LUAD (Meng et al., 2020; Yang et al.,

2021) and LUSC (Li et al., 2020a; Zhao et al., 2021).

Kaplan–Meier survival analysis showed that the present

signature predicted prognosis and discriminated against

different risk groups. The risk score was positively correlated

with tumor progression, including UICC stages, T stages, and N

stages. However, there was no correlation between the risk score

and M stages, which may have been due to an insufficient sample

size in the M1 stage. Moreover, the risk score was an independent

prognostic factor for NSCLC, according to multivariate Cox

regression analysis. Thus, the risk score was associated with

the progression and prognosis of NSCLC. Finally, the

prognostic RBP-related signature was validated using four

GEO datasets, which demonstrated that the prognostic

signature was not restricted by different sequencing

techniques and platforms. Previous studies have shown that a

nomogram better predicts disease prognosis due to its

multidimensional parameters (Huang et al., 2022; Luo et al.,

2022). Thus, a nomogramwas constructed in the present study to

predict the 1-, 3-, and 5-year OS probability in NSCLC, and

calibration plots of the nomogram showed high predictive

accuracy.

The underlying molecular mechanisms between the two risk

groups were investigated using GSEA. The pathways were mainly

enriched in the P53 signaling pathway and NOD-like receptor

signaling pathway. As a canonical tumor suppressor, P53 plays

an important role in cancer (Yoshida and Miki, 2010; Timofeev

et al., 2020). Mutant and wild-type P53 may exert different

functions on cancer (Yoshida and Miki, 2010; Muller and

Vousden, 2014; Timofeev et al., 2020). P53 is a frequently

mutated gene in lung cancer (Oduah and Grossman, 2020),

FIGURE 11
Validation of the relative expression levels of (A) FASTKD3, (B) IGF2BP1, (C) MRPL15, (D) SNRPB, (E) INTS7, (F) MBNL2, (G) SMAD9, and (H)
ZC3H12C in lung tissues by qPCR. Data are presented as the median (interquartile range). NSCLC, non-small cell lung cancer; *p < 0.05; **p < 0.01;
***p < 0.001.
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which was also confirmed using mutation analysis in the present

study. The mutant P53 promotes tumor progression by binding

to and upregulating chromatin regulatory genes, such as MLL1

and MLL2, leading to genome-wide increases in histone

methylation and acetylation (Zhu et al., 2015). Moreover, the

mutant P53 accelerates the recycling of integrin beta1 and EGFR

to exert its oncogenic function (Muller et al., 2009). Dysregulated

TMB is correlated with the prognosis of cancer (Cao et al., 2022;

Zhou and Gao, 2022). In the present study, the high-risk group

had a higher TMB, and patients in the high-risk group with high

TMB had a worse probability. In addition, activation of the NLR

family pyrin domain containing 3 (NLRP3) inflammasome

enhances the proliferation and migration of A549 cells (Wang

et al., 2016). Tumor-derived exosomal TRIM59 induces the

tumor-promoting function of macrophages to activate the

NLRP3 inflammasome signaling pathway, thereby promoting

lung cancer progression (Liang et al., 2020b). Thus, inhibiting

NLRP3 inflammasome activation may suppress cancer cell

proliferation and metastasis in NSCLC (Zou et al., 2018).

Nucleotide-binding and oligomerization domain-containing

protein 2 (NOD2) deficiency confer a protumorigenic

macrophage phenotype to promote LUAD progression (Wang

et al., 2021). Therefore, P53mutation and the NOD-like receptor

signaling pathway may play a critical role in disease progression

and worse OS probability in the high-risk group.

Immune cells are an important part of the TME, and they

play a critical role in tumor development (Bindea et al., 2013).

In lung cancer, macrophages stimulate tumor angiogenesis and

promote cancer cell invasion, migration, and intravasation

(Qian and Pollard, 2010). Tumor-associated macrophages

are significantly associated with angiogenesis and a poor

prognosis in NSCLC (Montuenga and Pio, 2007; Li et al.,

2020e). Neutrophils in peripheral blood are effective

diagnostic biomarkers for lung cancer (Zhu et al., 2020).

Increased neutrophils are associated with a worse prognosis

in bronchoalveolar carcinoma (Bellocq et al., 1998). A high

percentage of CD4+ tumor-infiltrating lymphocytes in the

tumor stroma is correlated with a worse prognosis

(Giatromanolaki et al., 2021). In the present study, increased

M0 macrophages, M1 macrophages, neutrophils, and activated

memory CD4+ T cells were found in the high-risk group. The

worse OS probability in the high-risk group may be attributed

to increased immune infiltration, indicating that the high-risk

group may have a better immunotherapy response. Therefore,

the correlations of risk scores with the relative expression levels

of immune checkpoint inhibitors (PD1, PDL1, and CTLA4)

were evaluated to further explore their association with

immunotherapy because immune checkpoint inhibitors (ICI)

are becoming standard in the first-line treatment of advanced

NSCLC (Garon et al., 2015; Reck et al., 2016; Gandhi et al.,

2018). The results showed that the high-risk group had higher

relative expression levels of PD1 and CTLA4, suggesting that

patients in the high-risk group may benefit more from ICIs

against PD1 and CTLA4. In addition to immunotherapy, the

correlations of risk scores with chemotherapeutic drugs were

also explored. The results demonstrated that the high-risk

group was more sensitive to seven chemotherapy drugs and

that the low-risk group was more sensitive to two

chemotherapy drugs. Thus, the prognostic signature may be

applied to guide individualized chemotherapy choices.

The present study had several advantages. First, the

signature was constructed using LASSO regression analysis,

which minimized the risk of overfitting among the signature.

Second, the present study established a promising prognostic

RBP-related signature to evaluate patient prognosis, and we

performed comprehensive bioinformatics analysis, including

correlation of the risk score with clinical characteristics,

methylation levels, TMB, copy number variation, immune

infiltration, and chemotherapy response, as well as GSEA

between the two risk groups, which have not been

performed in previous RBP-related signatures for LUAD

(Meng et al., 2020; Yang et al., 2021) and LUSC (Li et al.,

2020a; Zhao et al., 2021). Third, the previously constructed

RBP-related signatures lack experimental validation, but the

dysregulated genes in the present prognostic signature were

validated using qPCR in another independent cohort. Fourth,

the prognostic RBP-related signature was validated using four

GEO databases. Last, the present RBP-related signature was

generated for all NSCLC cohorts rather than one subgroup of

NSCLC. Nevertheless, the present study had several

limitations. First, the results of the present study were

based on bioinformatics analyses of public databases, which

need to be validated in multicentric, prospective clinical

studies. Second, Kaplan–Meier survival curve analysis could

not be performed using our samples due to insufficient sample

size and lack of follow-up data. Last, the present study did not

perform in vivo and vitro experiments to explore the function

of RBPs and prognostic signatures. Thus, further studies are

required to clarify the molecular mechanism of RBPs in

NSCLC.

Conclusion

A prognostic RBP-related signature was successfully

constructed based on eight RBPs using LASSO regression

analysis. The risk score was associated with progression of

disease and OS probability, and it was an independent

prognostic factor for NSCLC. Moreover, the high-risk group

had increased immune infiltration, upregulated relative

expression levels of PD1 and CTLA4, higher gene mutation

frequency, higher TMB, and better chemotherapy response.

Therefore, an RBP-related signature was successfully

constructed to predict prognosis in NSCLC, which may

function as a reference for individualized therapy, including

immunotherapy and chemotherapy.
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