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Accurate determination of causalities between genes is a challenge in the

inference of gene regulatory networks (GRNs) from the gene expression

profile. Although many methods have been developed for the

reconstruction of GRNs, most of them are insufficient in determining

causalities or regulatory directions. In this work, we present a novel method,

namely, DDTG, to improve the accuracy of causality determination in GRN

inference by dissecting downstream target genes. In the proposed method, the

topology and hierarchy of GRNs are determined by mutual information and

conditional mutual information, and the regulatory directions of GRNs are

determined by Taylor formula-based regression. In addition, indirect

interactions are removed with the sparseness of the network topology to

improve the accuracy of network inference. The method is validated on the

benchmark GRNs from DREAM3 and DREAM4 challenges. The results

demonstrate the superior performance of the DDTG method on causality

determination of GRNs compared to some popular GRN inference methods.

This work provides a useful tool to infer the causal gene regulatory network.
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Introduction

Elucidating gene regulatory networks (GRNs) is a fundamental challenge inmolecular

biology (Hughes et al., 2000). High-throughput technologies provided a wealth of gene

expression data which are helpful to interrogate the complex regulatory dynamics

inherent to organisms (Algabri et al., 2022; Wang and Liu, 2022). The network

structure with genes (genes) and regulatory interactions (edges) can be inferred from

the observed data through minimizing the effects of noise and hidden genes (Baruch and

Albert-László, 2013; Yang et al., 2022). To improve the accuracy of network

reconstruction, various methods have been developed for the reconstruction of GRNs

from gene expression profiles (Riet and Kathleen, 2010; Zhang et al., 2022). However, each
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method has its own strengths and weaknesses (Daniel et al.,

2010). Among the methods for GRN inference, most of them are

insufficient in determining the causalities or regulatory directions

(Krouk et al., 2013; Ahmed et al., 2018). Understanding the

causality in the gene expression data is critical to elucidating the

underlying regulatory mechanism of cellular machines (Jiang

et al., 2000; Nagoshi et al., 2004; Rubin et al., 2019).

Existing methods to infer the GRNs from gene expression

data with the motivation of improving the accuracy and

scalability of network inference include model-based

approaches and machine learning-based approaches (Madar

et al., 2009; Zhang et al., 2013). For the model-based

approaches, chemical reaction of transcription and translation,

as well as other cellular processes, are described as linear or

nonlinear differential equations, in which the parameters

represent the regulation strengths of the regulators (Gardner

et al., 2003; Honkela et al., 2010). Dynamical system models of

differential equations can forecast future system behaviors and

characterize formal properties such as stability (Zak et al., 2003;

Wang et al., 2022). Furthermore, prior information, such as

experimentally verified regulations, can be easily included in

these models to improve the accuracy of network inference

(Studham et al., 2014; Zhang et al., 2017). Moreover, the

model-based methods are found useful to remove possible

redundant indirect regulations by forcing sparseness on the

model (Hurley et al., 2011; Jiang and Zhang, 2022). However,

these models are computationally intractable for large GRNs

owing to extensive and explicit parameterization requirements

(Karlebach and Shamir, 2008; Tibshirani, 2011). For the machine

learning-based approaches, the network is inferred through

measuring the dependences or causalities between

transcriptional factors and target genes (Khatamian et al.,

2018; Deng et al., 2021). Popular methods in this category

include mutual information (MI) (Modi et al., 2011),

conditional mutual information (CMI) (Zhang et al., 2011),

part mutual information (Zhao et al., 2016), Granger causality

(Finkle et al., 2018), and maximal information coefficient (Reshef

et al., 2011; Kinney and Atwal, 2014). With no explicit

mechanistic assumptions, the machine learning-based

methods are usually more efficient than the model-based

methods in the computational complex (Zhang et al., 2015).

As the most popular methods, MI and CMI evaluate the

association between the genes by measuring the entropy of their

mutual activities, where a lower entropy for a gene indicates that

its activities are less randomly distributed; that is, it is statistically

dependent on the activities of other genes (Butte and Kohane,

2000). Specially, MI can characterize nonlinear dependency and

deal with thousands of variables (genes) in the presence of a

limited number of samples. However, the MI between two

variables is a symmetric quantity, and so the MI-based

methods generally infer undirected interactions (Aghdam

et al., 2015). The ordinary differential equation (ODE)-based

methods can be used for inference of causal GRNs, but these

methods require rigorous datasets like time-series data (Lu et al.,

2021; Yang et al., 2021; Chen and Liu, 2022).

In this study, we develop a method for inferring causal GRNs

from genetic knockout data. The activities of the downstream

target genes respond to the knockout changes of regulatory genes

and are identified accurately by comparing the relative change

values of the downstream targets and assigning a weight to the

relative change values of each gene. It is helpful to remove the

spurious edges in the causal inference of GRNs. We dissect the

downstream target genes using CMI, MI, and Taylor formula-

based regression to determine the causalities among the

downstream targets. We model the hierarchy structure of the

downstream targets and determine the causalities in different

layers with CMI which is efficient to remove these redundant

indirect regulations. Consequently, we determine the correlation

in the same layer. At last, we use Taylor formula-based regression

to determine the causalities in the same layer. With the process

repeating for each regulator, the reconstruction of GRNs is

achieved. Our method not only has the advantages of the

machine learning-based methods but also can determine the

regulatory directions. The results on the DREAM3 and

DREAM4 datasets show that our method significantly

outperforms the existing method in terms of false-positive

rates and accuracy.

Methods

Downstream target identification

As the activity of the regulator can be approximated by the

expression level of the gene encoding the regulator, we

suppose the gene expression level as regulator activity. Let

gi represent the ith gene. Considering a network consisted of n

genes, gene expression matrix A denotes the gene expression

level under different conditions (samples) which can be

measured directly from gene knockout experiments. The

knockout experiment is implemented for every gene and

the downstream gene response to the knockout of gene

through the fluctuations of expression levels. The steady-

state levels of genes in the wild-type provide a standard of

the gene expression changes. Thus, the gene expression levels

of wild-type and knockout experiments of each gene provide

the information to identify downstream targets. Matrix A

consists of n rows with n steady-state values of knockout

experiments, and each row is obtained after deleting one of n

genes. The vector Aj � (a1j, a2j,/anj)T stands for the jth

column of matrix A, in which aij represents the steady-

state level of gene gj after knockout of gene gi. The wild-

type file contained n steady-state levels of the unperturbed

network. The vector A0 � (a01, a02,/, a0n) stands for the

wild-type data of each gene, in which a0j denotes the

steady-state level of the wild-type of gene gj.
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The genes whose steady-state values change as a result of a

single-gene knockout are likely to be downstream of the

perturbed gene. Most causal relationships owing to the gene

knockout could be immediately recognized by 0comparing the

steady-state data after gene knockout with wild-type data. We

calculate the changes of gene gj response to the knockout of

every gene by using the following expression:

ΔAj � Δaij( )T � a1j − a0j, a2j − a0j,/, anj − a0j( )T, (1)

where Δaij � aij − a0j denotes the changes of gene gj by

comparing the response to the knockout of gene gi with the

wild type. The changes describe the response of all genes as a

consequence of the perturbation of the source gene. We use the

mean change value to quantify the mean response strengths of

the same target to different regulators. The mean change value in

gene gj can be expressed as ΔAj � 1
n ∑n
i�1
|Δaij|. Δaij for different

genes varies widely because the wild-type data of different genes

vary widely. So we use the relative change value to quantify the

response strengths of the same target to different regulators. We

obtain the relative change value vector which is

ΔS·j � (Δs1j,Δs2j/Δsnj)T, where Δsij � Δaij/ΔAj denotes a

relative change value of gene gj. Gene gi is called as the

regulator, and the genes that respond to the change of gi are

called downstream target genes or targets. aij − a0j of each gene

varies widely because the wild-type data of each gene vary widely

and because the activities of the downstream target genes

responding to the same knock-out change of regulatory gene

vary widely. To calculate the activities of the downstream target

genes and compare the relative changes of gj with other genes,

we assign a weight to ΔS· j by sigmoid function

wj � 1/(1 + er(bj−u)), where parameters r and u describe the

coefficients of sigmoid function, and bj � max
i

|Δaij|/a0j
describes the maximum response strength of gj to the

changes of other genes. Parameters r and u are given but not

estimated to balance the computation of w. Parameter r is set as a

negative integer number and parameter u is set as a positive

number and is smaller than 1. In general, the values chosen will

not affect the final results. By calculating S· j � wjΔS· j, we obtain
a matrix S � (Si,j)n×n, where S·j denotes the jth column of matrix

S, and the row vector Si · denotes the ith row of matrix S. Given a

threshold parameter θ0 for deciding the downstream target genes

FIGURE 1
Overview of the DDTGmethod. (A) For each regulator gi, the downstream target genes sij of the regulator are identified by the Sigmoid function
and by comparing the relative change values. (B) Hierarchy structure of downstream target genes will be decided by using CMI. Assuming genes
g1–g9 are the downstream target genes of regulator gi. As an example, genes g1 and g5 belong to the 2 combination of the downstream target genes.
If I(gi ,g5|g1) is small, it indicates that gi regulates g1 directly and g1 regulates g5 directly. The dashed arrows denote the regulatory direction. (C)
The correlations between two genes in the same layer. The dashed lines without arrows denote the genes being strongly dependent on each other.
Edges g1–g2, g6–g7, and g8–g9 are directly correlated with each other in the same layer. (D) The regulatory direction between two genes in the same
layer is determined using the Taylor formula and linear regression. The solid arrows denote the causality in the same layer. The reconstruction of
GRNs is achieved by aggregating the edges from each step.
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of regulator gi, the elements in Si · above θ0 are regarded as

downstream target genes gi (Figure 1A). Most casual

relationships could be accurately recognized from Si ·. Due to

the sparseness of GRNs, the downstream targets consist of a small

number of genes, which is helpful to remove the indirect

dependencies and reduce the computational complexity.

Causality among hierarchy genes

Some of the downstream targets may be indirectly regulated

by gene gi. The remaining task is thus to distinguish direct

dependence from indirect dependence. To accomplish this, we

use conditional mutual information (CMI) to discriminate the

genes directly regulated by gi from the genes indirectly regulated

by gi. Accordingly, we obtain a hierarchy structure of the

downstream targets of gi. So the topological structure of the

downstream target genes of gi is a two-layer network. The genes

in the first layer are directly regulated by regulator gi, and the

genes in the second layer are indirectly regulated by gi.

The CMI allows measuring the dependency of two genes in the

context of a third gene. We assume that gj and gk are gi’s

downstream target genes. The interaction between gene gi and

gj can be measured in the context of gene gk by the CMI, which is

defined as follows:

I gi, gj|gk( ) � ∑
x∈gi, y∈gj, z∈gk

p x, y, z( )log p x, y|z( )
p x|z( )p y|z( )

The CMI can be easily calculated using the following

equation:

I gi, gj

∣∣∣∣∣gk( ) � 1
2
log

C gi, gk( )∣∣∣∣ ∣∣∣∣ · C gj, gk( )∣∣∣∣∣ ∣∣∣∣∣
C gk( )∣∣∣∣ ∣∣∣∣ · C gi, gj, gk( )∣∣∣∣∣ ∣∣∣∣∣, (2)

where C is the covariance matrix of variables, and |C| is the

determinant of matrix C. If gj and gk carry the same information

about gi, I(gi, gj|gk) � 0. It indicates that gi directly regulates gk

and gi indirectly regulates gj mediated by gk; that is, gene gk

directly regulates gene gj. The genes regulated directly by gi form

a layer, namely, the first layer, and the genes regulated indirectly

by gi form a layer, namely, the second layer (Figure 1B).

Correlations among the genes in the same
layer

For the genes in the same layer, the correlations among them are

measured by mutual information (MI). MI between two genes gh

and gl can be defined as follows (Altay and Emmert-Streib, 2010):

I gh, gl( ) � − ∑
x∈gk,y∈gl

p x, y( )log p x, y( )
p x( )p y( )

The MI can be easily calculated using the following

equivalent formula:

I gh, gl( ) � 1
2
log

C gh( )∣∣∣∣ ∣∣∣∣ · C gl( )∣∣∣∣ ∣∣∣∣
C gh, gl( )∣∣∣∣ ∣∣∣∣ , (3)

where C is the covariance matrix of variables, and |C| is the

determinant of matrix C. If I(gh, gl) is large, it indicates that a
strong dependency exists between genes gh and gl (Figure 1C).

Regulatory directions between genes in
the same layer

To determine if the regulatory direction in the scenario of gh

and gl is in the same layer and a strong dependency exists

between them, we here propose an innovative and effective

approach based on linear regression.

We assume that gene gm is the common regulator of genes gh

and gl, and that a strong dependency exists between gene gh and

gene gl bymeasuring theMI.We denotegm, gh, andgl byX,Y, and

Z, respectively, for simplifying notations. We aim to determine the

regulatory direction between Y and Z in the direct gene set

(Figure 2A) or the indirect gene set (Figure 2B). If we assume

gene Y regulates gene Z, the gene–gene regulation can be expressed

as a nonlinear equation set:

Y � f X( ),
Z � g X, Y( ) � g X, f X( )( ) � h X( ).{ (4)

The activity of Y is determined by X and the activity of Z is

determined by X and Y. So Y will be the function with respect to X,

and Z will be the function with respect to X and Y satisfying Eq. 4

which indicates the causality among X, Y, and Z. The nonlinear

regulatory function 4) makes it difficult to computationally identify

themodel. To address this issue, we apply Taylor expansion which is

an accurate substitution of the polynomial function for the nonlinear

FIGURE 2
Target genes with co-regulator. (A) Genes Y and Z are direct
targets of gene X, and (B) genes Y and Z are indirect targets of
gene X.
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equation Eq. 4.If X0, Y0, and Z0 denote the wild-type data of X, Y,

and Z, then Y0 � f(X0) and Z0 � g(X0). The Taylor expansion
corresponding to Y � f(X) and Z � h(X) at point X0 is the

infinite series whose nth term is h′(x0)(x − x0)n/n!, that is,

f X( ) � ∑n
i�1

f n( ) X0( ) X −X0( )n
n!

+ f n+1( ) X0( ) X −X0( ) n+1( )

n + 1( )!

h X( ) � ∑n
i�1

h n( ) X0( ) X −X0( )n
n!

+ h n+1( ) X0( ) X −X0( ) n+1( )

n + 1( )!

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
.

(5)
So we need to take the derivative of Z. The first derivative ofZ

with respect to X can be written as follows:

dZ

dX
� zZ

zX
+ zZ

zY

dY

dX

The second derivative ofZwith respect toX can be written as

follows:

d2Z

dX2
� d

dX

zZ

zX
+ zZ

zY

dY

dX
( )

� z2Z

zX2
+ z2Z

zYzX

dY

dX
+ z2Z

zXzY
+ z2Z

zY2

dY

dX
( ) dY

dX
+ zZ

zY

d2Y

dX2
.

(6)
The wild-type data can be viewed as a steady state of GRNs, only

for as long as the flow of energy, nutrients, and other molecules is

maintained. Hence, while the gene expression level of regulator X is

at pointX0, that is, the wild-type data of regulator X, the fluctuation

of the gene expression level of targets Y and Z is minimal. This

means the derivative ofY and Zwith respect toX at pointX0 is zero.

So we obtain the following equation:

dY

dX
X � X0| � 0,

dZ

dX
X � X0| � 0, (7)

that is,

f′ X0( ) � 0, h′ X0( ) � 0. (8)

By substituting (7) into (6), we obtain the second derivative

of Z with respect to X at point X0:

d2Z

dX2
X � X0| � z2Z

zX2
X � X0| + zZ

zY

d2Y

dX2
X � X0| , (9)

that is,

h″ X0( ) � z2Z

zX2
X � X0| + zZ

zY

d2Y

dX2
X � X0| . (10)

For the value of (X −X0)n, n≥ 3 is small enough, the terms of

n≥ 3 in (5) can be neglected. So we can obtain an equation set:

Y � f X0( ) + f′ X0( ) X −X0( ) + 1
2
f″ X0( ) X −X0( )2

Z � h X0( ) + h′ X0( ) X −X0( ) + 1
2
h″ X0( ) X −X0( )2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (11)

By substituting (8) into (11), we obtain the following

equation:

Y � f X0( ) + 1
2
f″ X0( ) X −X0( )2

Z � h X0( ) + 1
2
h″ X0( ) X −X0( )2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (12)

Due to Y0 � f(X0) and Z0 � g(X0), (12) can be written as the

following equation:

Y − Y0 � 1
2
f″ X0( ) X −X0( )2

Z − Z0 � 1
2
h″ X0( ) X −X0( )2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (13)

Substituting (10) into the second equation in equation set

(13), we obtain the following equation:

Z − Z0 � 1
2
z2Z

zX2
X � X0| X −X0( )2

+ 1
2
zZ

zY

d2Y

dX2
X � X0| X −X0( )2. (14)

The first equation in Eq. 13 is equivalent to the following

equation:

f″ X0( ) � 2 Y − Y0( )
X −X0( )2, (15)

that is,

d2Y

dX2
X � X0| � 2 Y − Y0( )

X −X0( )2. (16)

By substituting (16) into (14), we obtain the following

equation:

Z − Z0 � 1
2
z2Z

zX2
X � X0| X −X0( )2 + zZ

zY
X � X0| Y − Y0( ),

(17)
where z2Z

zX2 |X � X0 and zZ
zY |X � X0 are constants. Eq. 17 is a

function for Y and Z. For simplicity, we set z � Z − Z0,

a � 1
2
z2Z
zX2 |X � X0, x � (X −X0)2, b � zZ

zY |X � X0, and

y � Y − Y0. Hence, Eq. 17 can be written as z � ax + by. We

use multivariate linear regression to estimate the coefficients a

and b, and then determine the causality between Y and Z.

On the contrary, we assume that gene Z regulates gene Y, and

the gene–gene regulation can be expressed as a nonlinear

equation set:

Z � f X( )
Y � g X,Z( ) � g X, f X( )( ) � h X( ){ . (18)

Following the similar process to the aforementioned equation,

we estimate parameter zY
zZ |X � X0 to measure the relationship

between Z and Y. Obviously, if gene Y truly regulates gene Z,

then zY
zZ |X � X0 � 0 will be the regression coefficient of

linearization of model (17). Conversely, if gene Z truly
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regulates gene Y, then zZ
zY |X � X0 � 0 will be the regression

coefficient of model (18). Consequently, we compare the value

of zZ
zY |X � X0 with the value of zY

zZ |X � X0. If the value of
zZ
zY |X � X0 is larger than the value of zY

zZ |X � X0, it indicates

that gene Y regulates gene Z. Conversely, if the value of
zY
zZ |X � X0 is larger than the value of zZ

zY |X � X0, it indicates

that gene Z regulates gene Y (Figures 2A,B). With the iterative

computation of gene gi and gj, the global network is

constructed.

Pseudocode of the DDTG algorithm

To describe the algorithm clearly, the pseudocode of the

DDTG algorithm (see Algorithm 1) is provided in detail as

follows:

1: Input: Gene expression data A.

2: Output: Inferred causal network G.

3: for each gene i do

4: Select the candidate downstream target genes for

gene i based on matrix S. The number of the candidate

genes is noted as N.

5: Separate N candidate genes into two layers of the

downstream targets by I(gi, gj|gk), that is, direct

target set gk{ } and indirect target set gj{ }.
6: Determine the causalities among the genes in the

same layer for gk{ } and gj{ } by Taylor expansion.

7: end for

Algorithm 1. DDTG.

Result

In order to test the predictive power of the DDTG method,

DREAM3 datasets (Prill et al., 2010) about Yeast knockout genes

with sizes 10, 50, and 100 and two networks of size 10 from the

DREAM4 datasets (Daniel et al., 2009) were used. The gold

standard networks were generated with the nonlinear ODE

systems in which the network structures were determined

with detailed dynamics of both transcriptional and

translational processes.

The predictive results were evaluated by following

measures, that is, sensitivity or true-positive rate (TPR),

false-positive rate (FPR), positive predictive value (PPV),

accuracy (ACC), and Matthew’s coefficient constant (MCC).

Mathematically, they are defined as the following

expressions:

TPR � TP/ TP + FN( ),
FPR � FP/ FP + TN( ),
PPV � TP/ TP + FP( ),

ACC � TP + TN( )/ TP + FP + TN + FN( ),
MCC � TP · TN − FP · FN( )�����������������������������������

TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ ,

where TP, FP, TN, and FN are the numbers of true positives, false

positives, true negatives, and false negatives, respectively. TPR

and FPR are also used to plot the receiver operating characteristic

(ROC) curves, and the area under ROC curve (AUC) is

calculated.

To validate the performance of DDTG, we compared it

with several popular methods including LP (Wang et al.,

FIGURE 3
ROC curves of several methods on networks with different sizes. The solid line with star points is the ROC curve of method DDTG. (A) The ROC
curves on the network with size 10. (B) The ROC curves on the network with size 50. (C) The ROC curves on the network with size 100.
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2006), RO (Zhang, Liu, Liu, Duval, Richer, Zhao, Hao, and

Chen, 2013), regression model-based LASSO (Geert et al.,

2012), MI-based ARACNE (Margolin et al., 2006), and

random forest-based GENIE3 (Van Anh et al., 2010),

where the two alternatives with parameters “sqrt” and

“all” in the GENIE3 were considered here, as they

performed best in the DREAM challenges. For fair

comparison, optimal default values of parameters from

previous published articles were used in the running of

these comparative algorithms. For example, regularization

parameter λ of methods LP and RO were set to one, the

ensemble parameter of method GENIE3 was set to 1,000,

the threshold of MI filtering in method NARROMI was set

to 0.05, and the threshold of MI in method DDTG was set

to 0.1.

Performance on DREAM3 benchmark
data

DREAM3 datasets about Yeast knock-out genes with sizes 10,

50, and 100 were used.

First, DDTG was applied to the Yeast gene expression data

with network sizes 10 and 10 samples. The comparison of DDTG

with other methods is shown in Figure 3A, where DDTG

outperforms other methods significantly with an AUC score

of 1.000. From Figure 3A, we can see that all of the edges

were detected. The performance of DDTG and other methods

with respect to PPV, ACC, MCC, and AUC are shown in Table 1,

where DDTG is superior to other methods.

Second, DDTG was applied to the Yeast gene expression data

with network sizes 50 and 50 samples. The comparison of DDTG

with other methods is shown in Figure 3B, where DDTG

outperforms other methods significantly with an AUC score

of 0.856. From Figure 3B, we can see that most of the edges

were recovered. The performance of DDTG and other methods

with respect to PPV, ACC, MCC, and AUC are shown in Table 1,

where DDTG is superior to other methods.

Third, the Yeast gene expression data with network size

100 and 100 samples were used to evaluate DDTG and other

methods. The ROC curves obtained by different methods are

shown in Figure 3C, where DDTG outperforms other methods

with an AUC score of 0.726. Table 1 shows the results obtained

by different methods with respect to distinct performance

indices. From the results, we can observe that DDTG

performs better than most methods.

Performance on DREAM4 benchmark data

The performance of network inference methods may strongly

vary depending on the structural properties of the target networks.

In order to assess the performance of DDTGpredicting the topology

on different target networks, DREAM4 datasets with size 10 were

adopted here to evaluate our method.

While DREAM3 benchmarks were of a great value, there were

some notable differences betweenDREAM3 andDREAM4 datasets.

First, all the networks in DREAM3 were acyclic, while the networks

considered in DREAM4 do contain cycles. Furthermore, a

deterministic model was used in the DREAM3, while a stochastic

one was used in DREAM4. Finally, both biological noise and

experimental noise were added to DREAM4 datasets (Andrea

et al., 2010). DREAM4 benchmarks consist of a set of networks

with widely varying topologies. Two networks of size 10 from

DREAM4 in silico challenge were adopted here to test our method.

Figures 4A,B show the ROC curves by different methods on

two different networks of size 10 fromDREAM4 challenge. From

figures, we can see that the performance of DDTG method is

superior to that of other methods with the AUC values of

0.862 and 0.761. Table 2 summarizes the results obtained by

TABLE 1 Comparison on networks with sizes 10, 50, and 100.

Method TPR FPR PPV ACC MCC AUC

Size 10

LASSO 0.600 0.837 0.082 0.211 −0.191 0.703

LP 0.100 0.412 0.029 0.533 −0.202 0.738

RO 0.100 0.500 0.024 0.456 −0.252 0.798

ARACNE 0.900 0.112 0.500 0.888 0.618 0.930

GENIE3_FR_sqrt 0.700 0.112 0.437 0.867 0.483 0.919

GENIE3_FR_all 0.700 0.138 0.389 0.844 0.442 0.894

NARROMI 0.700 0.050 0.636 0.922 0.623 0.938

DDTG 1.000 0.000 1.000 1.000 1.000 1.000

Size 50

LASSO 0.351 0.129 0.081 0.855 0.113 0.711

LP 0.389 0.085 0.130 0.899 0.182 0.669

RO 0.494 0.131 0.109 0.857 0.181 0.727

ARACNE 0.597 0.082 0.192 0.908 0.303 0.832

GENIE3_FR_sqrt 0.481 0.078 0.167 0.908 0.245 0.843

GENIE3_FR_all 0.442 0.073 0.164 0.912 0.231 0.796

NARROMI 0.532 0.062 0.217 0.925 0.307 0.839

DDTG 0.779 0.063 0.284 0.931 0.445 0.856

Size 100

LASSO 0.403 0.112 0.175 0.861 0.199 0.696

LP 0.129 0.017 0.305 0.935 0.169 0.581

RO 0.245 0.056 0.206 0.906 0.175 0.580

ARACNE 0.118 0.016 0.304 0.936 0.161 0.695

GENIE3_FR_sqrt 0.007 0.001 0.308 0.944 0.040 0.710

GENIE3_FR_all 0.053 0.006 0.337 0.941 0.115 0.665

NARROMI 0.138 0.014 0.364 0.939 0.197 0.696

DDTG 0.635 0.185 0.169 0.805 0.254 0.726

The best performer for the relative item is noted in bold. LASSO, a regression method;

LP, a linear programing-based method; RO, a recursive optimization-based method;

ARACNE, a MI-based method; GENIE3, a random forest-based method; NARROMI, a

method based on RO and MI; DDTG, a method based on dissecting the downstream

target nodes.
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different methods with respect to distinct performance indices.

From Table 2, we can see that DDTG performs significantly

better than other methods. Especially, when the

DREAM4 datasets are used to test the performance of these

methods, the accuracy of DDTG is still high. However, other

methods except DDTG perform better in DREAM3 datasets;

their performance decays rapidly in DREAM4 datasets.

Figure 5 shows the performance of the compared methods on

DREAM3 datasets with size 10 and two networks from

DREAM4 datasets with size 10. From Figure 5, we can find

that the performance of DDTG varies less strongly than that of

other methods in different datasets. It indicates that DDTG is

more robust than other methods on different networks.

Discussion

In this article, we proposed a novel method DDTG to reconstruct

GRNs from gene knockout data. Yet our method can be applied to

infer regulatory networks if gene knockdown or over-expression

experiments are provided. This algorithm includes two steps. In the

first step, the downstream targets are identified by comparing relative

change values. In the second step, the hierarchy structure of the

downstream targets is determined using CMI and MI. From the

results, we can see that clearly DDTG is the best performer on the

benchmark datasets. The good performance of DDTG may be

FIGURE 4
ROC curves of several methods on networks with different sizes. The solid line with star points is the ROC curve of method DDTG. (A) The ROC
curves on network_1 from DREAM4 datasets with size 10. (B) The ROC curves on network_2 from DREAM4 datasets with size 10.

TABLE 2 Comparison on networks from DREAM4 datasets with
size 10.

Method TPR FPR PPV ACC MCC AUC

Size 10_1

LASSO 0.533 0.720 0.129 0.322 −0.150 0.584

LP 0.467 0.240 0.280 0.711 0.189 0.627

RO 0.467 0.373 0.200 0.600 0.071 0.492

ARACNE 0.467 0.147 0.389 0.789 0.298 0.648

GENIE3_FR_sqrt 0.333 0.160 0.294 0.756 0.165 0.668

GENIE3_FR_all 0.333 0.147 0.313 0.767 0.182 0.667

NARROMI 0.333 0.120 0.357 0.789 0.219 0.630

DDTG 0.800 0.080 0.667 0.900 0.671 0.862

Size10_2

LASSO 0.813 0.757 0.188 0.344 0.050 0.544

LP 0.250 0.297 0.154 0.622 -0.040 0.566

RO 0.375 0.378 0.177 0.578 -0.003 0.546

ARACNE 0.313 0.149 0.313 0.756 0.164 0.573

GENIE3_FR_sqrt 0.188 0.189 0.177 0.700 -0.002 0.501

GENIE3_FR_all 0.188 0.216 0.158 0.678 -0.027 0.558

NARROMI 0.313 0.149 0.313 0.756 0.164 0.573

DDTG 0.687 0.149 0.500 0.822 0.479 0.761

The best performer for the relative item is noted in bold. LASSO, a regression method;

LP, a linear programing-based method; RO, a recursive optimization-based method;

ARACNE, a MI-based method; GENIE3, a random forest-based method; NARROMI, a

method based on RO and MI; DDTG, a method based on dissecting the downstream

target nodes.
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contributed by following factors. Genes whose steady state values

change after gene knockout can be immediately recognized by

comparing the relative change values, which can improve the

accuracy of network reconstruction. Meanwhile, due to the

sparseness of GRNs, the downstream targets consist of a small

number of nodes, which is helpful to reduce the redundant edges.

Moreover, we assign a weight to the relative change values using

sigmoid function. The parameters of the weight function depend on

the expression level of each gene. This can reduce the noise for each

gene (higher noise for a higher expression level). Therefore, other

methods perform poorly in DREAM4 datasets, but the accuracy of

DDTG is still high.

Furthermore, we construct gene–gene regulations using theTaylor

formula at the steady-state levels of the wild type, and we use linear

regression to determine the causal relationship between genes in the

same layer for the first time. Finally, we infer the causal structure of

GRNs using CMI andMI. Ourmethod has the advantages ofmachine

learning-based methods, such as making no explicit mechanistic

assumptions and more computationally efficient.

Despite the advantages ofDDTG, there are also limitations: DDTG

is strongly dependent on the accuracy of identifying the downstream

target nodes. The spurious downstream target nodes definitely result in

spurious edges. For instance, the FPR by DDTG on datasets of size

100 is higher than that of othermethods inTable 1. A technique tofilter

out and remove the impact of the spurious nodes may improve the

performance of DDTG and will be considered in DDTG.

Conclusion

We proposed a novel method, namely, DDTG, to

improve the accuracy of GRN inference by dissecting the

downstream target nodes. In this algorithm, the downstream

targets for each gene are identified by comparing the relative

change values. Furthermore, the causal structure of

downstream targets is determined by CMI and MI. We

especially use a weight function to reduce the noise for

each regulator and determine the causality between nodes

in the same layer using the Taylor formula and linear

regression. The method was validated on the benchmark

GRNs from DREAM challenge. The results confirmed the

effectiveness of our method, which outperformed previous

methods.
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