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Background: Hepatocellular Carcinoma (HCC) is an aggressive tumor with an

inferior prognosis. Necroptosis is a new form of programmed death that plays a

dual effect on the tumor. However, the role of necroptosis-related

genes(NRGs) in HCC remains unknown.

Methods: All datasets were downloaded from publicly available databases. The

consensus clustering analysis was used to classify patients into different

subtypes based on NRGs. The Least Absolute Shrinkage and Selection

Operator (LASSO) Cox regression were used to develop a prognostic

signature. Tumor Immune Dysfunction and Exclusion (TIDE) was used to

predict immunotherapy response.

Results: The genetic and transcriptional changes of NRGs were observed in

HCC. Patients were classified into three clusters based on differentially

expressed NRGs, of which Cluster-3 had the worst prognosis and the

highest immune infiltration. The prognostic signature was developed based

on 8-NRGs, which have shown excellent prognostic performance. The high-

risk group in the signature presented significantly higher immune infiltration,

such as aDCs, iDCs, macrophages, and Treg, compared to the low-risk

group. TMB and immune checkpoints were also higher in the high-risk

group. Moreover, a lower TIDE score was observed in the high-risk group,

indicating the patients with high risk-score may be suitable for immunotherapy.

Via the dataset of IMvigor210, we found a higher risk score in the

immunotherapy response group.

Conclusion: We developed a new necroptosis-related signature for predicting

prognosis with the potential to predict immunotherapy for HCC patients.
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Introduction

Liver cancer is the sixth most frequent cancer and the third

leading cause of cancer-related deaths globally, posing a massive

threat to public health (Sung et al., 2021). The most common

histologic subtype of liver cancer is hepatocellular carcinoma

(HCC), which accounts for approximately 90% of all cases

(Llovet et al., 2021). The major risk factors for HCC are

chronic hepatitis virus (HBV and HCV), heavy alcohol

consumption, and non-alcoholic fatty liver disease (Llovet

et al., 2021). Despite the great benefits of evolving treatments

for HCC (Villanueva, 2019), it remains one of the tumors with

the poorest prognosis (Altekruse et al., 2014).

Necroptosis is a new form of programmed cell death

mediated by RIP1, RIP3, and MLKL in a caspase-independent

way (Khan et al., 2021). Necroptosis and apoptosis have the same

upstream molecular machinery (Khoury et al., 2020), while the

morphology and immunology are distinctly different (Bertheloot

et al., 2021). Plasma membrane rupture of necrotic cells releases

cellular contents, exposing injury-related molecular patterns that

induce inflammatory responses (Khan et al., 2021). The contents

of apoptotic cells are encapsulated by apoptotic bodies further

engulfed by neutrophils, macrophages, or dendritic cells for final

degradation (Wong, 2011), thus having lower immunogenicity.

Caspase-8 determines the type of cell death, with activation of

Caspase-8, promotes apoptosis, while inhibition of Caspase-8

activity shifts the balance to necroptosis (Newton et al., 2019).

Many studies have demonstrated that necroptosis has a vital role

in tumorigenesis, metastasis, and tumor microenvironment

(TME) (Stoll et al., 2017; Seehawer et al., 2018). However,

there are few studies on necroptosis-related genes (NRGs) in

patients with HCC. Therefore, it is necessary to explore the role

of NRGs in HCC.

This study systematically investigated the expression,

somatic mutation, and copy number variation of NRGs in

HCC. We also developed a prognosis signature based on

NRGs, correlated with immunotherapy.

Materials and methods

Acquisition of gene expression and clinical
data

Level-3 RNA sequencing data (normalized FPKM), somatic

mutations (VarScan2), copy number variation (CNV), and

clinical data of HCC were obtained from the TCGA (The

Cancer Gene Atlas). Samples with incomplete clinical

information or survival time less than 30 days were not

included. From the ICGC (International Cancer Genome

Consortium), RNA sequencing data of 243 HCC samples and

clinical information were obtained. The datasets of IMvigor210

(http://research-pub.gene.com/IMvigor210CoreBiology) include

transcriptomic and clinical data of 348 patients with metastatic

uroepithelial carcinoma treated with anti-PDL-1. All RNA

sequencing data were log2 transformed for further analysis.

GSE14520 and GSE54236 were obtained from Gene

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/

geo/). From GSE14520 and GSE54236, we can get gene

expression and survival information for 220 and 82 HCC

patients, respectively. GEO data probes use the provided

annotation files to match gene symbols. When multiple

probes matched a gene, the average value was taken.

The landscape of necroptosis-related
genes

A total of 159 necroptosis-related genes (NRGs) were

obtained from the Kyoto Encyclopedia of Genes and

Genomes (KEGG: https://www.kegg.jp/). Somatic mutations

were visualized using the “maftools” R package (Mayakonda

et al., 2018). The CNV frequency of NRGs was visualized using

the “ggplot” R package. Differentially expressed NRGs (DE-

NRGs) between HCC and normal samples were screened

using the Wilcox test, with |Log2FC|>1 and FDR

p-value < 0.05.

Consensus clustering analysis

Consensus clustering analysis was performed based on

DE-NRGs by using the “ConsesusClusterPlus” R package

(1,000 iterations and resample rate of 80%) (Wilkerson and

Hayes, 2010). The samples were divided into k (ranging from

2 to 10) groups by the k-means algorithm. The consensus

distribution for each k was shown by the cumulative

distribution function (CDF) plot. The CDF plot facilitated

finding k with an approximate maximum distribution,

which indicates maximum stability. The average consensus

value between an item and the cluster members was

measured by item consensus (IC). The average pairwise IC

of items in a consensus cluster was estimated by cluster

consensus (CLC). The Kaplan-Meier curve was used to

assess survival differences among subtypes. Stromal-Score,

Immune-Score, and ESTIMATE-Score were calculated by

using the “estimate” R package (Yoshihara et al., 2013). The

abundance of two stromal cells and eight immune cells were

calculated by using the “MCP-counter” R package (Becht et al.,

2016).

Construction of the prognostic signature

The univariate Cox regression analysis was performed to

screen prognostic genes. The Cox proportional hazards model
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(iteration = 1,000) with the Least Absolute Shrinkage and

Selection Operator (LASSO) penalty on the prognostic genes

to develop necroptosis-related signature by using the “glmnet” R

package. The risk score is equal to the sum of the expression of

each gene multiplied by the corresponding coefficient. The

patients were divided into high- and low-risk groups

according to the median risk score in the TCGA and ICGC

cohorts.

Verification of the prognostic signature

Time-dependent receiver operating characteristic (ROC)

curve analysis was performed by using the “Survival” and

“ROC” R packages. Kaplan-Meier survival curves were applied

using the “survival” and “survminer” R packages. The database of

Human Protein Atlas (HPA: https://www.proteinatlas.org/) was

used to explore the expression of the protein encoded by NRGs

between HCC and normal samples (Uhlen et al., 2017).

Independent prognosis of risk signature
and nomogram construction

The multivariate Cox regression analysis was used to assess

the independence of risk signature. The risk score and other

parameters were used to construct a nomogram to predict

individual survival using the “rms” R package. The calibration

curve was used to measure the accuracy of the predictions.

Functional enrichment analysis

The DEGs between the high- and low-risk groups in the

TCGA cohort were screened by the Wilcox test, with |Log2FC|

>1 and FDR p-value < 0.05. Metascape is a convenient web

application for pathway and functional enrichment analysis

(Zhou et al., 2019). Put DEGs into the website (https://

metascape.org) for enrichment analyses. Gene Set Enrichment

Analysis (GSEA) was performed to identify hallmark gene sets

enriched in the high-risk group (Liberzon et al., 2015), with

normal p-value < 0.05 and FDR p-value <0.25.

Somatic mutations and TMB in the risk
signature

The “maftools” package was applied to visualize HCC

mutation data. The function “tmb” in the R package " mafools

“was applied to calculate the value of TMB from mutation data.

The function “surv_cutpoint” in the R package “survminer” was

applied to select the optimal cut-off value of TMB and divided

patients into high-TMB and low-TMB group.

Immune status in the risk signature

The enrichment scores of 16 types of immune cells and

13 immune-related pathways were calculated via single-sample

gene set enrichment analysis (ssGSEA) by using the “GSVA” and

“GSEABase” R package. Tumor Immune Dysfunction and

Exclusion (TIDE) web application (http://tide.dfci.harvard.edu)

was used to predict immunotherapy response (Fu et al., 2020).

The higher TIDE score, the worse immunotherapy response

might be.

Drug sensitivity analysis

The“pRRophetic” R package based on Genomics of Drug

Sensitivity in Cancer (www.cancerrxgene.org/) was used to

calculate the half-maximal inhibitory concentration (IC50) of

drugs (Geeleher et al., 2014).

Statistical analysis

All statistical analyses were performed using R software

(version 4.1.2). p-value <0.05 is significant if not specified.

The study flowchart is shown in (Figure 1).

Results

The landscape of Genetic Variation of
NRGs

The waterfall plot shows the top 30 NRGs with high

mutation frequency in HCC patients (Figure 2A). The

frequencies of NRGs mutations were low, and most samples

were missense mutations. CNV of NRGs was common in

HCC, most of which were gain alterations (Supplementary

Table S1). The bar chart shows the top 20 NRGs with the high

frequency of gain and loss alteration (Figure 2B). The top five

genes with the highest frequencies of gain alterations were

H2AC20, H2AC21, H2AC18, H2AC19, and USP21. In

contrast, HMGB1, SLC25A4, TLR3, TICAM1, and

TYK2 had the highest frequency of loss alterations. A total

of 36 differentially expressed NRGs were identified between

HCC and normal samples, and all these genes were

upregulated in HCC samples (Figure 2C).

Consensus clustering analysis

To explore the immunological and prognostic

implications, we attempted to classify HCC into different

subtypes based on DE-NRGs. The CDF plot shows a slight
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increase in CDF but a greater decrease in CLC when k was

equal to or greater than 4, and when k = 3, the CDF was higher

than k = 2 (Supplementary Figure S1). Therefore, we divided

the HCC patients into three clusters. The consensus matrix

indicated the greatest correlation within-subtype and

difference among subtypes when k = 3, also indicating the

practicability of dividing the patients into three clusters

(Figure 3A). The Kaplan-Meier curve revealed significant

survival differences between subtypes (p < 0.01), among

which Cluster-3 had the worst survival (Figure 3B). The

heatmap revealed the expression of NRGs and

clinicopathological features between subtypes (Figure 3C).

The distribution of stage, grade, gender, and survival status

were different between subtypes. We also found significant

differences in immune status among subtypes. The Stromal-

score and ESTIMATE-score were highest in Cluster-3, and

conversely, it had the lowest tumor purity (Figure 3D). Most

immune cells such as T cells, CD8 T cells, cytotoxic

lymphocytes, and monocyte lineages were significantly

infiltrated in Cluster-3 (Figure 3E).

Construction of risk signature and
validation

We performed a univariate Cox analysis to explore the

prognostic value of DE-NRGs in HCC. The forest plot shows

that 19 NRGs were associated with survival (Supplementary

Figure S2). Next, we developed a risk signature based on

8 NRGs (USP21, H2AZ1, H2AX, CHMP3, PPIA, SQSTM1,

DNM1L, and HSP90AA1) using LASSO Cox regression

analysis (Supplementary Figure S2). The correlation

between the eight genes was significant (Supplementary

Figure S2). The following formula quantified the risk score:

risk score = [0.13029175×mRNA expression level of USP21] +

[0.115665765×mRNA expression level of H2AZ1] +

[0.058682133×mRNA expression level of H2AX]+

[0.006653262×mRNA expression level of CHMP3]+

[0.197273978×mRNA expression level of PPIA]+

[0.16888285×mRNA expression level of SQSTM1]+

[0.027048508×mRNA expression level of DNM1L]+

[0.184836598×mRNA expression level of HSP90AA1].

To assess the prognostic performance of the risk signature,

we applied a time-dependent ROC curve analysis. The area

under ROC curves (AUCs) for prediction of the 1-, 2-, and 3-

years survival rates were 0.771, 0.690, and 0.661 in the TCGA

cohort (Figure 4A), and 0.654, 0.726, and 0.704 in the ICGC

cohort (Figure 4B). Kaplan-Meier survival curves indicated a

poorer OS for the high-risk group compared to the low-risk

group in both cohorts. (p < 0.01 Figures 4C,D). The

distribution of risk score, survival status, and the heatmap

of 8 NRGs are summarized in (Figures 4E,F). The 8 NRGs were

differentially expressed between high and low-risk groups, and

there were more deaths in the high-risk group. Excellent

prognostic performance of risk signature was also found in

the GSE14520 and the GSE54236 cohort (Supplementary

Figure S3).

We applied multivariate Cox regression analysis to

explore the independent prognostic value of the risk

signature. The risk score and stage were independent

prognostic indicators in both cohorts (p < 0.001, Figures

5A,B). The risk score, age, gender, grade, and stage were

used to develop a Nomogram for predicting 1-, 2-, and 3-

years OS (Figure 5C). The estimated and actual survival

probabilities were well matched, as shown in the calibration

curves (Figure 5D). A clinical model was constructed by

using traditional clinicopathological parameters.The risk

score had higher AUC values than clinical model,

FIGURE 1
The flowchart of this study.

Frontiers in Genetics frontiersin.org04

Fu et al. 10.3389/fgene.2022.919599

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.919599


indicating that the risk score outperformed these

clinicopathological parameters in predicting OS of HCC

(Figure 5E).

Validation of the expression of NRGs in
signature

The expression of 8-NRGS in the signature were verified in

the ICGC cohort. As shown in (Supplementary Figure S4), 8-

NRGS were upregulated in HCC samples (p < 0.001).

The proteins encoded by 8 NRGs were upregulated in

HCC tissues by the database of HPA (Supplementary

Figure S4).

Functional enrichment analysis

We also performed the enrichment analysis based on

differentially expressed genes between the high- and low-risk

FIGURE 2
The landscape of Genetic Variation of NRGs. (A) The waterfall plot shows the top 30 NRGs with high mutation frequency in HCC patients; (B)
The bar chart shows the frequency of the top 20 gain alteration and loss alteration of NRGs; (C) the Bar plot shows different expressedNRGs between
HCC and normal samples. (*p < 0.05; **p < 0.01; ***p < 0.001).
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groups to elucidate the biological functions and pathways

associated with risk-score. The bar chart shows the top

20 enriched items of DEGs, such as mitotic cell cycle,

adaptive immune response, Cell Cycle, Mitotic, positive

regulation of leukocyte activation, and regulation of cell

adhesion (Supplementary Figure S5). There are 28 hallmark

gene sets enriched in the high-risk (Supplementary Table S2),

for example, MTORC signal, DNA repair, PI3K AKT MTOR

signal, E2F targets, MYC targets, and G2m checkpoint,

P53 pathway, Notch signal, and inflammatory response,

Hypoxia (Supplementary Figure S5).

Comparison of somatic mutations and
TMB in the signature

We investigated the differences in somatic mutations

between the high- and low-risk groups. TP53 (39%), CTNNB1

FIGURE 3
Consensus Clustering analysis. (A)Consensus matrix when the number of clusters (k) = 3; (B) Kaplan-Meier curves show the survival differences
between subtypes; (C) The heatmap shows the expression of NRGs and clinicopathological features between subtypes; (D) Bar plot shows the
Stromal score, Immune score, ESTIMATE score, and Tumor purity between subtypes; (E) Bar plot shows the immune inflation between subtypes.
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(30%), TTN (24%), MUC16 (17%), and ALB (12%) were the top

5 genes with the highest mutation frequency in the high-risk

group (Figure 6A), while TNN (22%), CTNNB1 (21%), TP53

(16%), MUC16 (12%), and ALB (10%) were the top 5 genes in the

low-risk group (Figure 6B). TMB was significantly higher in the

high-risk group than in the low-risk group (p < 0.05 Figure 6C).

The optimal cut-off was selected and divided patients into a high

TMB group and a low TMB group. Patients with low TMB have

better survival than those with high TMB (Figure 6D). Patients

with low TMB in the low-risk group had the best survival rates,

and those with high TMB in the high-risk group had the worst

survival rates (Figure 6E).

Immune activity and prediction of
immunotherapy

To examine the correlation between risk signature and

Immune activity, we quantified enrichment scores of 16 types

of immune cells and 13 immune-related pathways. The

FIGURE 4
Validation of risk signature. Time-dependent ROC for predicting 1-, 2-, and 3-years OS in the TCGA cohort (A) and the ICGC cohort (B); Kaplan-
Meier survival curves show different OS between high- and low-group in TCGA (C) and ICGC (D); The risk score, survival status, and the heatmap of
8 NRGs between high- and low-group in TCGA (E) and ICGC (F). Independent prognostic indicator and nomogram construction.
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infiltration of aDCs, iDCs, Macrophages, and Treg were

higher in the high-risk group in the TCGA and the ICGC

cohorts (Figures 7A,B). At the same time, the immune pathway

of MHC class-I was active in the high-risk group in both cohorts

(Figures 7A,B).Most immune checkpoints were higher in the high-

risk group than in the low-risk group in both cohorts

(Supplementary Figure S6). TIDE analysis is considered a

sound predictor of response to immunotherapy. The TIDE

score was lower in the high-risk group (Figure 7C),

indicating high-risk patients may be favorable for

immunotherapy. We calculated the risk score using the

same formula as the TCGA cohort for each patient in

IMvigor210. As shown in (Figure 7D), the immunotherapy

response group has higher risk score than the non-response

group. The AUC for predicting the immunotherapy response

was 0.651 (Figure 7E).

FIGURE 5
Independent prognostic value of risk signature and Nomogram construction. The multivariate Cox regression analysis in the TCGA cohort (A)
and the ICGC cohort (B); (C) The nomogram for predicting 1-, 2-, and 3-years OS in the TCGA cohort. (E) The calibration plots. (D) Multi-indicator
ROC curves for predicting 1-year OS in the TCGA cohort.
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Drug sensitivity analysis in the risk
signature

We investigated whether risk-score could predict patients’

sensitivity to chemotherapy. We selected chemotherapeutic

agents commonly used in HCC. We found that the high-risk

group may be more sensitive to Bleomycin, Cisplatin,

MitomycinC, Doxorubicin, and Gemcitabine (Figures 8A–E),

while Docetaxel for the low-risk group (Figure 8F) in the TCGA

and ICGC cohorts, implicating the signature as a prospective

predictor of chemotherapy sensitivity.

Discussion

Cell death plays a critical role in tumorigenesis, development,

and treatment and has become a hot topic of research, such as

pyroptosis, ferroptosis, and necroptosis (Strasser and Vaux,

2020). The role of necroptosis in tumors is a double-edged

sword; as a form of programmed cell death, necroptosis can

inhibit tumorigenesis, yet it can trigger inflammatory responses

that promote cancer metastasis and immunosuppression (Gong

et al., 2019). This study systematically investigated the prognostic

and immunological value of NRGs in HCC andmay help provide

an essential foundation for future research.

The current staging of HCC mainly includes TNM staging,

American Joint Committee on Cancer, Barcelona Clinic Liver

Cancer, Okuda, Japan Integrated Staging, etc.

(Sirivatanauksorn and Tovikkai, 2011). Due to the

heterogeneity of tumors, no system can always effectively

predict the prognosis and treatment of HCC (Nault et al.,

2020). With advances in microarray and RNA sequencing

technologies, more and more studies focus on molecular

subtypes (Zhu et al., 2022). In this study, HCC patients

were classified into three subtypes based on DE-NRGs.

Survival rates and immune inflation differed significantly

FIGURE 6
The somaticmutations and TMB in risk signature. Thewaterfall plot shows the top 30 genes with highmutation frequency in the high-risk group
(A) and low-risk group (B) in the TCGA cohort. (C) The bar plot shows the TMB between the high- and low-risk group in the TCGA cohort. (D) Kaplan-
Meier curve analysis shows survival difference between high and low TMB groups. (E) Kaplan-Meier curve analysis showed survival differences
among patients classified according to TMB and risk group in the TCGA cohort.
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among subtypes, and interestingly, Cluster-3 had the worst OS

and the highest immune inflation rate. We also developed an

NRG-related signature to predict OS in HCC, which is better

than clinicopathology. Compared with NRGs related

signatures for HCC which have been published (Li et al.,

2022; Yang and Jiang, 2022), our signature had a better

prognostic performance (Supplementary Figure S7).

Most NRGs presented in our signature were associated

with tumorigenesis and proliferation of HCC. USP21, as an

efficient deubiquitylates, promotes the stability of BRCA2 to

FIGURE 7
Immune Status and Prediction of response to immunotherapy. The enrichment scores of 16 immune cells and 13 immune-related pathways
between subtypes in the TCGA (A) and ICGC cohorts (B); (C) The TID scores between high- and low-risk groups in the TCGA cohort; (D) The risk
score between immunotherapy response group (PR/CR) and non-response group (PD/SD) in IMvigor210; (E) ROC analysis for predicting
immunotherapy response.
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regulate DNA repair in HCC cell (Liu et al., 2017). USP21 can

also promote HCC cell proliferation by activating the ERK

signal pathway (Li et al., 2018). H2AZ1 was overexpressed in

HCC cell and was associated with a poor prognosis (Yang

et al., 2016). H2AZ1 promotes HCC progression by regulating

the cell cycle and epithelial-mesenchymal transition (Yang

et al., 2016). H2AX is a biomarker for DNA double-strand

breaks, which can facilitate base excision repair (Chen et al.,

2021). γ -H2AX was elevated in precancerous lesions of HCC,

suggesting an essential role in the development of HCC

(Matsuda et al., 2013). γ-H2AX promotes HCC

angiogenesis via the EGFR/HIF-1α/VEGF pathway (Xiao

et al., 2015). CHMP3 is a component of the ESCRT-III

protein complex (Solomons et al., 2011). ESCRT III repairs

nuclear envelope rupture during cell migration, limiting DNA

damage and cell death (Raab et al., 2016). PPIA belongs to the

immunophilin family and is involved in the anti-apoptotic

cancer cell (Daneri-Becerra et al., 2021). PPIA promotes HCC

cell metastasis by regulating MMP3 and MMP9(33).

SQSTM1 is an autophagy-associated protein that has a

crucial role in controlling cell death and survival (Moscat

and Diaz-Meco, 2009). SQSTM1 promotes HCC development

through activation of NRF2 and mTORC1, induction of

c-Myc, and resistance to oxidative stress (Umemura et al.,

2016). Activating the SQSTM1/p62-Keap1-NRF2 pathway can

inhibit ferroptosis in HCC cells (Sun et al., 2016). DNM1L is

FIGURE 8
Drug sensitivity analysis in the risk signature. IC50 values for chemotherapeutic agents commonly used for HCC between high- and low-risk
groups in the TCGA and ICGC cohorts. Bleomycin (A), Cisplatin (B), MitomycinC (C), Doxorubicin (D), Gemcitabine (E), Docetaxel (F).
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critical for regulating mitochondrial fission and cell

proliferation, preventing calcium-mediated apoptosis (Chan,

2020). DNM1L promotes the expansion of mitochondrial

division in HCC cells by mediating the p53/p21 and NF-κB/
cyclins pathways (Zhan et al., 2016). HSP90AA1 regulates

MLKL oligomerization and plasma membrane

translocation and is required for TNF-induced

necroptosis (Zhao et al., 2016). HSP90AA1 promotes

HCC invasion by promoting epithelial-mesenchymal

transition and inhibiting tumor stem cell apoptosis (Gao

et al., 2015).

To explore the differences in biological functions and

pathways between high and low-risk groups, we performed

GSEA analysis. More than half of hallmark gene sets (28/50)

were enriched in the high-risk group (Supplementary Table S2),

and these pathways were involved in tumor progression and

metastasis (Liberzon et al., 2015). Notably, these pathways were

also associated with antitumor immunity, such as DNA repair

(Mouw et al., 2017), P53 pathway (Mantovani et al., 2019), Notch

signal (Yuan et al., 2010), Inflammatory response (Ozga et al.,

2021), Wnt beta-catenin signal (Luke et al., 2019), PI3k Akt

mTOR signal (O’Donnell et al., 2018). Moreover, we found a

higher frequency of TP53 mutations in the high-risk group

(39 vs. 16%). TP53 is a key fail-safe mechanism of cellular

anti-cancer defenses, and TP53 mutation was strongly

associated with tumorigenesis, progression, and antitumor

immunity (Donehower et al., 2019). Thus, enrichment and

mutation analysis can partially explain the survival and

immune status differences between the high-risk and low-risk

groups.

Then, the correlation between risk score and cancer immune

status was investigated. The infiltration of aDCs, iDCs,

Macrophages, and Treg in the high-risk group (Figures 7A,B),

which were involved in shaping TME. Dendritic cells, as one of

the most important regulators of adaptive immune responses, are

crucial for T-cell-mediated cancer immunity (Gardner and

Ruffell, 2016). M1 macrophages can induce PD-L1 expression

through the IL-1β signal in HCC (Zong et al., 2019).

M2 macrophages can promote the development of HCC, and

metastasis and suppress anti-tumor responses through multiple

pathways (Tian et al., 2019). Treg cells can enhance tumor

progression and repress antitumor immune responses, and the

usage of anti-CTLA-4 antibodies can effectively kill effector Treg

cells (Tanaka and Sakaguchi, 2017). The immune pathway of

MHC class-I was active in the high-risk group, which was

essential in regulating innate and adaptive cytotoxic responses

(Dhatchinamoorthy et al., 2021). The TMB and immune

checkpoints were higher in the high-risk group, commonly

employed as immunotherapy predictors (Chan et al., 2019;

Morita et al., 2021).

Immune checkpoint inhibitors, a remarkable breakthrough

in oncology treatment, have brought tremendous benefits to

patients with malignant tumors (Szeto and Finley, 2019).

Checkmate-040 and KEYNOTE-240 trials revealed the great

potential of immunotherapy in HCC (El-Khoueiry et al.,

2017), (Finn et al., 2020). Necroptosis is a form of

inflammatory cell death that regulates antitumor immunity

(Gong et al., 2019). Therefore, HCC patients with different

necroptosis features and immune statuses may have different

outcomes to immunotherapy.

TIDE, an algorithm for predicting immune response, was

lower in the high-risk group, indicating a better immune

response in high-risk score patients. In addition, the higher

risk score was associated with the immunotherapy response

group by datasets of IMvigor210.

We used retrospective data from public databases to

construct and validate. Thus, more prospective real-world

data are required to validate their clinical value. In addition,

our study lacks validation by in vivo and in vitro experiments.

Therefore, the next step should be to validate the function of

NRGs in HCC.

Conclusion

We developed a new necroptosis-related signature for

predicting prognosis with the potential to predict

immunotherapy for HCC patients.
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