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Invasive fungal infections are a significant reason for morbidity and mortality among

organ transplant recipients. Therefore, it is critical to investigate the host and candida

niches to understand the epidemiology of fungal infections in transplantation.

Candida albicans is an opportunistic fungal pathogen that causes fatal invasive

mucosal infections, particularly in solid organ transplant patients. Therefore,

identifying and characterizing these genes would play a vital role in

understanding the complex regulation of host-pathogen interactions. Using

32 RNA-sequencing samples of human cells infected with C. albicans, we

developed WGCNA coexpression networks and performed DESeq2 differential

gene expression analysis to identify the genes that positively correlate with

human candida infection. Using hierarchical clustering, we identified 5 distinct

modules. We studied the inter- and intramodular gene network properties in the

context of sample status traits and identified the highly enriched genes in the

correlated modules. We identified 52 genes that were common in the most

significant WGCNA turquoise module and differentially expressed genes in

human endothelial cells (HUVEC) infection vs. control samples. As a validation

step, we identified the differentially expressed genes from the independent

Candida-infected human oral keratinocytes (OKF6) samples and validated 30 of

the 52 commongenes.We then performed the functional enrichment analysis using

KEGG and GO. Finally, we performed protein-protein interaction (PPI) analysis using

STRING and CytoHubba from 30 validated genes. We identified 8 hub genes (JUN,

ATF3, VEGFA, SLC2A1, HK2, PTGS2, PFKFB3, and KLF6) that were enriched in

response to hypoxia, angiogenesis, vasculogenesis, hypoxia-induced signaling,

cancer, diabetes, and transplant-related disease pathways. The discovery of

genes and functional pathways related to the immune system and gene

coexpression and differential gene expression analyses may serve as novel

diagnostic markers and potential therapeutic targets.
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Introduction

Solid organ transplant (SOT) patients are exposed to various

complications, e.g., invasive fungal infection and organ failure,

which are the major challenge in SOT and affect the morbidity

and mortality in transplant patients. The most prevalent invasive

fungal infection in SOT is Candidiasis, which includes about 60%

of infections, followed by aspergillosis accounts for up to 25% of

fungal infections (Shoham and Marr, 2012).

An opportunistic fungal pathogen, Candida albicans, is part

of healthy human gut microbiota. However, when immunity is

compromised or suppressed, particularly in organ transplant

individuals, AIDS patients, chemotherapy-treated patients, and

neonates, the mucosal layer becomes more susceptible to fatal

invasive C. albicans infections such as candidiasis (Sangeorzan

et al., 1994; Rhodus et al., 1997; Revankar et al., 1998; Redding

et al., 1999; Willis et al., 1999), (Sobel, 1985). C. albicans can

switch from an avirulent commensal yeast form to a virulent

invasive hyphal form in which hyphae invade through the

mucosal layer and disseminate/propagate through the blood,

infecting other organs as well as developing multidrug

resistance (Klepser, 2006; Cowen et al., 2015; Arendrup and

Patterson, 2017; Pendleton et al., 2017; Nishimoto et al., 2020). In

the process of C. albicans infection, the first site of host-pathogen

interactions is epithelial and endothelial cells (Barker et al., 2008;

Liu et al., 2015a). The development of invasive fungal diseases

relies on the synergy between the host immune response and

fungal virulence. Comprehensive network analysis is vital to

understanding the regulatory network and rewiring to

respond to these infections.

Recent efforts have been made for the functional and

molecular characterization of C. albicans genes using RNA

sequencing (Wu et al., 2016; Brown et al., 2019; Romo et al.,

2019; Zhang et al., 2019; de Vries et al., 2020; Thomas et al., 2020;

Xu et al., 2020). Numerous studies suggest gene biomarkers as

potential therapeutic targets and diagnostic markers in various

fungal infections (Dix et al., 2015; Huppler et al., 2017; Díez et al.,

2021; Hamam et al., 2021). Weighted gene correlation network

analysis (WGCNA) has been widely used in disease diagnosis

(Liu et al., 2017; Liang et al., 2018; Tang et al., 2018; Li et al., 2019;

Yin et al., 2019), physiology (Kadarmideen et al., 2011; Zuo et al.,

2018; Chen et al., 2019), drug targets (Puniya et al., 2013;

Maertens et al., 2018), and cross-species (Mueller et al., 2017)

but has never been applied in the context of candida pathogenesis

(Thomas et al., 2020). Therefore, we developed a novel approach

to identify host-pathogen interactions in C. albicans and humans.

In this work, we applied WGCNA to analyze 32 RNA-seq

samples from in vitro infection of C. albicans on human

endothelial and oral epithelial cells after 1.5, 5, and 8-h of

infection and controls. We identified 5 modules in human

endothelial cells (HUVEC) human cell lines in infection vs.

control status and separately identified differentially expressed

genes (DEG). We reported the common genes across the two

methods (WGCNA and DEG). We then validated a subset of

genes using differential gene expression analysis of candida-

infected human cell lines OKF6. Finally, we performed

protein-protein interaction network analysis and identified

hub genes that could be novel targets to investigate C.

albicans infection in humans. Through these central genes’

biological and molecular functions, we gained insights into the

signaling pathways previously not correlated with the fungal

pathogen-host response and other diseases.

Materials and methods

Data collection

All processed gene expression datasets were collected from

publicly available NCBI Gene Expression Omnibus GSE56093

(Liu et al., 2015a). The raw sequence data was aligned to the

human and candida reference genomes separately by Liu et al.

(Liu et al., 2015a), and the resultant count matrices were utilized

for the WGCNA and DEG analyses. This dataset was comprised

of 88 samples from in vitro and in vivo experiments. Of those, we

only utilized 32 in vitro samples of human cell lines (endothelial

and epithelial) infected with C. albicans (SC5314 and

WO1 strains) and their controls at three different time points.

More information is given in Supplementary Table S1. The

overall methodology steps are shown in Figure 1.

Data normalization and transformation

We performed normalization on the RPKM (reads per

kilobase of transcript, per million mapped reads) values using

the GCRMA limma package (Gautier et al., 2004) by first

removing features with counts <10 in 90% of the samples, as

these could be a potential cause of the noise. Then, we

performed and compared three data transformation

techniques, logarithmic, regularized logarithmic, and

variance stabilizing transformation (Lin et al., 2008), to

stabilize the variance across sample mean values. We chose

the regularized log transformation due to stability

(Supplementary Figure S1).

Weighted gene coexpression network
framework

We constructed the weighted gene coexpression network

using the RWGCNA package (Langfelder and Horvath, 2008).

The normalized data were used as input for network

construction and gene module detection. It uses correlation

to find functional modules of the highly correlated gene

networks. First, we evaluated the soft threshold power (β)
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to convert coexpression into weight with a scale-free topology

index of 0.9. We chose soft threshold powers of 8 to calculate

the correlations between the adjacent genes (Supplementary

Figure S2). Pearson correlations between each gene pair were

calculated. We then converted this adjacency matrix into a

topological overlap matrix (TOM) to define gene clusters that

show the amount of overlap in shared neighbors of the gene

network. The dissimilarity measure was determined for

hierarchical clustering and module detection. Modules of

clusters of genes with high topological overlap were

selected using a dynamic tree-cut algorithm. Several

modules were identified, and the modules with similar

expression levels were merged by calculating their

eigengenes corresponding to their correlations. We further

determined the association of these modules with the external

traits. We identified the genes with high gene significance (GS)

and module membership (MM) in the turquoise and blue

modules in HUVEC data. Last, intramodular connectivity was

analyzed in human modules using MTR>0.35 and p-value <
0.05. All the categorical variables were binarized for the

analyses.

Identification of differentially expressed
genes

Differentially expressed genes were identified using

DESeq2 R Bioconductor package (Love et al., 2014). We

used raw counts that were fed to the DESeq2 since it

corrects for library size. The variance stabilizing

transformations (VST) function estimated the sample

differences (Lin et al., 2008). The statistical significance for

the differentially expressed genes was set to q-value < 0.05 and

log2 fold change (log2FC) > 1.

FIGURE 1
The schematic representation of the overall methodology: The discovery dataset was analyzed using two independent methods (WGCNA and
DESeq2). Their intersecting genes were overlapped with the DEG list from the independent validation set to build the PPI network and identify the
hub genes.
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Functional enrichment analysis of genes

We performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses to study the role of the genes and identify their

biological functions and pathways. Gene Ontology analysis

was performed to determine the biological process. We

considered an adjusted p-value threshold of ≤ 0.05 and a

minimum gene count of 3 for the KEGG pathways and GO

functional terms. As the contribution of all the genes is not the

same, we identified hub genes and further investigated their

function.

FIGURE 2
Weighted Gene CoexpressionNetwork Analysis and VennDiagram (A)Hierarchical clustering of 4,669 genes fromHUVEC discovery dataset (B)
Module-trait relationship exhibiting associations of module eigengenes with the clinical trait (infection status). (C) Relationship between turquoise
module membership (MM) and gene significance (GS). (D) Venn diagram representing the overlapping genes from the turquoise module genes and
differentially expressed genes. (E) Venn diagram representing the common genes between the discovery set genes (overlapping genes from
WGCNA turquoise module and DEG genes) and differentially expressed genes from the validation set.
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Statistical analysis and data visualization

The R programming language (Horgan, 2012) was used to

normalize the RNA-seq data. We conducted Fisher’s exact tests

to identify the statistically significant Gene Ontology terms and

functional classes. Enrichment analysis based on a

hypergeometric test was implemented, and Benjamini

Hochberg multiple testing was used to correct the p-value.

Data visualization to show differentially expressed genes

between infected and uninfected groups for top selected genes

was plotted using the complex Heatmap function in R. The data

visualization was performed using the cluster profiler package in

R (Yu et al., 2012).

Protein-protein interaction network
analysis

The validated genes are uploaded into the STRING database,

and high confidence interaction score ≥ 0.7 was used to reduce

false-positive interactions (Bozhilova et al., 2019). The resultant

network output was loaded into Cytoscape. CytoHubba (Chin

et al., 2014) was used with the Maximal Clique Centrality (MCC)

algorithm to discover the hub genes in the PPI network (Li and

Xu, 2019).

Results

Network construction and module
identification

Weighted Gene Correlation Network Analysis was

conducted on HUVEC data. We performed hierarchical

clustering of genes using a topological overlap matrix and

merged modules with similar expression profiles (Figure 2A).

Each leaf corresponds to a gene, and branches correspond to the

cluster of highly coexpressed genes. After cutting tree branches,

we identified five different modules, turquoise, yellow, black,

blue, and green, with 1,365, 459, 261, 1829, and 755 genes in

HUVEC (Supplementary Table S2). A total of 4,669 genes were

identified from the HUVEC data set, and in each module, the

number of genes ranged between 261 and 1829.

Module association with external traits

We further analyzed the module trait relationship (MTR)

between the module eigengene and clinical traits, where each

cell represents the correlation strength (red is positively

correlated, and green is negatively correlated) with their

corresponding p-value (Figure 2B). We demonstrate that

some module eigengenes are highly correlated with

infection (status traits). We observed that the turquoise

(r = 0.55, p = 0.03) and blue (r = −0.52, p = 0.04) modules

were highly correlated with the infection status in HUVEC

cells. Since the turquoise module, with 1,365 genes, is the most

significantly correlated with the clinical trait, we focused on

this module for further analysis.

Intramodular connectivity using gene
significance and module membership

We quantified genes with high significance for the trait status

of HUVEC and high module membership by comparing their

similarities in every module. There was a highly significant

correlation between gene significance and module

membership in the turquoise module. Figure 2C represents

the correlation between turquoise module membership and

gene significance (r = 0.45, p = 5.1e-69).

Differentially expressed genes and
intersection with WGCNA

We used DESeq2 as a second independent method on the

entire HUVEC dataset to identify 54 genes that were

differentially expressed in the HUVEC (infection vs. control)

samples (q-value < 0.05 and log2FC > 1). From the WGCNA

analysis, we identified 1,365 genes in the most significantly

correlated turquoise module (Figure 2B). When we further

investigated the intersection of WGCNA and DEGs, 52 genes

were common between the turquoise module and the DEG list

(Figure 2D). The list of turquoise module genes, DEGs, and

intersecting genes is given in Supplementary Table S4.

Validation of candidate genes

In order to validate these 52 common genes, we utilized a

validation dataset comprised of candida-infected human oral

keratinocytes (OKF6 cell line). We performed the differential

gene expression analysis on infection vs. control and identified

101 DEGs. When we overlapped these 101 genes with

52 common genes from the discovery dataset, we found

30 genes that were differentially expressed in the

OKF6 validation dataset (Figure 2E and Supplementary

Table S3). The following are the 30 validated genes:

SLC2A1, ATF3, JUN, KDM7A, DUSP1, PTGS2, NAB2,

PIM1, MAFF, ADM, PFKFB3, KLF6, BNIP3, CSRNP1,

VEGFA, ENO2, ANKRD37, PPP1R15A, KDM3A, ANGPTL4,

BHLHE40, ARRDC3, SLC2A3, KLF7, DDIT4, ERRFI1, KLF4,

FOSL2, EFNA1, and HK2. The list of genes from the discovery

set, validation set, and intersecting genes are given in

Supplementary Table S4.
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FIGURE 3
Functional enrichment analysis for the 30 validated genes. (A) KEGG pathway (B) Gene Ontology.

FIGURE 4
Protein-Protein interaction networks. (A) STRING analysis of validated genes. (B) CytoHubba with Maximal Clique Centrality analysis showing
8 hub genes.
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Integrating network analysis with
functional enrichment analyses

To understand the biological roles of these 30 validated

genes, we performed GO and KEGG pathway analyses to

identify the biological pathways that were significantly

enriched (FDR ≤ 0.05) in these modules.

KEGG analyses revealed that the genes were highly enriched

in the HIF-1 signaling pathway, microRNAs in cancer, renal cell

carcinoma, and AGE-RAGE signaling pathway in diabetes

complications, as shown in Figure 3A (Detailed information is

provided in Supplementary Table S3). Gene Ontology analyses

elucidated that these genes were enriched in response to hypoxia,

monosaccharide metabolic process, angiogenesis regulation,

vasculature development, reproductive process, and epidermis

development, as shown in Figure 3B. Additional details are given

in Supplementary Table S3.

Protein-protein interaction network
analysis

From the 30 validated genes, we first performed the protein-

protein interaction (PPI) analysis using the STRING database

(Figure 4A). The resultant data is then imported to the Cytoscape

plugin CytoHubba, and the top 8 genes with the highest Maximal

Clique Centrality (MCC) score were considered hub genes: JUN,

ATF3, VEGFA, SLC2A1, HK2, PTGS2, PFKFB3, and KLF6

(Figure 4B and Supplementary Table S3).

Discussion

The interaction between host cells and Candida is central to

the immunopathology of candidiasis in transplant patients; a

comprehensive understanding of this synergy will identify new

treatment strategies. Here, we investigate how human epithelial

and endothelial cells communicate with different Candida

species during infection. In this study, we constructed a

weighted gene correlation network and performed differential

gene expression analysis to identify genes that are important in

host‒candida interactions.

Comparative network analysis could rank genes for further

investigation of their connectivity (Schadt et al., 2005). A distinct

advantage of WGCNA is that it considers modules or gene

clusters for constructing interactions, and the genes in a

module are likely to be connected by the same regulatory

pathways. Therefore, in this study, we aim to discover novel

genes and molecular pathways in human-candida infection and

to understand the regulation due to cell dynamics using the

WGCNA and DESeq2 algorithms. Network depictions provided

immediate insight into the relationships between the correlated

modules. The construction of a gene coexpression network and

differential gene expression analysis of the discovery and

validation data set facilitated the identification of genes with

similar biological functions by GO and KEGG analyses.

According to the results of functional enrichment analysis,

the top 3 GO terms and topmost KEGG pathway were a response

to hypoxia, response to decreased oxygen, response to oxygen

levels (Figure 3B), and hypoxia-inducible factor 1 (HIF-1)

signaling pathway (Figure 3A). HIF-1 is a transcription factor

that functions as a master regulator of oxygen homeostasis. It has

been shown that suppressing HIF-1 helps treat cancer and

ischemia (Ziello et al., 2007). All organs during the process of

transplantation undergo hypoxic and ischemic injury. Low

oxygen levels trigger the colonization of candida infection in

the human host, resulting in complications like allograft rejection

in SOT patients (Akhtar et al., 2014). We identified eight hub

genes using PPI network analysis. Four hub genes (HK2,

PFKFB3, SLC2A1, and VEGFA) are involved in the HIF-1

signaling pathway. The hexokinase isoenzyme (HK2) elevates

innate immunity in hepatocellular carcinoma (Perrin-Cocon

et al., 2021). HK2 and PFKFB3 are involved in glycolysis

which affects the immune response against fungal infection

(Perrin-Cocon et al., 2021); specifically, after transplantation,

the PFKFB3 gene increase the risk of invasive pulmonary

aspergillosis (Gonçalves et al., 2021). Huang et al. showed in

their omics analysis that SLC2A1 is involved in ischemic

reperfusion injury in liver transplant patients and forms the

core gene network (Huang et al., 2019a). Vascular Endothelial

Growth Factor A (VEGFA) is associated with an increased risk of

chronic kidney disease (Anderson et al., 2018) but induces

vasculogenesis. Kidney vasculature comprises vascular smooth

muscle and endothelial cells (Udan et al., 2012). One of the most

challenging components to handle during a kidney transplant is

through vasculogenesis and angiogenesis processes (Munro and

Davies, 2018; Lebedenko and Banerjee, 2021). HIF-1 stimulates

the VEGFA to maintain oxygen delivery and protect the kidney

(Hunga et al., 2013).

The other top enriched KEGG pathways in our analysis were

microRNAs in cancer (hsa05211) and renal cell carcinoma

(hsa05206). MicroRNAs play a diverse role in cancer and

infections (Yong and Dutta, 2009). Recent advances in

microRNA therapeutics have shown the extensive use of

microRNAs for cancer and infections (Rupaimoole and Slack,

2017). There has been increased support for microRNA

therapeutics in solid organ transplantation, including kidney

(Wilflingseder et al., 2015; Jin et al., 2017; Ledeganck et al.,

2019), lung (Benazzo et al., 2022), and heart transplantation

(Hamdorf et al., 2017). Candida albicans have been linked to

cancerous processes by taking advantage of the compromised

immune system (Ramirez-Garcia et al., 2016; Chung et al., 2017;

Sultan et al., 2022). Our PPI network analysis identified four hub

genes (SLC2A1, VEGFA, JUN, and PTGS2) enriched in the

cancer-related pathways. SLC2A1 belongs to a glucose

transporter family and has been reported to be associated with

Frontiers in Genetics frontiersin.org07

Naik and Mohammed 10.3389/fgene.2022.917636

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.917636


HCC (Kim et al., 2017). SLC2A1 is also essential to IRI during

liver transplantation (Huang et al., 2019b) and a diagnostic

biomarker for colorectal cancer (CRC) (Liu et al., 2022). In

CRC, the SLC2A1 gene infiltrates the CD4+ T cell, neutrophil,

dendritic cells, and B cells (Liu et al., 2022). Candidiasis is one of

the risk factors for Oral squamous cell carcinoma (OSCC). The

transcriptomics data analysis revealed that VEGFA and JUN are

highly regulated in OSCC invasion and metastasis (Vadovics

et al., 2022). JUN is a member of the activator protein-1 family of

oncogenic transcription factors, which is involved in various

cancer-related and cell signaling pathways such as tumorigenesis,

cell differentiation, and angiogenesis (Brennan et al., 2020). Post

renal transplantation, the activation of c-JUN affects acute

humoral rejection and acute T-cell-mediated rejection

(Kobayashi et al., 2010). c-JUN is also associated with reduced

graft function and plays an important role in renal

pathophysiological events (Kobayashi et al., 2010).

Prostaglandin E2 (PGE2) is an inflammatory mediator

produced by the Prostaglandin-endoperoxide synthase

(PTGS2) enzyme, and PGE2 promotes candida

morphogenesis. In response to candida infection,

PTGS2 activation promotes NF-kB and MAPK signaling

pathways (Deva et al., 2003). In OSCC, PTGS2 involves an

inflammatory response to infection by promoting

tumorigenesis (Cacina et al., 2018) and activating

transcription factor 3 (ATF3), one of the 8 hub genes that

regulate the PTGS2 during acute inflammation (Hellmann

et al., 2015) and helps in the homeostasis of the metabolism

and immune system (Sha et al., 2017). Zhu et al. also showed that

ATF3 is one of the top hub genes in samples infected with

4 different candida species (Zhu et al., 2022). Using

bioinformatics omics analysis, ATF3 and Kruppel-like factor 6

(KLF6, hub gene) are shown to be the central players in ischemic

reperfusion injury in liver transplant patients (Huang et al.,

2019b). KLF6 promotes inflammation and oxidative stress by

regulating HIF-1 expression in macrophages (Kim et al., 2020).

Another enriched KEGG pathway was the AGE-RAGE

signaling in diabetes complications (hsa04933).

Endoplasmic reticulum stress due to AGE-RAGE plays an

essential role in renal inflammation, diabetic nephropathy

(Pathomthongtaweechai and Chutipongtanate, 2020) and

early-stage renal disease (Meerwaldt et al., 2009).

Advanced glycation end products (AGEs) may also play a

role in the hardening of arteries after renal transplantation

(Liu et al., 2015b). Our two hub genes, JUN and VEGFA,

showed enrichment in the AGE-RAGE signaling pathway in

diabetes complications. Poorly controlled diabetes increases

the risk of fungal infections (Rodrigues et al., 2019). Some

diabetes-related complications include cardiovascular

disease, kidney disease, neuropathy, hearing loss, vision

loss, Alzheimer’s, liver disease, etc. (Deshpande et al.,

2008; Prasad et al., 2016). VEGFA and JUN were identified

as the central players in diabetic nephropathy (Oltean et al.,

2015; Wang et al., 2021) and Alzheimer’s disease (Zu et al.,

2021) whereas, VEGFA was associated with diabetic

retinopathy (Bucolo et al., 2021), cardiac autonomic

neuropathy (Ravichandran et al., 2019), and non-alcoholic

fatty liver disease-hepatocellular carcinoma (Shen et al.,

2022). Each hub gene plays a vital and diverse role in the

pathways and biological processes. Therefore, more research

is warranted on the divergent roles of these genes’ signaling

and regulatory mechanisms during infection, cancer, and

transplantation.

Limitations

WGCNA lacks resolution as it decomposes a group of

genes into a single eigenvalue that may not correctly

represent a single gene’s expression profile or pathway

changes. Further analysis may be needed to detect changes

in the expression of individual processes. Another limitation

of the study is the small sample size; therefore, we present

this study as a proof of concept to be validated in a larger

cohort. The current study used cell lines from epithelial and

endothelial cells; thus, the identified gene markers should be

validated from the peripheral blood transcriptome of

candidiasis patients for non-invasive clinical relevance.
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