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Lung adenocarcinoma (LUAD) is one of the most common malignancies with the highest
mortality globally, and it has a poor prognosis. Cell cycle checkpoints play a central role in
the entire system of monitoring cell cycle processes, by regulating the signalling pathway of
the cell cycle. Cell cycle checkpoints related genes (CCCRGs) have potential utility in
predicting survival, and response to immunotherapies and chemotherapies. To examine
this, based on CCCRGs, we identified two lung adenocarcinoma subtypes, called cluster1
and cluster2, by consensus clustering. Enrichment analysis revealed significant
discrepancies between the two subtypes in gene sets associated with cell cycle
activation and tumor progression. In addition, based on Least Absolute Shrinkage and
Selection Operator (LASSO) Cox regression, we have developed and validated a cell cycle
checkpoints-related risk signature to predict prognosis, tumour immune
microenvironment: (TIME), immunotherapy and chemotherapy responses for lung
adenocarcinoma patients. Results from calibration plot, decision curve analysis (DCA),
and time-dependent receiver operating characteristic curve (ROC) revealed that
combining age, gender, pathological stages, and risk score in lung adenocarcinoma
patients allowed for a more accurate and predictive nomogram. The area under curve for
lung adenocarcinoma patients with 1-, 3-, 5-, and 10-year overall survival was: 0.74, 0.73,
0.75, and 0.81, respectively. Taken together, our proposed 4-CCCRG signature can serve
as a clinically useful indicator to help predict patients outcomes, and could provide
important guidance for immunotherapies and chemotherapies decision for lung
adenocarcinoma patients.
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INTRODUCTION

Lung cancer is one of the leading threats to human health, with
more than 1.8 million lung cancer cases globally, according to
Global Cancer Statistics 2020 estimates (Sung et al., 2021). Non-
small cell lung cancer (NSCLC) accounts for about 85% of lung
cancers, and lung adenocarcinoma (LUAD) is the most common
subtype of NSCLC, with a high degree of heterogeneity and
aggressiveness (Thai et al., 2021). Despite improvements in
multiple therapies, LUAD patients still have poor prognosis,
due to local recurrence and distant metastasis (Tan and Tan,
2022). Therefore, it is necessary to develop a risk stratification
method and find reliable molecular signature for early diagnosis,
prognostic prediction, and treatment options of LUAD.

Tumours are a class of diseases in which cell cycle regulatory
mechanisms are disrupted (Lugli et al., 2021). Cell cycle
checkpoints serve as DNA surveillance mechanisms in the
entire system of monitoring cell cycle processes, and play a
central role in preventing the accumulation and reproduction
of genetic mutations during cell division (Panagopoulos and
Altmeyer, 2021). Importantly, some studies have indicated that
most cell cycle control functions are essential for cancer cell
survival (Walston et al., 2021; Liu et al., 2022). In cancer cells,
DNA damage checkpoints are frequently damaged, allowing cells
to continue dividing despite the accumulation of genetic errors
(Huang and Zhou, 2020). Conversely, genes involved in DNA
replication stress checkpoints in cancer cells rarely mutate, as
many cancers increasingly rely on DNA replication stress
checkpoints function to tolerate high levels of replication
stress (Técher et al., 2017). Similarly, cancer cells rely on
functional spindle assembly checkpoints to prevent
catastrophic missegregation of chromosomes (Musacchio,
2015). Previous studies have shown that cell cycle checkpoints
related genes have potential prognostic value in a variety of
cancers, so targeting cell cycle checkpoints is therefore a
promising strategy (Fei and Xu, 2018; Sonntag et al., 2021). It
is feasible to establish a risk signature based on the cell cycle
checkpoints to assess patients outcome and therapeutic efficacy.
Notably, several risk signatures have been developed to explore
the prognostic value of DNA damage repair and cell cycle
progression-related genes (Chen et al., 2021a; Jiang et al.,
2021). However, the predictive value of risk signature
constructed using cell cycle checkpoints as a clinical indicator
in lung adenocarcinoma is unclear.

Tumour cells survive and proliferate in vivo via evading
recognition and attack by the body’s immune system through
a variety of mechanisms (Jiang et al., 2019; Anichini et al., 2020).
Recently, immunotherapies for lung adenocarcinoma, which
stimulates specific immune responses to kill tumour cells, has
become a hot topic (Bauml and Knepley, 2020). Bioinformatics
analysis of tumour immune microenvironment, tumour
mutation burden (TMB), and immune checkpoints expression
levels can help predict immunotherapy efficacy and promote
precision therapies.

In this study, we investigated the potential biological
significance of cell cycle checkpoints in LUAD. Based on
prognostic genes associated with cell cycle checkpoints, we

identified lung adenocarcinoma patients in the TCGA database
into two subtypes using consensus clustering. In addition, we
constructed a risk signature using LASSO-Cox regression, to
more accurately evaluate the clinical value of CCCRGs in
LUAD. There were significant differences in patients
outcomes, immune implication, chemotherapeutic efficacy, and
gene mutation status between high- and low-risk groups. This
study may shed new light on the molecular mechanisms
underlying LUAD, and provides insights into personalized
targeted therapies for LUAD patients. In the future, the
technology may help doctors make better treatment decisions.

MATERIALS AND METHODS

Data Collection and Processing
By cleansing and standardizing lung adenocarcinoma data from
The TCGA dataset, we obtained gene expression profiles from
515 tumour samples and 59 cancer-adjacent normal tissues [log2
(TPM+1)]. Clinical information data was eventually collated and
extracted from 500 tumor samples after deletion of the missing
data and samples with 0 survival time. GSE31210, GSE10072,
GSE27262, GSE68465, and GSE50081 were downloaded from the
Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/). Samples lacking survival data were deleted
and all data were standardized and corrected for log2 (x+1).
Mutation data were downloaded from the TCGA database
(https://portal.gdc.cancer.gov/). Tumor mutation burden data
were downloaded from the cBioPortal (https://www.cbioportal.
org/). Differentially expressed genes (DEGs) were analysed using
the R package “limma” for TCGA, GSE3120, GSE10072,
GSE27262, and GSE68465 databases (Ritchie et al., 2015). (|
FoldChange|>2, adjusted p < 0.05).

Consensus Clustering and Molecular
Subtypes of Cell Cycle Checkpoints Related
Genes
Univariate Cox analysis of differentially expressed CCCRGs was
performed to obtain 25 prognostic related CCCRGs (Ahmed
et al., 2022). Unsupervised cluster analysis was performed using R
package “ConsensusClusterPlus”, using agglomeration km
clustered with a 1-Pearson correlating distribution, and
resampling of 80% of the samples for 1000 repetitions
(Wilkerson and Hayes, 2010). The optimal clustering was
determined under cumulative distribution curve (CDF) and
the rationality of clustering was further validated by principal
component analysis (PCA).

Enrichment Analysis
Differentially expressed genes between the two subtypes were
obtained by R package “limma” (version 3.40.6) (Ritchie et al.,
2015). Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genome (KEGG) analyses were performed by R package
“Cluster Profiler” (version 3.14.3) to obtain enrichment results
(Cao et al., 2021). (p value <0.05, FDR <0.05) Gene Set
Enrichment Analysis (GSEA) software (version 3.0) was
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obtained from the GSEA website. We downloaded
c2.cp.kegg.v7.4.symbols.gmt (KEGG) and
h.all.v7.4.symbols.gmt (Hallmark) gene sets from the
Molecular Signatures Database (http://www.gsea-msigdb.org/
gsea/msigdb/index.jsp). GSEA analysis was conducted in two
subgroups, to assess relevant pathways and molecular
mechanisms based on gene expression profiles and phenotypic
subsets, with a minimum set of 5 genes, a maximum set of 5,000
genes, and 1,000 repetitions (p value <0.05, FDR <0.05)
(Subramanian et al., 2005). Gene Set Variation Analysis
(GSVA) calculated the enrichment score for each sample in
the Hallmark gene sets using the R package “GSVA”, setting
the minimum set at 5 and the maximum set at 5000 (Hänzelmann
et al., 2013).

Construction of Signature
In this study, we used the R package “glmnet” to integrate survival
time, survival status, and gene expression data for regression
analysis using the LASSO-Cox method. We also set up a 10-fold
cross validation to get the best signature (Wu et al., 2021).
Ultimately, we constructed a prognostic signature based on
CCCRGs to predict survival in LUAD patients. The risk score
was calculated as follows: risk score = (β1 × Gene1 Exp) + (β2 ×
Gene2 Exp) + . . . + (βi × Genei Exp) (Tibshirani, 1997; Friedman
et al., 2010; Wang et al., 2019). Patients with LUAD were
classified into high- and low-risk groups based on risk score.
Kaplan-Meier analysis and ROC analysis were conducted to
examine the applicability and stability of the model. In
addition, we used R package “rms” to establish a nomogram
using Cox regression to assess prognostic significance of
clinicopathologic factors and risk score in LUAD samples
(Iasonos et al., 2008).

Tumour Immune Microenvironment and
Immunotherapies Efficacy Prediction
We evaluated ESTIMATEScore, ImmuneScore, StromalScore,
and TumorPurity using the ESTIMATE algorithm (Ma et al.,
2021). The TIMER algorithm was used to evaluate tumour
infiltration of 6 immune cell types (Li et al., 2017). Single-
sample GSEA (ssGSEA) was applied to calculate immune
infiltration of 24 immune cell types (Chong et al., 2021). In
addition, we validated immune infiltration using the EPIC
algorithm (Yang et al., 2021). Tumour mutation burden,
calculated based on somatic non-synonymous mutations, is a
potential biomarker of immunotherapies response (Chan et al.,
2019). In addition, we extracted and analyzed the expression
profile of immune checkpoints genes CTLA4, LAG3, TIGIT,
PD1, PDL1, PDL2, and TIM3 in the TCGA database. Analysis
of TMB and immune checkpoints genes can be used to evaluate
the efficacy of immunotherapies.

Prediction of Chemotherapeutic Efficacy
Using the R package “pRRophetic” and LUAD patients’ gene
expression matrices, we predicted minimum drug inhibition
concentrations (IC50) in both high- and low-risk groups, and
ultimately obtained drugs with statistically significant IC50 values

that could be potential candidates for LUAD treatments
(Geeleher et al., 2014).

Genetic Mutation Analysis
Somatic mutation analysis of LUAD samples was obtained from
the TCGA database website in the “maf” format (Liu et al., 2018).
Waterfall mapping was then performed using the “Maftools”
package in the R software. Visualization results helped analyze
and summarize the mutant genes (Mayakonda et al., 2018).

RESULTS

Identification of Two Different Molecular
Subtypes in Lung Adenocarcinoma Based
on Cell Cycle Checkpoints Related Genes
The flow diagram of our present study is illustrated in Figure 1.
Differentially expressed genes were obtained from four databases:
TCGA-LUAD, GSE31210, GSE72094, and GSE27262. Cell cycle
checkpoints related genes were derived from the
Reactome_Cell_Cycle_Checkpoint gene set. Overlapping genes
were identified by intersection of these differentially expressed
genes with cell cycle checkpoints related genes. Then, 25
prognostic relevant CCCRGs were identified using univariate Cox
regression analysis (Figure 2A). Based on consensus clustering of
these genes, we subdivided LUAD patients in the TCGA cohort into
subgroups (Figure 2B). When the cluster number K = 2, the
clustering stability was the best (Figures 2C,D). In two subtypes,
280 patients were classified as cluster1, and 235 patients were
classified as cluster2. We further validated the sample
classification of cluster1 and cluster2 using principal component
analysis (Figure 2E). By comparing the prognostic differences
between cluster1 and cluster2, we found that patients in cluster1
had significantly worse prognosis (Figure 2F). In addition,
expression of 25 CCCRGs were obviously different in both
subtypes, and were generally higher in cluster1 (Figures 2G,H).
we found LUAD patients in cluster1 had higher pathological stages
than in cluster2 via volcanomap. Furthermore, we compared the age
and gender differences between the two subtypes, and found that
46.44% of patients were older than 65 in cluster1, while 58.08% of
patients were older than 65 in cluster2. In terms of gender, 47.86% of
patients in cluster1 were female, while 60.43% of patients in cluster2
were female (Supplementary Figures S1A,B). When we
investigated the prognostic difference between the two subtypes
in terms of age and gender, we found that cluster1 had a worse
prognosis in patients older than 65, while no significant difference
between cluster1 and cluster2 in patients younger than 65. In
addition, in both sexes, cluster1 had a worse prognosis than
cluster2 (Supplementary Figure S1C).

Two Subtypes of Lung Adenocarcinoma
Patients Exhibited Different Immune
Landscapes
We performed immunoinfiltration analyses of the two different
subtypes, and the results from the ESTIMATE algorithm showed
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that cluster1 had lower ESTIMATEScore, ImmuneScore,
StromalScore, while higher TumourPurity compared to
cluster2 (Figures 3A–D). The results of the TIMER algorithm
showed that cluster1 has a lower abundance of B Cells and
CD4+T Cells (Figure 3E). The results of the EPIC algorithm
showed that cluster1 has a lower abundance of B Cells,
CD4+T Cells, endothelial, and NK cells (Supplementary
Figure S3A). In addition, immune infiltrating landscapes
derived using ssGSEA algorithms were significantly different
between cluster1 and cluster2. As shown in Figure 3F, B cells,
T cells, Tcm cells, TFH cells, Th17 cells, CD8+ T cells, NK cells,
DC cells, iDC cells, pDC cells, and Mast cells had lower immune
status in cluster1, while Th2 cells, Tgd, and NK CD56dim cells
had higher immune status in cluster1. Furthermore, we compared
immune checkpoints expression across the two subtypes and
found that CTLA4, LAG3, TIGIT, PD-1, PD-L1, PD-L2 were
significantly higher in cluster1 than in cluster2, as shown in

Figure 3G. Taken together, these results suggested that the
cluster1 may be more favourable to tumour immune escape.

Identification of Differentially Expressed
Genes and Functional Enrichment Analysis
in Two Subtypes
We analyzed differentially expressed genes between cluster1 and
cluster2 using the R package “limma” (version 3.40.6). The
volcano plot showed up-regulated and down-regulated genes (|
FoldChange| >2) (Figure 4A).The potential biological
mechanism was investigated by functional enrichment
analysis. We selected 451 differentially expressed genes for
KEGG and GO analysis (|FoldChange| >2) (Supplementary
Table S1; Supplementary Table S2). KEGG results revealed
that differentially expressed genes were enriched in cell cycle-
related pathways (Figure 4B), such as cell cycle, oocyte meiosis,

FIGURE 1 | Flow chart of the data analyzing process.
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FIGURE 2 | Identification of cell cycle checkpoints-associated subtypes by consensus clustering. (A) Prognostic associated differential genes obtained through
Venn diagram. (B–D)Consensus clustering analysis for 25 genes in 515 LUAD samples (k = 2). (E) PCA of cluster1 and cluster2. (F) Kaplan-Meier curve of OS in the two
subgroups. (G,H) Heatmap and histogram visualizing the expression of 25 CCCRGs in two subtypes.
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FIGURE 3 | Analysis of the TIME and the expression of immune checkpoints in two subtypes. (A–D) ESTIMATE score, ImmuneScore, StromalScore and
TumorPurity calculated by ESTIMATE algorithm. (E) Immune infiltration of 6 immune cell types using TIMER algorithm. (F) Immune infiltration of 24 immune cell types
using ssGSEA algorithm. (G) Differences in expression of immune checkpoints between the two subtypes.
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FIGURE 4 | Functional enrichment analysis between two subtypes. (A) Volcano map showed differentially expressed genes between two subtypes in TCGA
cohort. (B) Differentially expressed genes were selected for KEGG analysis (|FC|>2, p < 0.05). (C) GO analysis of differentially expressed genes (|FC|>2, p < 0.05). (D)
Heat map showed difference in GSVA scores between two subtypes.
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DNA replication, p53 signalling pathway, and cellular senescence.
Furthermore, we found that the differentially expressed genes
between the two subtypes were enriched for a variety of biological
processes. Figure 4C illustrated the results of GO enrichment
analysis, which can be classified into biological processes, cellular
components, and molecular functions. GSEA analysis was carried
out using the KEGG and Hallmark gene sets (Supplementary
Table S3; Supplementary Table S4), which revealed that

activation of cell cycle was significantly enhanced in cluster1
compared to cluster2, including cell cycle, oocyte meiosis, P53
signalling, MTORC1 signalling, G2M checkpoint, MYC targets,
Glycolysis, DNA repair, E2F targets, PI3K-AKT-MTOR
signalling, and other associated pathways (Supplementary
Figures S2A,B). To further explore the differences in
biological pathways between two different cell cycle
checkpoints related subtypes, we used the GSVA algorithm to

FIGURE 5 | Construction of the prognostic signature. (A) Forestplot showed 25 prognostic associated CCCRGs obtained by univariate Cox regression analysis.
(B–D) LASSO regression analysis and 10-fold cross-validation were performed to calculate the best lambda and identify the four most significant prognostic genes. (E)
ROC results from a 4-genes prognostic model were used to analyze patients’ 1-, 3-, and 5-year overall survival. (F) Risk score, outcome status, gene expression profiles
were shown in the training cohort. (G) Kaplan-Meier curve for OS in training cohort based on risk score.
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calculate Hallmark gene sets enrichment scores (Supplementary
Figure S2C; Supplementary Table S5). Notably, by comparing the
differences in GSVA scores between the two subtypes, we obtained

29 statistically significant biological pathways (Figure 4D). These
results suggested that cluster1 is significantly associated with tumor
initiation and progression, and may lead to poor prognosis in lung

FIGURE 6 |Relationship between risk score and clinicopathological features. Risk score differed by age (A), gender (B), smoking status (G), TNM stage (C–E), and
pathological stage (F). Survival curves of LUAD patients by age (H,I), smoking status (J–L), gender (M,N) and pathological stage (O,P) were obtained by comparing
high-risk group with low-risk group.
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adenocarcinoma patients by affecting cell cycle and proliferation-
associated signalling pathways.

A Risk Signature Was Built by Cell Cycle
Checkpoints Related Genes in TCGA
Database
We constructed a risk signature to predict the prognostic value
of CCCRGs in lung adenocarcinoma. Figure 5A showed the

results of the univariate Cox analysis. Then, we performed a
LASSO regression analysis using 25 overall survival-related
(OS) CCCRGs (Figure 5B). A risk signature with four genes
was selected, using optimal lambda values (CCNB1, CDC25C,
CENPM, EXO1) (Figures 5C,D). In addition, according to the
coefficients of these four genes, we calculated the risk score of
each LUAD patient as follows: risk score =
(0.131810530210757 × CCNB1 Exp) + (0.0258950480925646
× CDC25C Exp) + (0.0505775207458941 × CENPM Exp) +

FIGURE 7 | Validation of the prognostic signature. (A–C) Risk score, outcome status, gene expression profiles were shown in the GSE31210 cohort, GSE68465
cohort and GSE50081 cohort. (D–F) Kaplan-Meier curve for OS in validation cohort based on risk score. (G–I) Time-independent ROC curves of the risk score for
predicting the 1-, 3-, and 5-year overall survival in the validation cohort.
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(0.0852753768507349 × EXO1 Exp). Regarding the diagnostic
efficiency of the risk signature, ROC curves presented
acceptable assessment results (Figure 5E). Based on risk
score, our prognostic model successfully classified LUAD
patients into high- and low-risk groups. Figure 5F showed
differences in the expression and survival status of four
candidate genes between high- and low-risk groups. By
mapping the Kaplan-Meier survival curve, we were able to
conclude that the OS of 250 patients in the high-risk group was
worse than that of 250 patients in the low-risk group (p <
0.001) (Figure 5G). We then compared differences in
clinicopathologic factors between high and low risk groups.
Results revealed that patients with age ≤65 had higher risk
score (Figure 6A), male had higher risk score (Figure 6B),
current smokers had higher risk score than never smokers
(Figure 6G), and those with higher TNM stages and
pathological stages tended to have higher risk score
(Figures 6C–F). In addition, prognostic analysis of various
clinicopathological factors revealed poor outcomes in high-
risk group (Figures 6H–P).

Validation of Four Genes Prognostic
Signature in Gene Expression Omnibus
Cohort
To better verify the predictive ability of the prognostic
signature we constructed, we calculated the risk score of
LUAD patients in the GSE31210, GSE68465, and GSE50081
databases, using the same formula: risk score =
(0.131810530210757 × CCNB1 Exp) + (0.0258950480925646
× CDC25C Exp) + (0.05057720458941 × CENPM Exp) +
(0.0852753768507349 × EXO1 Exp). Based on the risk
score, patients were divided into high-risk and low-risk
groups. Heat maps showed that four genes in GSE31210,
GSE68465, and GSE50081 had higher expression in high-
risk groups (Figures 7A–C). The Kaplan-Meier survival
curves revealed worse outcomes in high-risk groups across
all three GEO databases (Figures 7D–F). As shown in Figures
7G–I, the AUC values of time-dependent ROC curves at 1-, 3-,
and 5-years show acceptable assessment results. In addition,
we performed a comprehensive bioinformatics analysis of all
four genes involved in the development of prognostic
signature, to further understand their expression in cancers.
By analysing the TCGA database, we found that CCNB1,
CDC25C, CENPM, and EXO1 were highly expressed in
almost all of the 33 cancers (Supplementary Figures
S4A–D), and we also noticed significant high expression in
LUAD (Supplementary Figure S5C). By extracting
immunohistochemistry data from the Human Protein Atlas
(HPA) database, we found that CCNB1 and CENPM are highly
expressed (at protein level) in LUAD and associated with poor
prognosis (Supplementary Figures S5A,B). Finally, a
comprehensive analysis of TCGA, GEPIA and Kaplan-Meier
Plotter databases revealed that high mRNA expression of
CCNB1, CDC25C, CENPM, and EXO1 was associated with
poor survival in lung adenocarcinoma patients
(Supplementary Figures S6A–D).

Risk Signature Was Associated With Tumor
Immune Microenvironment in Lung
Adenocarcinoma
Spearman analysis was used to analyze the relationship between
risk score and immune cell subpopulations. First, we employed
the ESTIMATE algorithm to assess differences between high- and
low-risk scores. The results showed that the high-risk group had
lower ESTIMATEScore, ImmuneScore, and StromalScore, while
higher TumorPurity compared to the low-risk group (Figures
8A–D). Subsequently, we used TIMER algorithm to analyze the
abundance of six immune cell types in the high- and low-risk
groups. Results showed that B cells, CD4+T cells, macrophages,
and myeloid DC cells were less abundant in the high-risk group,
which suggested that cell cycle checkpoints-related genes may
promote tumor progression by suppressing anti-tumor immune
system activation (Figure 8F). Furthermore, Figure 8E also
showed negative correlation between risk score and immune
cells infiltration. To further investigate the impact of risk score
on the tumor immune microenvironment, we used the EPIC and
ssGSEA algorithms. EPIC algorithm displayed that the high-risk
group had lower abundance of B cells, CD4+T cells, endothelial
cells, and NK cells than low-risk group (Supplementary Figure
S3B). In addition, risk score was negatively associated with
immune cells infiltration (Supplementary Figures S3C–E).
The ssGSEA results showed a negative correlation between
risk score and most of the 24 immune cell types, such as
CD8+T cells, DC cells, iDC cells, eosinophils, Mast cells, and
B cells (Figure 8G), while positively correlated with few immune
cell types, such as Th2 cells. Notably, we also compared
abundance differences between high- and low-risk groups
across 24 immune cell types. We found higher abundance of
B cells, T cells, Tcm cells, TFH cells, Th17 cells, CD8+T cells, NK
cells, NK CD56bright cells, DC cells, iDC cells, pDC cells,
eosinophils, macrophages, and mast cells in high-risk group,
while lower abundance in Th2 cells, Tgd cells, and NK
CD56dim cells in low-risk group (Figure 8H). However, there
was no statistical difference between the high- and low-risk
groups for T helper cells, Tem cells, Th1 cells, Treg cells,
cytotoxic cells, aDC cells, and neutrophils. All of these results
confirmed that LUAD patients in high-risk group exhibit a
propensity for immune escape, indicating poor prognosis.

Differences in Immunotherapies and
Chemotherapies Responses, and Gene
Mutations in Lung Adenocarcinoma
Patients With High or Low Risk Score
Immune checkpoints’ expression were strongly associated with
immunotherapy efficacy. By comparing immune checkpoints
expression between high- and low-risk groups, we found
higher expression of LAG3, PD-1, PD-L1, and PD-L2 in the
high-risk group, suggesting that LUAD patients with high risk
scores may achieve better immunotherapy outcomes
(Figure 9A). To further analyze the relationship between risk
score and immunotherapies, we calculated the tumour mutation
burden. Tumor mutation burden as a novel marker for evaluating
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FIGURE 8 | Immune landscape in cell cycle checkpoints related signature. (A–D) ESTIMATE score, ImmuneScore, StromalScore and TumorPurity calculated by
ESTIMATE algorithm. (E,F) Immune infiltration of 6 immune cell types using TIMER algorithm. (G) Relationship between risk score and abundance of 24 immune cell
types. (H) Differences in abundance of 24 immune cells between high- and low-risk group.
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FIGURE 9 | Gene mutation and response prediction for immunotherapies and chemotherapies in 4-genes risk signature. (A) Differences in expression of immune
checkpoints between high-risk group and low-risk group. (B) Relationship between risk score and tumor mutation burden (TMB). (C) Differences in chemotherapies
between high and low risk groups. (D) Status of mutations between high- and low-risk groups.
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FIGURE 10 |Construction of nomogram. (A)Nomogram showed risk score’s efficacy in predicting 1-, 3-, and 5-year OS after combining patients age, gender, and
pathological stage. (B–E) Calibration plot, DCA curve and ROC curve showed acceptable accuracy. (F) Univariate Cox analysis and multivariate Cox analysis of
risk score.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 90810414

Yang et al. CCCRGs Based Signature of LUAD

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


the efficacy of PD-1 antibody therapy has been demonstrated in
the treatment of cancers with mismatch repair defects. As shown
in Figure 9B, LUAD patients in the high-risk group had higher
tumour mutation burden, which meant patients with high risk
scores are more susceptible to PD-1 antibody therapy. In
addition, we performed IC50 analysis in high- and low-risk
groups to screen for effective chemotherapies. The estimated
IC50 of Camptothecin, Cisplatin, Rapamycin, Gemcitabine,
Docetaxel, and Mitomycin C were significantly higher in the
low-risk group than in the high-risk group. It suggested that lung
adenocarcinoma patients in the low-risk group are more resistant
to chemotherapies (Figure 9C). Finally, we analyzed differences
in gene mutations between high- and low-risk groups
(Figure 9D). As shown by the results, the most common types
of mutations in the high-risk group in descending order were
TP53, TTN, CSMD3, MUC16, RYR2, ZFHX4, LRPIB, USH2A,
SPTA1, and FLG, while the most common types of mutations in
the low-risk group in descending order were TTN, MUC16,
TP53, RYR2, CSMD3, KRAS, LRP1B, USH2A, ZFHX4, and FLG.

Construction and Validation of a Predictive
Nomogram
In addition, to further validate the usability and clinical
applicability of the prognostic signature, we developed a
predictive nomogram for 1-, 3-, and 5-year OS using the
TCGA database. The nomogram integrated clinicopathologic
factors such as age, gender, pathological stages with the risk
score (Figure 10A). (C-index = 0.70, p < 0.0001) The
calibration curve of the nomogram showed good agreement
between the predicted survival and the observed survival
(Figure 10B). Decision curve analysis (DCA), and ROC
curve also had acceptable accuracy (Figures 10C,D). The
AUC value of the nomogram in the 1-, 3-, 5-, and 10-year
overall survival were 0.74, 0.73, 0.75, and 0.81, respectively,
which demonstrated excellent predictive efficacy (Figure 10E).
Results from univariate Cox analysis and multivariate Cox
analysis in LUAD patients revealed that the risk score was
an independent prognostic factor (Figure 10F). Taken
together, risk score, combined with other clinical
parameters, can improve the model’s predictive accuracy.
These results suggested that a risk signature based on
CCCRGs can reliably and accurately predict outcomes in
LUAD patients.

DISCUSSION

Cell cycle regulation in cancer cells is aberrant, with cancer
cells receiving signals of continuous proliferation that drive
continued cell division. A growing body of research has
shown that this persistent cell division is driven not by
uncontrolled cell cycle progression, but by mutations in
signalling pathways that block apoptosis and initiate cell
cycle exit (Chen et al., 2009; Matthews et al., 2022). Cell
cycle checkpoints act as monitors of cell cycle activity,
ensuring the integrity of the number of chromosomes and

the proper functioning of the cell cycle (Matthews et al.,
2022). Furthermore, aberrant expression of checkpoints
genes in the cell cycle has been investigated and validated
as an important factor involved in the pathogenesis and
progression of LUAD (Keijzers et al., 2018; Zhang et al.,
2018; Xiao et al., 2022).

Cell cycle checkpoints include DNA damage checkpoints,
DNA replication stress checkpoints, and spindle assembly
checkpoints. The primary role of DNA damage checkpoints
in response to DNA damage is to prevent the accumulation
and reproduction of genetic errors during cell division
(Bednarski and Sleckman, 2019). DNA replication stress
checkpoints only work in stage S, and their important
function is to prevent DNA damage caused by replication
stress (Li et al., 2022). DNA replication stress checkpoints
control cell cycle progression by limiting CDK activity. The
spindle assembly checkpoints (SAC) function at the M stage to
ensure that the replicated DNA is equally distributed between
the two daughter cells (Manic et al., 2017). Because the cell
cycle is an extremely delicate regulatory process, endless
division also poses fundamental challenges for cancer cells,
which also need a number of cell cycle checkpoints to
maintain their proliferative function. It is therefore realistic
to explore the potential role of cell cycle checkpoints in LUAD
and their impact on patient survival and treatment.
Furthermore, due to the extremely complex tumor immune
microenvironment of lung adenocarcinoma, the role of cell
cycle checkpoints in regulating the tumor immune
microenvironment requires further investigation (Egloff
et al., 2006; Chen et al., 2020).

Previous studies have explored the potential value of huge
cell cycle related genes in predicting survival in cancer
patients. Yongfeng Hui et al. investigated the prognostic
value of cell cycle progression-derived genes in
hepatocellular carcinoma (HCC) (Hui et al., 2021). Wai
Hoong Chang et al. explored the prognostic value of DNA
repair genes in pan-cancer and confirmed that DNA repair
genes were associated with dysregulation of cell cycle and
hypoxia (Chang and Lai, 2019). Fangyu Chen et al.
integratedly investigated the predictive value of cell cycle-
related and immune-related genes in lung adenocarcinoma
(Chen et al., 2021b). HCC can be divided into two subtypes
with different molecular and clinical characteristics based on
DNA damage repair related genes (Lin et al., 2021). Zhiyuan
Zhang et al. constructed a robust signature based on the cell
cycle-related genes in colon cancer (Zhang et al., 2021).
However, most prognostic models were constructed using
broad cell cycle related genes. Cell cycle checkpoints, a
specific set of genes, had not been investigated for lung
adenocarcinoma classification or survival prediction.
Therefore, this study specifically targeted cell cycle
checkpoints, a gene set that plays an important role in
tumor activation and tumor immune microenvironment
regulation (Chen et al., 2020). Further study of cell cycle
checkpoints will facilitate targeted therapies and provide
valuable recommendations for immunotherapy and
chemotherapy options.
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In this study, we performed a univariate Cox regression
analysis of differentially expressed cell cycle checkpoints
related genes in lung adenocarcinoma and finally identified 25
prognostic cell cycle checkpoints-related genes. Based on the
expression of these genes, lung adenocarcinoma patients were
categorized into two molecular subtypes using an unsupervised
consensus clustering approach. The two subtypes had different
prognostic states and immune phenotypes. In addition, different
immunophenotypes can help guide specific immunotherapies. Of
the two subtypes we identified, cluster1 had a worse prognosis
and a reduced abundance of immune infiltration that promoted
tumor escape. Cluster2, on the other hand, corresponded to a
higher level of immune infiltration and was characterized by anti-
tumor immunity. Notably, cluster1 expressed high levels of
immunohibitors, suggesting a potential for better efficacy of
immunotherapies. Upon enrichment analysis of both subtypes,
we found that cluster1 significantly enriched for proliferation-
associated signalling pathways such as E2F targets (Kent and
Leone, 2019), G2M checkpoint (Smith et al., 2020), MTORC1
signalling (Carroll, 2020), MYC targets (Dang, 2012), PI3K-AKT-
MTOR signaling (Polivka and Janku, 2014). We also noted that
cluster1 has a higher GSVA enrichment score for the interferon
response pathways than cluster2. Interferon signalling pathways
were balanced between immune cells and tumor cells.
Manipulating interferon signals could lead to more effective
cancer immunotherapies (Benci et al., 2019). Furthermore, we
found that cluster1 has higher glycolysis, hypoxia, and reactive
oxygen species enrichment levels. Metabolic stress originating
from mitochondria can accelerate cell differentiation in the
absence of oxygen. Increased levels of reactive oxygen species
(ROS) in T cells resulted in severe T cell dysfunction or
exhaustion (Scharping et al., 2021). Therefore, reducing T cell
ROS levels and alleviating tumor hypoxia can effectively block
T cell functional immune exhaustion and achieve synergistic
anticancer effects of tumor immunotherapies. Significantly,
cluster2 was dramatically associated with downregulation of
the KRAS signalling pathway. These results suggested that
cluster2 may have lower mutation levels and better prognosis
than cluster1.

To further investigate the prognostic effects of cell cycle
checkpoints related genes on survival and treatment response,
we performed LASSO-Cox regression analysis on 25 prognostic
cell cycle checkpoints-related genes. Four genes most associated
with prognosis were obtained: CDC25C, CENPM, EXO1, and
CCNB1. Based on these four genes, we constructed a prognostic
signature in the TCGA database. Patients with high risk scores
died more often and had significantly worse outcomes than
patients with low risk scores. To validate the reliability of the
established signature, we validated the efficacy of the prognostic
signature using three external validation sets (GSE31210,
GSE68465, GSE50081), and obtained results consistent with
the training set. Time-dependent ROC curves also showed
good predictive accuracy.

Since cell cycle checkpoints were remarkably related to the
tumor immune microenvironment, we also explored the
association of risk scores with the tumor microenvironment.
By using ESTIMATE, TIMER, EPIC, and ssGSEA algorithms,

we found that high risk scores corresponded to low immune
infiltration abundance, and low risk scores corresponded to
high immune infiltration abundance. These results suggested
that lung adenocarcinoma patients with high risk scores were
more susceptible to tumor immune escape (Zeng et al., 2020).
Therapies targeting immune checkpoints have developed
significantly for lung adenocarcinoma in recent years, and
our model was obviously associated with immunotherapeutic
efficacy (Topalian et al., 2016; Hosseinkhani et al., 2020). We
found high expression of immunoinhibitors and higher TMB
scores in high-risk group, suggesting that immunotherapies
may improve outcomes for patients with high risk scores. In
addition, we performed a genetic mutation analysis of lung
adenocarcinoma patients, which showed that patients with
high risk scores had a higher mutation probability, revealing
that lung adenocarcinoma patients with high risk scores were
more likely to further progress. Moreover, it is noteworthy that
we also predicted the efficacy of chemotherapies in our model,
showing that IC50 values in high-risk group were significantly
lower than in low-risk group in lung adenocarcinoma patients,
suggesting that patients in the high-risk group were more
sensitive to Camptothecin, Cisplatin, Rapamycin,
Gemcitabine, Docetaxel, and Mitomycin C (Pirker, 2020).
This indicated that our signature could be used for
personalized treatment of LUAD patients.

Notably, we constructed a more accurate nomogram after
integrating risk scores, age, gender, and pathological stages. In
nomogram, the risk score was classified as an independent
prognostic factor, which can be used as a complement to
clinical factors. The risk score effectively took into account the
missing parts of the pathological stage and improved the overall
prediction effect of the signature. In general, a better
understanding of cancer cell cycle control will help guide our
treatment of patients. With a wide range of inhibitors of cell cycle
checkpoints already in clinical studies, targeting cell cycle
checkpoints is expected to be an important approach to cancer
treatment (Ghelli Luserna di Rora’ et al., 2017; Gupta et al., 2022;
Shcherba et al., 2014). However, there were still some
shortcomings in our study which should be notified in
generalizing the findings. First, our study was based on a
bioinformatics approach which needs to be further validated
in experiments. In addition, clinical applications of cell cycle
checkpoints-related risk score and the constructed nomogram
need to be validated in a clinical setting.

CONCLUSION

In the current study, we used consensus clustering to identify two
molecular subtypes based on cell cycle checkpoints-related genes
in lung adenocarcinoma. Functional and immune analyses
revealed that dysregulation of cell cycle checkpoints would
hamper the immune system, affect cell cycle, and ultimately
lead to poor prognosis in lung adenocarcinoma patients. In
addition, we constructed a cell cycle checkpoints-related
prognostic signature. This signature may be used for
predicting prognosis and therapeutic response. To sum up, our
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study highlighted two cell cycle checkpoints related subtypes in
LUAD and constructed a prognostic signature with four CCCRGs
that can serve as a clinically useful indicator. Our work could
contribute to risk stratification in lung adenocarcinoma patients,
offer ideas for new targeted drugs, and provide theoretical
support for personalized medicine.
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