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The etiology of recurrent pregnancy loss (RPL) is complicated and effective

clinical preventive measures are lacking. Identifying biomarkers for RPL has

been challenging, and to date, little is known about the role of N6-

methyladenosine (m6A) regulators in RPL. Expression data for m6A

regulators in 29 patients with RPL and 29 healthy controls were downloaded

from the Gene Expression Omnibus (GEO) database. To establish a diagnostic

model for unexplained RPL, differential gene expression analysis was

conducting for 36 m6A regulators using least absolute shrinkage and

selection operator (LASSO) regression. Unsupervised cluster analysis was

conducted on hub genes, and probable mechanisms were explored using

gene set enrichment analysis (GSEA) and gene ontology (GO) analysis.

Correlations between m6A-related differentially expressed genes and

immune infiltration were analyzed using single-sample GSEA. A total of

18 m6A regulators showed significant differences in expression in RPL:

10 were upregulated and eight were downregulated. Fifteen m6A regulators

were integrated and used to construct a diagnosticmodel for RPL that had good

predictive efficiency and robustness in differentiating RPL from control samples,

with an overall area under the curve (AUC) value of 0.994. Crosstalk was

identified between 10 hub genes, miRNAs, and transcription factors (TFs).

For example, YTHDF2 was targeted by mir-1-3p and interacted with

embryonic development-related TFs such as FOXA1 and GATA2. YTHDF2

was also positively correlated with METTL14 (r = 0.5983, p < 0.001). Two

RPL subtypes (Cluster-1 and Cluster-2) with distinct hub gene signatures

were identified. GSEA and GO analysis revealed that the differentially
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expressed genes were mainly associated with immune processes and cell cycle

signaling pathway (normalized enrichment score, NES = -1.626, p < 0.001).

Immune infiltration was significantly higher in Cluster-1 than in Cluster-2 (p <
0.01). In conclusion, we demonstrated that m6A modification plays a critical

role in RPL. We also developed and validated a diagnostic model for RPL

prediction based on m6A regulators. Finally, we identified two distinct RPL

subtypes with different biological processes and immune statuses.

KEYWORDS

recurrent pregnancy loss, N6-methyladenosine, diagnostic model, YTHDF2, immune
cell infiltration

Introduction

Recurrent pregnancy loss (RPL) is a reproductive disorder

generally defined as two or more consecutive pregnancy losses

before 20–24 weeks (Rai and Regan, 2006). The prevalence of

RPL ranges from 1 to 4% in reproductive-aged women and can

cause both physical and psychological distress (Dimitriadis et al.,

2020). RPL can be attributed to multiple factors, including

genetic, endocrine, anatomical, and immunological disorders.

However, the causes of RPL have not been fully elucidated and

approximately 50% of RPL cases have no known attributable

causes (Jaslow et al., 2010). Epigenetic abnormalities were

recently reported to be involved in RPL etiopathogenesis

(Arias-Sosa et al., 2018). No effective treatment has been

identified for RPL, given that the mechanism underlying its

occurrence is unknown (Ford and Schust, 2009; Medicine,

2012). However, there is increased focus on trying to identify

the molecular networks that are closely associated with RPL in

order to develop effective predictive models and interventions.

One epigenetic modification, N6-methyladenosine (m6A), is

associated with the occurrence and development of multiple

female reproductive disorders, including endometriosis and

adenomyosis, polycystic ovary syndrome, preeclampsia, and

spontaneous miscarriage, and has potential for diagnosis and

treatment of RPL (Mu et al., 2022). However, its association with

RPL has not been fully determined.

m6A modification is the most common modification in

mRNA and non-coding RNA and can affect RNA splicing,

translation, and stability, hence impacting a variety of

biological processes (Meyer and Jaffrey, 2017). m6A regulators

consist of methyltransferases, demethylases, and binding

proteins referred to as writers, erasers, and readers,

respectively. The writer complex consists of METTL3/14,

WTAP, and other proteins, with METTL3 being the core

catalytic subunit (Liu et al., 2014). FTO and ALKBH5 are

erasers involved in m6A elimination. The m6A-binding

proteins act on RNA readers, which usually contain YTH

domains, such as YTHDF1/2/3 and YTHDC1/2 (Zaccara et al.,

2019).

Three studies have investigated the effects of m6A

modification on trophoblast function during early

pregnancy (Li et al., 2019; Qiu et al., 2021; Xu et al., 2021).

ALKBH5 expression was markedly higher in the chorionic villi

of patients with RPL than in the villi of healthy pregnant

women, resulting in reduced m6A modification of CYR61

mRNA and lower stability. In vitro experiments also

demonstrated that ALKBH5 inhibits the proliferation and

invasive function of trophoblasts at the maternal-fetal

interface in patients with RPL, leading to pregnancy failure

(Li et al., 2019). Another study found that benzo(a)pyrene diol

epoxide, a metabolite of environmental benzo(a)pyrene,

upregulated lncHZ01 expression in trophoblasts. The study

showed that lncHZ01 mediates the upregulation of MXD1,

promoting METTL14 transcription and increasing m6A

modification and lncHZ01 stability. This positive feedback

loop ultimately inhibits trophoblast proliferation and

induces RPL (Xu et al., 2021). Differentially expressed m6A

regulators as well as increased m6A modifications have been

identified in individuals experiencing spontaneous

miscarriages. In particular, FTO expression, which is

significantly downregulated in chorionic villi and

trophoblasts of individuals experiencing spontaneous

miscarriages, affects m6A modifications of several genes

associated with immune tolerance, immune cell infiltration,

and angiogenesis and facilitate the progression of spontaneous

miscarriage (Qiu et al., 2021). Although these in vivo and

in vitro studies have elucidated the role of some m6A

regulators in miscarriages, they are not comprehensive and

have not systematically investigated the regulatory networks of

m6A modifications from a multi-omics perspective. In

addition, these studies have mainly focused on exploring

the mechanisms of action, while the implications for

clinical diagnosis and treatment have not been sufficiently

studied. Recent studies have revealed that m6A is a potential

target for cancer therapy (Huang et al., 2021). Given its key

role in female reproductive disorders, m6A-targeted

interventions and integrated predictive models of m6A

regulators can also be considered potential diagnostic and

therapeutic approaches for RPL, although further supporting

evidence is required. Several bioinformatics studies on the role

of epigenetics in RPL have been published, with many focusing

on DNA methylation (Yu et al., 2018) and epigenetic
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regulation of miRNA (Bahia et al., 2020) and lncRNA (Wang

et al., 2017). However, an integrated analysis of m6A

modifications in RPL is still lacking.

This study aimed to evaluate the role of m6A modifications

in RPL from a multi-omics perspective, to gain insight into the

heterogeneity of RPL pathogenesis by identifying RPL molecular

subtypes, and to improve clinical diagnosis by establishing a

diagnostic model based on m6A regulators. We analyzed the

expression of and interaction between m6A regulators in

individuals with unexplained RPL using data from the Gene

Expression Omnibus (GEO) database. We developed a

diagnostic model of RPL with good predictive efficiency and

robustness based on 15 m6A regulators screened using least

absolute shrinkage and selection operator (LASSO) regression.

We then classified RPL samples into two molecular subtypes,

assessed differences between them at the immune

microenvironment level, and analyzed the direct correlations

between hub genes and immune cell infiltration levels.

Materials and methods

Data preprocessing

The workflow chart (Figure 1) describes the sample sources

and analysis strategies at each stage. Microarray data and the

correlated clinical information of RPL cases and controls were

downloaded from GEO database. All RPL cases with known

causes were excluded, and only samples with unexplained RPL

causes or unknown risk factors were included in the analysis.

Two eligible datasets GSE165004 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE165004, No published

literature) and GSE26787 (Lédée et al., 2011) were

downloaded, and the sequence platforms were GPL16699 and

GPL570 [HG-U133_Plus_2], respectively. GSE165004 contains

48 samples comprising 24 control and 24 RPL samples.

GSE26787 contains 10 samples, comprising five control and

five RPL samples. All the clinical information used in this

study are publicly available in the GEO database. The two

datasets were combined for the following analyses. Batch

effects correction and log2 normalization were conducted by

the “sva” R package (Leek et al., 2012). Box plots were used to

visualize the distribution of expression data pre- and post-

normalization as well as pre- and post-batch correction.

Expression landscape of m6A regulators
in RPL

A total of 40 known m6A regulators: 11 writers (METTL3,

METTL14, METTL16, RBM15, RBM15B, WTAP, ZCCHC4,

PCIF1, CBLL1, ZC3H13 and VIRMA), 26 readers (YTHDC1,

YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1, IGF2BP2,

IGF2BP3, HNRNPA2B1, HNRNPC, HNRNPG, FMR1,

PRRC2A, eIF3A, eIF3B, eIF3H, LRPPRC, SRSF3, NXF1,

TRMT112, NUDT21, CPSF6, SETD2, SRSF10, XRN1 and

ELAVL1), and three erasers (ALKBH3, ALKBH5 and FTO),

were obtained from published literature (Chen et al., 2019; Du

et al., 2019; Shi et al., 2019; Xu et al., 2020). We overlapped these

40 m6A regulators with available expression profiles from the

FIGURE 1
Data preprocessing flow diagram.
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GEO datasets and obtained 36 common m6A regulators. These

36 m6A regulators included 9 writers (METTL3, METTL14,

RBM15, RBM15B, WTAP, ZCCHC4, PCIF1, CBLL1 and

ZC3H13), 24 readers (YTHDC1, YTHDC2, YTHDF1,

YTHDF2, YTHDF3, IGF2BP1, IGF2BP2, IGF2BP3,

HNRNPA2B1, HNRNPC, FMR1, PRRC2A, eIF3A, eIF3B,

eIF3H, LRPPRC, SRSF3, NXF1, TRMT112, NUDT21, CPSF6,

SETD2, SRSF10 and XRN1) and three erasers (ALKBH3,

ALKBH5 and FTO).

We generated a heatmap using the R package “pheatmap”

(Kolde, 2018) and a grouped box plot using the R package

“ggpubr” (Kassambara, 2020) based on the RPL and control

group data. Differences in the expression of the 36 m6A

regulators in the two groups were analyzed using the

Wilcoxon rank-sum test, with statistical significance set at p <
0.05. A Circos plot of the 36 genes was generated using the R

package “RCircos” (Zhang et al., 2013), with chromosomal

location information obtained from the ENSEMBL database

(Yates et al., 2020).

Analysis of correlations between m6A
regulators

Correlations between the expression levels of writers and

erasers in all patients were measured using Pearson’s

correlation coefficient analysis. Absolute correlation

coefficient values higher than 0.4 and p < 0.05 were

considered significant. The R package “ggplot2” was used to

generate scatter plots and correlation coefficient curves for

gene pairs that met these criteria (Villanueva and Chen, 2019),

and histograms were generated using the R package “ggExtra”

(Attali and Baker, 2019).

To analyze correlations between hub genes, heatmaps were

generated using the R package “Corrplot” (Wei, 2017). Bubble

plots were used to visualize correlations between hub

genes. Scatter plots and coefficient curves of the most

significantly correlated gene pairs were generated as

previously described.

Construction of a diagnostic model based
on m6A regulators

Least Absolute Shrinkage and Selection Operator (LASSO)

regression was carried out to screen for RPL-associated m6A

regulators using the R package “glmnet” (Friedman et al., 2021)

and the optimal lambda value was selected. Only genes with non-

zero coefficients were retained. The genes and corresponding

coefficients used for diagnostic model construction were

visualized using a forest plot generated using the R package

“forestplot” (Gordon and Lumley, 2019). The risk score was

generated using the following formula: risk score =

ExpressionmRNA1 × CoefficientmRNA1+ ExpressionmRNA2 ×

CoefficientmRNA2 +. . .ExpressionmRNAn× CoefficientmRNAn.

The R package “rms” (Harrell, 2018) was used to run a

logistic regression model based on the top four absolute weight

genes in the LASSO model and the output was visualized using

a nomogram. To validate the predictive efficiency of the

diagnostic model, receiver operating characteristic (ROC)

curves of induvial genes were generated using the R

package “pROC” (Robin et al., 2011) and the area under

the curve (AUC) was calculated. The closer the AUC is to

1, the better the prediction performance. Internal datasets and

decision curve analysis (DCA) was used to illustrate the

validity of the nomogram. The DCA curve was plotted

using the R package “ggDCA” (Fitzgerald et al., 2015).

Protein-protein interaction (PPI) networks
of m6A regulators

A PPI network of 36 m6A regulators was generated using the

STRING database (https://string-db.org/) (von Mering et al.,

2003), with a default threshold of 0.4. Cytoscape (Shannon

et al., 2003) was used to calculate the network attributes of

each node, and Cytohubba (Chin et al., 2014) was used for

hub node mining based on the degree of the nodes. The top

10 nodes with the highest degree were defined as hub nodes or

hub genes, which have a high level of connection with other

nodes. The hub genes may play an extremely important role in

the regulation of the entire biological process, and are worthy of

further study.

As special gene regulatory elements, miRNAs and

transcription factors (TFs) are of great significance to the

function of protein-coding genes, and they can also indirectly

reflect the functional connections and differences of the genes

themselves. For further prediction studies, the miRNAs and TFs

of 10 hub genes were predicted using the miRNet database

(Chang et al., 2020). Cytoscape was used for data processing

and visualization.

Unsupervised cluster analysis

Unsupervised cluster analysis was conducted using the R

package “ConsensusClusterPlus” with cycle computation

1,000 times to ensure stability and reliability (Wilkerson et al.,

2013). Based on the expression of the 10 hub genes, the RPL

patients were classified into two clusters using the optimal

k-means clustering (“kmeans” function in R). Correlations

between the expression levels of the 10 hub genes in the two

clusters were analyzed and the results were presented on a

heatmap. A grouped violin plot of 10 hub genes mRNA

expression in two clusters was generated using the R package

“ggpubr” (Kassambara, 2020). Groups were compared using
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Wilcoxon rank-sum test and p < 0.05 was considered statistically

significant.

Gene set enrichment analysis (GSEA)

Differential expression was analyzed, with cut-off values

set at p < 0.05 (adjusted) and log2FC > 0.5. Differentially

expressed genes (DEGs) were subjected to GSEA, a

computation method used to determine the statistical

significance of a set of DEGs between two biological states

and is commonly used to estimate changes in pathways and

biological processes (Subramanian et al., 2005). Gene

Ontology (GO) enrichment analysis is commonly used to

investigate the large-scale functional enrichment of genes in

different dimensions and levels, generally at three levels:

biological process (BP), molecular function (MF), and

cellular component (CC). To identify highly enriched

biological processes, GO functional annotations were

performed on all DEGs using the R package

“clusterprofiler” (Yu et al., 2012; Wu et al., 2021). Enriched

results (p < 0.05) were visualized using the R package

“GOplot” (Walter et al., 2015). To explore differences in

biological processes between the two sets of samples, the

gene sets “c5. go. v7.4. entrez. Gmt” and “c2. cp. kegg. v7.4.

entrez. Gmt” were downloaded from the MSigDB database

(Liberzon et al., 2015). GSEA, implemented in the R

package “clusterProfiler”, was used for enrichment analysis

and visualization. p < 0.05 was considered statistically

significant.

Analysis of immune infiltration

The immune microenvironment is mainly composed of

immune cells, inflammatory cells, fibroblasts, interstitial

tissues, and various cytokines and chemokines. The analysis

of immune infiltration could guide disease therapy and

prognosis prediction. ssGSEA, implemented using the R

package “GSVA” (Hänzelmann et al., 2013), was used to

explore similarities and differences in immune cell

infiltration levels between the two groups. Marker genes of

28 immune cells were obtained from literature (Charoentong

et al., 2017) and used as background gene sets for ssGSEA.

Immune cell infiltration was visualized using a heatmap and a

boxplot. Correlations between immune cell infiltration in

different disease states in the two groups were visualized

using correlation plots generated using the R package

“corrplot” (Steen et al., 2020). The R package

“CIBERSORT” was used to evaluate immune cell infiltration

levels to verify the accuracy of the results. The calculations

were based on the LM22 background gene set included with

the ‘CIBERSORT’ package. Correlation scatter plots and

curves were generated for the hub gene-immune cell pairs

as previously described.

Statistical analysis

All data calculations and statistical analyses were performed

using the R software (version 4.1). The predictive efficiency of the

diagnostic model was evaluated by ROC curves and the area

under the curve (AUC) values. Internal datasets and decision

curve analysis (DCA) was used to illustrate the validity of the

nomogram. For the comparison of two groups of independent

variables, the differences between non-normally distributed

variables were analyzed by Wilcoxon rank sum test. All

statistical p values were bilateral, and p < 0.05 was considered

statistically significant.

Results

Expression landscape of m6A regulators
in RPL

To construct a landscape of m6A regulators in RPL, the

expression profiles of GSE165004 and GSE26787 datasets from

the GEO database were integrated (Supplementary Table S1).

Because datasets from different sources generally show strong

batch effects, we first examined the distribution of gene

expression in the original data before and after batch effect

correction. As shown in Supplementary Figure S1, the samples

showed strong batch effects when they were integrated,

exhibiting considerably different expression distribution

characteristics. After batch effect correction and log

standardization, the overall expression distribution of all

samples converged, improving the accuracy and robustness of

subsequent analysis.

The samples were divided into RPL (29 samples) and control

(29 samples) groups, and differential expression of the 36 m6A

regulators (9 writers, three erasers, and 24 readers) between the

groups was analyzed (Figure 2A). A total of 18 m6A regulators

showed significant differences in expression in RPL samples, of

which 10 were upregulated and eight were downregulated

(Figure 2B, p < 0.05). The upregulated genes included five

writers (METTL3, METTL14, CBLL1, RBM15 and PCIF1), one

eraser (ALKBH5), and four readers (YTHDF1, YTHDC1,

TRMT112 and SETD2). The downregulated genes included

two writers (WTAP and RBM15B) and six readers (YTHDF2,

HNRNPC, FMR1, LRPPRC, SRSF10 and XRN1). Additionally, we

analyzed the chromosomal location of the 36 m6A regulators and

generated a chromosome location landscape (Figure 2C). We

found that some regulators were located close to each other, for

example, YTHDF2 and SRSF10 on chromosome 1, RBM15B and

SETD2 on chromosome 3, and METTL3 and HNRNPC on
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chromosome 14, indicating that they were closely correlated at

the genomic level and might have similar expression

characteristics at the transcriptomic level.

Analysis of correlations between writers
and erasers in RPL

We investigated correlations between the expression levels of

writers and erasers in the RPL samples and found highly

consistent correlations between the writers and erasers.

Overall, the expression of erasers and writers was negatively

correlated, consistent with the fact that they regulate contrasting

biological functions (Figure 3). For instance, METTL3-FTO (r =

-0.50, p < 0.01, Figure 3B),WTAP-ALKBH5 (r = -0.65, p < 0.001,

Figure 3D), ZC3H13-ALKBH5 (r = -0.48, p < 0.01, Figure 3E),

and CBLL1-FTO (r = -0.58, p < 0.001, Figure 3F) were negatively

correlated in RPL samples, while METTL3-CBLL1 (r = 0.47, p <
0.05, Figure 3A) and METTL14-ZC3H13 (r = 0.52, p < 0.01,

Figure 3C) were positively correlated in RPL samples.

Collectively, these results suggest that m6A regulators are

involved in the occurrence of RPL and that crosstalk between

writers and erasers may play an important role in RPL.

Construction of an RPL diagnostic model
based on m6A regulators

Because of the critical role of the m6A modification

process, RPL and control samples may have different m6A

modification statuses, making it feasible to construct

diagnostic models based on m6A regulators. To investigate

FIGURE 2
Expression landscape of m6A regulators in Recurrent Pregnancy Loss. (A,B)Heatmap and box plot showing differences in the expression levels
of 36 m6A regulators in RPL and control samples. Wilcoxon rank-sum test was used to measure statistical differences. (C) Circos plot indicating the
chromosomal location of the 36 m6A regulators. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; NS represent no significant differences. m6A,
N6-methyladenosine, RPL, recurrent pregnancy loss.
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the contribution of m6A regulators to RPL occurrence, we

constructed a diagnostic model of RPL based on all m6A

regulators. The 36 m6A regulators were screened for feature

selection using LASSO regression, and the optimal lambda

value was determined. After screening, a total of

21 nonessential regulators were excluded, with 15 m6A

regulators being found to be essential for RPL: METTL14,

CBLL1, RBM15, FTO, YTHDF2, YTHDC2, HNRNPC,

IGF2BP2, FMR1, PRRC2A, EIF3B, EIF3H, LRPPRC,

TRMT112 and XRN1 (Figures 4A,B). Subsequently, a

diagnostic model consisting of these 15 m6A regulators was

constructed to distinguish between RPL and control samples

based on risk scores (Figure 4C). Risk scores for the 15 m6A

regulators were higher in the RPL group than in the control

group. The four regulators with the highest absolute influence

coefficient values were YTHDF2 (-102.75), METTL14 (68.88),

FMR1 (-57.25), and CBLL1 (53.32).

To validate the accuracy of the diagnostic model, we used

the top four regulators (YTHDF2, METTL14, FMR1 and

CBLL1) to construct a logistic multi-factor model, and

visualized the results using a nomogram, which can quickly

help one identify linear predictors and RPL risks (Figure 5A).

These four regulators had a large influence on the diagnostic

model, indicating the superior accuracy of this diagnostic

model. Subsequently, the recall curve, ROC curve of

YTHDF2, and DCA curve were used to further validate the

FIGURE 3
Correlations between expression levels of writers and erasers in all samples. (A) METTL3-CBLL1 correlation. (B) METTL3-FTO correlation. (C)
METTL14-ZC3H13 correlation. (D) WTAP-ALKBH5 correlation. (E) ZC3H13-ALKBH5 correlation. (F) CBLL1-FTO correlation.

Frontiers in Genetics frontiersin.org07

Huo et al. 10.3389/fgene.2022.925652

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.925652


predictive efficacy of the model. The recall curve showed that

the model had an overall AUC of 0.994, with excellent

diagnostic prediction power. The area under the ROC curve

value of YTHDF2, the regulator with the largest absolute

coefficient, was 0.69 (Figure 5B). The maximal excursion

(Emax = 0.053) and average excursion (Eavg = 0.014) values

were relatively small, indicating that the model was closer to

the ideal model. The model also passed the calibration test (S:

p = 0.975 > 0.05) (Figure 5C). The DCA curve showed that the

model yielded additional benefits over all interveners and non-

interveners, indicating a good clinical effect (Figure 5D).

Overall, the diagnostic model showed outstanding

predictive performance and robustness using all three

validation approaches. Thus, this diagnostic model can

effectively classify individuals into RPL or healthy control

groups.

PPI network of m6A regulators

An analysis of the PPI network was performed to further

investigate interactions between the m6A regulators

(Figure 6A). The results showed that the 36 m6A regulators

interacted closely, indicating that writers, erasers, and readers

did not function in isolation, but rather collaborated, during

RPL. A few regulators revealed high degrees of connection to

others, and the top 10 highly associated genes: METTL3,

HNRNPA2B1, YTHDF1, YTHDF3, YTHDF2, HNRNPC,

YTHDC1, YTHDC2, METTL14, and WTAP, were selected

as hub genes for further analysis (Figure 6B). These 10 hub

genes may play crucial roles in regulating the biological

mechanisms underlying RPL.

Next, we investigated the regulatory networks and genetic

backgrounds of the hub genes. We used the miRNet database to

FIGURE 4
Construction of a diagnostic model based on m6A regulators. (A) LASSO regression curve. Shrinkage and selection process for the 36 m6A
regulator features using LASSO regression. (B) lambda value selection curve. The partial likelihood deviance is plotted against log (λ), where λ is the
tuning parameter. Partial likelihood deviance values are shown, with error bars representing standard errors. The optimal lambda value is shown on
the left dashed line. (C) Diagnostic model forest plot. The first column contains the 15 genes that make up the model, the second column
contains the number of samples, the third column contains the mean expression values of these genes, and the fourth column and corresponding
graphs contain the effect coefficients of these genes in the model. LASSO: Least absolute shrinkage and selection operator.
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predict miRNAs and TFs regulated by these hub genes. YTHDC1,

YTHDF1/3, HNRNPA2B1, HNRNPC, METTL14, and WTAP

were identified as predicted targets of numerous miRNAs,

whereas relatively few miRNAs targeted YTHDC2, YTHDF2,

and METTL3, although they could form miRNA regulatory

networks directly or indirectly with other hub genes

(Figure 6C). For instance, mir-149-3p targeted only

METTL14, whereas mir-1-3p targeted both YTHDC1 and

YTHDF2. In terms of transcriptional regulation, the 10 hub

genes interacted with several TFs involved in important

biological functions, including embryonic development-related

genes (FOXC1, FOXL1, FOXA1, GATA2, KLF5, TF2P2A, and

NR2F1), cell cycle-related genes (E2F1, YY1, TP53, SP1, and

E2F4), Wnt pathway-related genes (HNF4A, NFYA, TEAD1, and

PAX2), immune response-related genes (STAT3, STAT1, FOS,

RUNX2, CREB1, FOX O 3, and GATA3), and gluconeogenesis-

related genes (CEBPB, SREBF1, NRF1, and PPARG) (Figure 6D).

Taken together, these results indicate that the hub genes are

associated with specific miRNAs and TFs, but also share

common miRNAs and TFs, suggesting that they may be

involved in the same regulatory processes and thus reflect

similar biological functions. The crosstalk between hub genes

and miRNAs or TFs may play an important role in the

occurrence of RPL by regulating multiple biological functions.

Correlation features of hub genes

Hub genes tend to come from the same family and therefore

may be closely linked or may share significant correlations. To

test this, we analyzed pairwise correlations between all 10 hub

genes. (Supplementary Figure 2A, B). In the correlation bubble

plot, the size of the bubble represents the size of the data. The

results showed that most genes were positively correlated,

although a few were negatively correlated. The most

significantly positively correlated gene pair was METTL14-

YTHDF2 and the most significantly negatively correlated gene

pair was METTL3-METTL14.

To further investigate the strength of the relationship, scatter

plots of correlation coefficients were generated for the gene pairs

(Supplementary Figures S2C, D). The correlation coefficients of

METTL3-METTL14 and METTL14-YTHDF2 were -0.5152 (p <
0.01) and 0.5983 (p < 0.001), respectively. Overall, the results

showed that the hub genes were closely correlated.

FIGURE 5
Verification of a diagnostic model based on m6A regulators. (A)Nomogram showing the predicted risk of RPL. Predictors are shown on the left
and scales are shown on the right. (B) ROC curve of YTHDF2. YTHDF2 had the largest absolute coefficient in the diagnostic model. (C) Recall Curve.
Emax is themaximumoffset of themodel from the ideal model, and Eavg is theminimumoffset of themodel from the ideal model. C (ROC) represents
the area under the ROC curve. S: p > 0.05 indicates calibration test pass. (D)DCA Curve. The purple dashed line represents 0 net benefit rate, all
(orange dashed line) indicates that all samples received the intervention, and model (green solid line) represents the model curve. RPL, recurrent
pregnancy loss, DCA, decision curve analysis, ROC, receiver operator characteristics.

Frontiers in Genetics frontiersin.org09

Huo et al. 10.3389/fgene.2022.925652

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.925652


Unsupervised clustering based on hub
genes

Due to the heterogeneity among patients, the inter-individual

heterogeneity may have adverse effects on the clinical therapy.

Unsupervised clustering of samples based on hub genes will help

distinguish samples with different disease statuses and reclassify

the samples. Therefore, we performed unsupervised consensus

cluster analysis of the RPL samples based on the expression data

of the 10 hub genes. When two clusters were predicted, the

consistency matrix heatmap showed a clear distribution of

samples and the scatter at the corresponding position of the

elbow plot was at the highest position. Thus, we chose k = 2 as the

optimal number of clusters for unsupervised clustering and

clustered all samples into two clusters, with 10 samples in

Cluster-1 and 19 samples in Cluster-2 (Figures 7A,B). We

then compared the expression levels of the 10 hub genes in

samples in the two clusters (Figures 7C,D). As shown in

Figure 7D, significant differences in the expression levels of

three of the 10 hub genes were observed between samples in

the two clusters: YTHDC1 (p < 0.0001), YTHDC2 (p < 0.01), and

METTL3 (p < 0.01), indicating that these three genes may be

important distinguishing factors and may reflect the validity and

accuracy of the clustering results. YTHDC1 and YTHDC2 which

FIGURE 6
Protein–protein interaction (PPI) network. (A) PPI network of 36 m6A regulators. Yellow nodes represent readers, green nodes represent
writers, and red nodes represent erasers; the larger the size of the node, the higher the degree of the connection. (B). A sub-network of 10 hub genes
extracted from the PPI network was constructed; the deeper the color of the node, the greater the degree of the node in the original network. (C)
miRNA prediction network of hub genes. Blue nodes representmiRNAs, yellow nodes represent readers, and green nodes represent writers. (D)
Transcription factor prediction network of hub genes. Blue nodes represent transcription factors, yellow nodes represent readers, and green nodes
represent writers. PPI, protein-protein interaction; m6A, N6-methyladenosine.

Frontiers in Genetics frontiersin.org10

Huo et al. 10.3389/fgene.2022.925652

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.925652


belong to the same family, showed extremely high variability in

expression levels (p < 0.01), indicating that genes in the YTHDC

family differ significantly among RPL cases. This observation

warrants further investigation.

Biological characteristics of the two RPL
subtypes

Differential gene expression analysis was used to determine

the biological characteristics of the two RPL subtypes. A total of

74 DEGs were identified (Figures 8A,B). We conducted GO

analysis and GSEA to further understand the molecular

mechanisms underlying the DEGs involved in the m6A-

mediated regulation of the two RPL subtypes.

A total of 191 GO terms were identified using the GO

enrichment analysis (Supplementary Table S2), mainly related

to the regulation of immune processes and tissue formation. The

top five items based on the enrichment scores were positive

regulation of type 2 immune response, positive regulation of

interleukin (IL)-4 production, cartilage condensation, cell

aggregation, and skeletal muscle adaptation (Figure 8C, D).

GSEA identified a total of 38 enriched pathways, including

the cell cycle (normalized enrichment score, NES = -1.626, p <
0.001), Wnt signaling pathway (NES = -1.557, p < 0.01), FoxO

signaling pathway (NES = 1.436, p < 0.05), viral protein

interaction with cytokines (NES = 1.724, p < 0.001), and

glycosphingolipid biosynthesis-lacto and neolacto series

(NES = 1.857, p < 0.01) (Figures 8E, F; Supplementary Table

S3). Thus, the pathogenesis regulated by m6A methylation in

Cluster-1 and Cluster-2 differs in both immune processes and

tissue formation.

Infiltration characteristics of the immune
microenvironment in the two RPL
subtypes

Considering the significant differences in immune processes

between the two subtypes identified using enrichment analyses,

we analyzed differences in immune infiltration levels in the two

RPL subtypes. Scores for 28 immunocytes in Cluster-1 and

Cluster-2 were computed using ssGSEA (Figures 9A,B). The

infiltration of immature dendritic cells (iDCs) was significantly

higher in Cluster-1 than in Cluster-2 (p < 0.01).

Correlations between immunocytes in the two clusters were

also calculated. As shown in Figures 9C,D, most immunocyte

pairs were positively correlated, and only a minority were

negatively correlated. Importantly, very few immune cell pairs

were inversely correlated in the two clusters. For instance, iDCs

FIGURE 7
Unsupervised cluster analysis of hub genes in RPL samples. (A) Elbow plot. Relative changes in the area under cumulative distribution function
curve. (B) Consensus matrix heatmap. Identification of two distinct RPL clusters. (C) Heatmap of unsupervised clustering of 10 hub genes in the two
clusters. (D) Expression status of the 10 hub genes in the two RPL clusters. **p < 0.01; ****p < 0.0001. RPL, recurrent pregnancy loss.
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FIGURE 8
Differences in biological characteristics of two RPL subtypes. (A) Volcano plot showing the distribution of genes that were differentially
expressed between the two RPL clusters. (B) Heatmap of DEGs. (C) GO enrichment analysis. The 20 most significant GO terms in of BP, CC, and MF
are shown. (D) Chord plot of GO enrichment analysis. The top 10 GO terms, marked in different colors, are located in the right semicircle, and
correlated genes are located in the left semicircle. (E) The top five upregulated pathways that were enriched, based on GSEA. (F) The top five
downregulated pathways that are enriched, based on GSEA. DEGs, differentially expressed genes; GO, Gene Ontology; BP, biological process; CC,
cellular component; MF, molecular function; GSEA, gene set enrichment analysis; RPL, recurrent pregnancy loss.
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and neutrophils were negatively correlated in Cluster-1 but

positively correlated in Cluster-2, indicating differences in the

immune microenvironments of samples in the two clusters.

Analysis of immune infiltration levels of 22 immunocytes in

the two clusters using CIBERSORT gave results similar to those

obtained using ssGSEA (Figure 10A). Subsequently, correlations

between hub genes and immunocyte abundance were calculated.

The results revealed positive correlations between WTAP

expression levels and the number of naive B cells (r = 0.5490,

p < 0.01) and YTHDF2 expression levels and the number of

M2 macrophages (r = 0.5538, p < 0.01), but negative correlation

between YTHDC2 expression levels and the number of regulatory

T cells (Tregs; r = -0.5536, p < 0.01) (Figure 10B–D). These

results indicate that certain m6A regulators (WTAP, YTHDF2

and YTHDC2) affect the infiltration levels of certain

immunocytes (naive B cells, M2 macrophages, and Tregs)

during RPL.

Discussion

We identified 18 m6A regulators that were differentially

expressed in RPL. We selected 15 of these and used them to

construct a diagnostic model that could be used distinguish

between RPL and control samples. We also demonstrated that

the crosstalk between hub genes and miRNAs or TFs constituted

the molecular regulatory network for RPL. We identified two

RPL subtypes with significantly different biological processes and

immune statuses based on novel signatures of the hub genes. To

the best of our knowledge, this is the first comprehensive

bioinformatic analysis of the effect of m6A modifications in

the occurrence of RPL.

First, we integrated the expression profiles of

GSE165004 and GSE26787 datasets from the GEO database

and found that the expression of 18 m6A regulators was

significantly altered in individuals with RPL, suggesting the

FIGURE 9
Analysis of immunocyte infiltration levels in two RPL subtypes using ssGSEA. (A) Heatmap of immune scores. Rows represent 28 immunocytes
and columns represent samples. Orange represents a high level of infiltration, whereas blue represents a low level of infiltration. (B) Box plot of
immune scores. The x-axis represents the 28 immunocytes, and the y-axis represents the level of immune infiltration, with each color representing a
cluster. (C)Heatmap showing correlations between 28 immunocytes in Cluster-1. (D)Heatmap showing correlations between 28 immunocytes
in Cluster-2. **p < 0.01. RPL, recurrent pregnancy loss; ssGSEA, single-sample gene set enrichment analysis.
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involvement of m6A regulators in the occurrence of RPL. For

example, expression of the m6A-modified eraser ALKBH5 and

writer METTL3 were significantly upregulated in RPL

samples, consistent with previous findings (Li et al., 2019;

Qiu et al., 2021). However, METTL14-ZC3H13 and METTL3-

CBLL1 were positively correlated, probably due to the fact that

they regulate the same biological processes (Gong et al., 2020;

Jiang et al., 2021) and therefore have a synergistic effect on

gene expression. Taken together, these results suggest that the

occurrence of RPL is associated with abnormal expression of

and crosstalk between these 18 m6A regulators.

Next, we constructed an RPL diagnostic model using

15 m6A regulators that could distinguish between control

and RPL samples based on risk scores. Some of these

regulators have previously been associated with RPL or

spontaneous miscarriage. HNRNPC overexpression

reportedly causes abnormal expression of the paternal gene

in RPL (Jena et al., 2021). Mutations in FMR1 have been linked

with RPL, and additional screening for CGG repeat

amplification mutations in FMR1 has been recommended

for women with a history of spontaneous miscarriage (Dean

et al., 2019; Ma et al., 2019; Blyth et al., 2021). Inhibition of

METTL14 expression reduces viability, proliferation, and

migration of HTR8 cells, and may serve as a potential novel

target for diagnosis and treatment of spontaneous miscarriage

(Qin et al., 2020). In this study, CBLL1, RBM15, FTO,

YTHDC2, IGF2BP2, PRRC2A, eIF3B, eIF3H, LRPPRC,

TRMT112, and XRN1 were reported to be associated with

the occurrence of RPL for the first time.

For prognostic biomarkers, time-dependent ROC reveals

both disease status and factor values change over time (Bian

et al., 2022). In current study, 15 m6A regulators, especially

four regulators with the highest absolute influence coefficient

values (YTHDF2, METTL14, FMR1 and CBLL1) were

considered as predictive markers, constructing a diagnostic

model for RPL that had good predictive efficiency and

robustness in differentiating RPL from control samples.

Due to the heterogeneity of RPL and the lack of clinical

data, we were unable to evaluate the associations between

risk indicators and disease status of RPL patients. However, we

also validated the predictive efficacy of the diagnostic model

using various methods and confirmed that it exhibited

excellent predictive power. The recall curve showed that the

diagnostic model had an overall AUC value of 0.994,

demonstrating excellent diagnostic predictive power. The

area under the ROC curve value of YTHDF2, the gene with

the largest absolute coefficient, was 0.69. The DCA curve

showed that the model yielded additional benefits over all

FIGURE 10
Evaluation of immunocyte infiltration levels using CIBERSORT. (A) Heatmap of immune scores. The rows represent 22 immunocytes, and the
columns represent samples. (B) Scatter plot of the correlation between WTAP expression and the number of naive B cells. Each point in the graph
represents a sample, the straight line is the correlation fitting curve, with the shaded region representing the confidence interval. The outer part of the
graph is the histogram. (C) Scatter plot of the correlation between YTHDC2 expression and the number of regulatory T cells (Tregs). (D) Scatter
plot of the correlation between YTHDF2 expression and the number of M2 macrophages.
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interveners and non-interveners, indicating a good clinical

effect. To the best of our knowledge, this is the first RPL

diagnostic model based on m6A regulators.

Expression levels of genes that regulate the same biological

processes are generally highly correlated. We identified 10 hub

genes that were correlated. As shown using predicted regulatory

networks, mir-376c-3p, mir-421, and mir-139-5p directly

targeted YTHDF1, consistent with previous reports (Zheng

et al., 2020; Zhou et al., 2020; Chi et al., 2021). FOXA1 and

GATA2, embryonic development-related TFs, were upregulated

in RPL villi and promoted trophoblast migration and apoptosis

(Du et al., 2020; Luan et al., 2020).We predicted that FOXA1 and

GATA2 could regulate YTHDF2, suggesting that trophoblast

dysfunction may be influenced by m6A regulatory processes.

We also identified multiple miRNAs and TFs that targeted the

hub genes, suggesting that the mechanism underlying RPL

occurrence involves complex regulatory networks that may be

associated with the heterogeneity of patients with RPL, and

further experiments are needed to identify specific regulatory

mechanisms.

Despite the heterogeneity among patients with RPL, we

identified two distinct molecular RPL clusters using

unsupervised cluster analysis based on the expression data

of 10 hub genes. The two clusters differed significantly in gene

expression levels, immune responses, and tissue formation

processes. For example, compared with Cluster-2, Cluster-1

was significantly more enriched in the positive regulation of

type 2 immune responses and positive regulation of IL-4

production. Successful pregnancy is closely associated with

transition from type 1 to type 2 immune responses (Zhao et al.,

2021) and IL-4 cytokine is a signature of type 2 immunity

(Gause et al., 2020). Furthermore, GSEA showed that the FoxO

signaling pathway was activated in Cluster-1, while the cell

cycle and Wnt pathways were inhibited. Previous studies have

shown that Wnt and FoxO signaling pathways are associated

with trophoblast cell function and embryonic development

(Muñoz-Espín et al., 2013; Harrison et al., 2017; Li et al., 2017)

and were identified as high-risk pathways in women who

experienced spontaneous miscarriages (Cui et al., 2021).

This is the first study to classify RPL based on m6A

regulators, identifying two subtypes with distinct

mechanisms of pathogenesis that differ both in

immune responses and tissue formation-related signaling

pathways.

We conducted immune cell infiltration analysis to further

analyze differences in the immunemicroenvironments in the two

RPL subtypes. We found that samples in Cluster-1 had higher

immune infiltration levels of iDCs. Dendritic cells (DCs) are the

most powerful antigen-presenting cells, capable of suppressing

the maternal immune rejection of semi-allogeneic embryos

(Audiger et al., 2017). iDCs, which are derived from DC

precursors, are predominantly expressed in the decidua during

early gestation and induce immune tolerance at the

maternal–fetal interface during the peri-implantation period.

Studies have suggested that the immunological mechanism

underlying RPL may involve decidual iDCs that are

stimulated to differentiate and develop into mature DCs

following exposure to inflammatory factors, which further

activates the proliferation of naive T cells, breaks the Th1/

Th2 cell balance, and leads to rejection and abortion (Qian

et al., 2015). Thus, we hypothesize that iDCs play a vital role

in inducing RPL in Cluster-1, which is more likely to exhibit

inflammation at the maternal–fetal interface. Furthermore,

M2 macrophages were positively correlated with YTHDF2 in

both RPL subtypes, consistent with the involvement of YTHDF2

in macrophage activation (Gu et al., 2020). The predominance of

decidua M2 macrophages is an important contributor to

maternal–fetal tolerance during early pregnancy (Zhang et al.,

2019). Further analyses of YTHDF2 are needed, given its high

diagnostic value in RPL.

To the best of our knowledge, this is the first study to

systematically analyze the relationship between m6A

regulators and RPL from genomic, proteomic, and

immunomic perspectives, and provides novel insights into

RPL occurrence. The model we have developed has potential

application in early RPL diagnosis. This study also provides an

in-depth understanding of regulatory mechanisms underlying

RPL immune microenvironments and serves as a basis for

stratification and refined management of RPL subtypes in

clinical practice.

This study had several limitations. First, the study was

based on bioinformatics analysis only, and additional in vitro

and in vivo experiments are required to validate the findings.

Second, an extensive clinical cohort with a larger sample size

and more complete clinical data is needed to validate the

predictive value of our diagnostic model for RPL, which

requires a long period of observation. We hope to

conduct case-control and laboratory studies to validate our

findings.

We highlight several areas in which further work is needed to

deepen our understanding. First, we will perform histological

validation in villus samples of RPL to examine basic expression of

m6A regulators with highly diagnostic value, such as YTHDF2,

METTL14, FMR1 and CBLL1 by Western blot, real time PCR,

immunohistochemistry, immunofluorescence assays, etc.

Second, to clarify the function of m6A regulators and hub

genes in two RPL clusters, loss-of-function and gain-on-

function studies with tissue-type specificity and cell-type

specificity remain warranted. Third, the co-expression and

interaction among hub genes is a new exciting frontier that

awaits further investigation. Co-Immunoprecipitation and pull-

down assays would suggest powerful evidence for molecular

mechanisms in the pathogenesis of RPL. Moreover, we would

like to establish an RPL cohort and follow up the eligible

individuals to validate the predictive efficiency of the

diagnostic model.
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Conclusion

We showed that m6A modification plays a critical role in the

occurrence of RPL, and m6A regulators are highly correlated at

the transcriptomic level. A diagnostic model that can distinguish

between RPL and control samples was constructed using risk

scores for 15 m6A regulators. The crosstalk between the hub

genes and miRNAs or TFs was used to construct a regulatory

network illustrating the regulation of biological mechanisms

underlying RPL. Based on distinct hub gene signatures, two

RPL subtypes with significantly different biological processes

and immune statuses were identified, increasing our

understanding of the heterogeneity of the RPL population and

providing scientific evidence for personalized diagnosis and

treatment of RPL.
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