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The use of model organisms is important for basic and applied sciences. Several

laboratory species of fishes are used to develop advanced technologies, such as

the zebrafish (Danio rerio), the medaka (Oryzias latipes), and loach species

(Misgurnus spp.). However, the application of these exotic species in the

Neotropical region is limited due to differences in environmental conditions

and phylogenetic distances. This situation emphasizes the establishment of a

model organism specifically for the Neotropical region with the development of

techniques that may be applicable to other Neotropical fish species. In this

work, the previous research efforts are described in order to establish the

yellowtail tetra Astyanax altiparanae as a model laboratory species for both

laboratory and aquaculture purposes. Over the last decade, starting with

artificial fertilization, the yellowtail tetra has become a laboratory organism

for advanced biotechnology, such as germ cell transplantation, chromosome

set manipulation, and other technologies, with applications in aquaculture and

conservation of genetic resources. Nowadays, the yellowtail tetra is considered

the most advanced fish with respect to fish biotechnology within the

Neotropical region. The techniques developed for this species are being

used in other related species, especially within the characins class.
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Introduction

Biological models are important to develop technologies

in basic and applied sciences. In fish studies, the main

application of model organisms focuses on small

laboratory species and species for aquaculture production.

Several fish species arose as laboratory species worldwide,

such as the zebrafish (Danio rerio) (Westerfield, 2007;

Feitsma and Cuppen, 2008; Dai et al., 2014), the medaka

(Oryzias latipes) (Wittbrodt et al., 2002), and the loach

(Misgurnus spp.) (Kostomarova, 1991; Arm, 2003), among

other species (see Table 1). For the Neotropical region, there

has been no model organism established for the laboratory

work. A model organism specifically for the Neotropical

region may improve the technologies in aquaculture, and

the data are directly applicable for local conditions, as well as

for other related species. Thus, the yellowtail tetra is

considered a candidate for the model organism for the

Neotropical region (Yasui et al., 2020c).

Several biological characteristics make this species a

prime candidate for laboratory studies, including: 1) small

size; 2) domestication into artificial conditions (aquaria and

dry food); 3) early sex maturation (4–5 months); 4) easy

breeding management for in vitro fertilization; and 5)

external sexual dimorphism (Arai, 2001; Wittbrodt et al.,

2002; Westerfield, 2007; Yasui et al., 2020c).

Although the use of laboratory species is interesting and

may accelerate several technologies in the field of genetics

and biotechnology, it is necessary to first establish the basic

information for the successful application of a laboratory

fish. Determination of characteristics, such as feeding and

maintenance in the laboratory, environmental conditions

(photoperiod, aquarium size, temperature for

maintenance, and reproduction, etc.), reproduction, larvae

culture, and disease treatment and prevention, is first

necessary to then advance into other techniques such as

transgenesis and chromosome manipulation. Most of the

research topics in the field of biotechnology, such as

transgenesis (Stahl et al., 2019), chromosome set

manipulation (Dunham, 2004), primordial germ cell

(PGC) transplantation (Yamaha et al., 2010),

intracytoplasmic sperm injection (ICSI) (Yasui et al.,

2018), and other biotechnological approaches, require the

manipulation of embryos during the early stages, and

therefore, knowledge of fertilization timing is necessary.

This review shows the main techniques developed in the

field of biotechnology to establish the yellowtail tetra as the

most advanced laboratory fish native to the Neotropical

region.

The yellowtail tetra Astyanax
altiparanae

The generic name “tetra” denotes several small-bodied

species of fishes belonging to Characidae from the

Neotropical region, although an African group also exists

(subfamily Alestidae). The name “tetra” was originated from

the genus Tetragonopterus, an important genus in this

group. In this group, the genus Astyanax is widely

distributed across America, from the south of Argentina

to North America. Although tetra species are commonly

associated with aquarium fish trade, some aquaculture

species intended for production also exist, such as the

yellowtail tetra Astyanax altiparanae (Garutti and Britski,

2000). This fish is a small-bodied species (12–15 cm) and

largely distributed throughout the Neotropical region.

Astyanax altiparanae is considered to be a junior

synonym of Astyanax lacustris by Lucena and Soares,

(2016). However, this recent classification is still not

unanimously agreed upon by ichthyologists. Therefore, in

the present review, the traditional classification will be used,

and the name Astyanax altiparanae (Garutti and Britski,

2000) will be adopted.

The yellowtail tetra adapts easily into aquaria, aquaculture

tanks, and ponds, and it can be fed with artificial commercial

pellets. The intertidal spawning pattern allows it to be bred

year-round, given that the temperature and photoperiod are

manipulated (Machado-Evangelista et al., 2019). The

yellowtail tetra presents sexual dimorphism as shown in

our recent study (Siqueira-Silva et al., 2020), noting that

the male presents bony hooks in the anal and ventral fins

that are not present in the females (Figure 1).

The yellowtail tetra is an interesting model species to

develop biotechniques because experiments may be

conducted in aquaria year-round. In addition, the results

are applicable to other species, especially other characin

species that include more than 1,150 species (Nelson et al.,

2016).

The first step in fish biotechnology:
Sperm storage and in vitro
fertilization

For biotechnological studies, such as chromosome set

manipulation and germ cell transplantation, it is necessary

to manipulate the fertilization timing. In the case of the

yellowtail tetra, studies regarding reproduction were

previously conducted using natural spawning (without
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hormonal treatment) and semi-natural spawning (hormonal

treatment followed by spontaneous spawning) (Garutti, 1989,

2003; Veloso-Júnior et al., 2009; Weber et al., 2013). Artificial

insemination was conducted in A. bimaculatus (Sato et al.,

2006); however, the spermatozoa were not immobilized, and

then, the timing of gamete activation was not controlled.

The first step to establish the yellowtail tetra in genetic

and reproductive studies was to collect gametes and succeed

with in vitro fertilization. Based on the loach Misgurnus

anguillicaudatus procedures (Yasui et al., 2010, 2011),

Yasui et al. (2015) evaluated several hormonal treatments

for gamete maturation and then established sperm sampling

and refrigerated storage in an extender. The extender allows

one to immobilize and control the timing of sperm activation

and fertilization. Oocyte sampling using Petri dishes was also

important for laboratorial management for subsequent

gamete and embryo manipulation. The same authors

showed that oocyte storage was not possible in the

species. After the studies mentioned previously, other

advances in the reproduction of the yellowtail tetra have

also been published (Brambila-Souza et al., 2021; Roza de

Abreu et al., 2021).

Knowledge of gamete characteristics

After artificial propagation (Yasui et al., 2015), the next

step in this line of research was to investigate basic

characteristics of the gametes and embryo development.

Pereira-Santos et al. (2016) analyzed the gametes,

including ultrastructural analysis, second polar body

extrusion, pronucleus fusion, and embryonic development

at different temperatures. The spermatozoa of A. altiparanae

have a typical morphology of the teleost fish, presenting a

spherical head (1.88 µm), a midpiece (0.75 μm), and a single

flagellum (18.67 μm). Temperature significantly influenced

the development, where hatching occurred at 25 h post-

fertilization (hpf) at 22°C, 16 hpf at 26°C, and 11 hpf at

30°C. At 22°C, extrusion of the second polar body

occurred at 6 min post-fertilization (mpf), (Figure 2) and

pronucleus fusion occurred at 10 mpf. This basic

information gave important support for later works with

chromosome manipulation and germ cell transplantation.

The first attempt to use computer-assisted sperm analysis

(CASA) (Sperm Class Analyzer, Microptic, Barcelona, Spain)

evaluated motility (%), linearity (LIN), beat cross-frequency

(BCF), amplitude of lateral head (ALH), curvilinear velocity

(VCL), straight line velocity (VSL), average path velocity

(VAP), wobble (WOB), and straightness (STR). At 15 and

45 s post-activation, motility percentages were 83.9 ± 3.1%

and 54.5 ± 5.5%, respectively, and the mean motility duration

was 75 s. Sperm were maintained at 2.5°C in modified

TABLE 1 Biological characteristics of some model fish species.

Species Size Sex maturation Fecundity (egg/
female)

Blood sampling In vitro fertilization

Yellowtail tetra (Astyanax
altiparanae)

4–15 cm (1) 4 months (1) 11,086–31,720 (2) Feasible (3) Easy

Loach (Misgurnus
anguillicaudatus)

13–17 cm (4) 1–2 years (5) 1,800–15,500 (6) Feasible (7) Easy

Medaka (Oryzias latipes) 3–4 cm (8) 2 months (9) 30–50/day (8) Feasible (10) Moderate

Stickleback (Gasterosteus
aculeatus)

2.5–8 cm (11) < 10 cm (12) 1–2 years (13) 161–4,130 (14) Feasible (15) Difficult

Zebrafish (Danio rerio) 2.5–4.5 cm (16) 2.5–3 months (17) 300/week (18) Feasible (19) Moderate

1: Yasui et al. (2020c); 2: Sato et al. (2006); 3: Nascimento et al. (2020b); 4: Gao et al. (2014); 5: Lei and Sinica, (2020); 6: Suzuki (1983); 7: Gao et al. (2007); 8: Wittbrodt et al. (2002); 9:

Wakamatsu et al. (2001); 10: Niimi and Imada, (2008); 11: Olsson et al. (2019); 12: Cresko et al. (2007); 13: Mehlis and Bakker, (2013); 14: Patimar et al. (2010); 15: Wirzinger et al. (2007);

16: Clark et al. (2018); 17: Nasiadka and Clark, (2012); 18: Hsu et al. (2007); 19: Carradice and Lieschke, (2008).

FIGURE 1
Adult male and female yellowtail tetra Astyanax altiparanae.
The male presents bony hooks in the anal fin, which are not
present in the females. Bar scale is 1 cm for the fish, 50 µm for the
male fin, and 100 µm for the female fin.
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Ringer’s solution (128.3 mM NaCl, 23.6 mM KCl, 3.6 mM

CaCl2, and 2.1 mM MgCl2) with good viability up to 3 days

and later. Other studies implemented CASA with open-

source software and successfully used it in

experimentation on yellowtail tetra with similar results,

using simpler parameters such as total motility,

curvilinear velocity (VCL), average path velocity (VAP),

and straight line velocity (VSL) (Gonçalves et al., 2018;

Rocha et al., 2020).

The study of oocytes and fertilization success rates was

also conducted (Pereira-Santos et al., 2017), and the

researchers concluded that A. altiparanae has one of the

lowest insemination doses among teleosts

(2,390 spermatozoa. oocyte−1 ml−1). Those conclusions

were attributed to the small oocyte diameter (695.119 µm),

large micropyle (7.57 µm), long motility duration (>75 s),
and also the grooves in the oocytes surface that can guide the

spermatozoa into the micropyle to optimize fertilization

efficacy. This set of information was an important

database to initiate advanced studies described in the

following sections. The information obtained in the

aforementioned studies also opened up new possibilities

for approaches such as dispermic fertilization, since the

micropyle diameter is greater than that of two sperm heads.

Chromosome set manipulation

Chromosome manipulation in fish refers basically to

polyploidy (triploids and tetraploids, etc.) and uniparental

inheritance induced by gynogenesis and androgenesis.

Artificially induced polyploids focus on the production of

triploids and tetraploids for large-scale production of sterile

fish. Inhibition of second polar body extrusion, achieved by

heat, cold, pressure, or chemical treatments, gives rise to

triploid progenies (Dunham, 2004). The inhibition of second

mitotic division by similar treatments may induce tetraploids

(Zhang and Onozato, 2004). The main procedures for

chromosome manipulation in the yellowtail tetra are listed

in the following sections.

Triploids and hybrid triploids: Searching
for sterile fish

Sterile yellowtail tetra is important for aquaculture

because sterile fish present increased growth performance.

In the field of conservation, sterile fish are important to avoid

negative environmental impact from escaping, since in the

Neotropical region, the introduction of exotic species is the

second major cause of species endangerment (ICMBio,

2018). In addition, sterile fish may be a good recipient for

cells of endangered species for subsequent surrogate

propagation (Yamaha et al., 2001, 2007; Takeuchi et al.,

2003), later serving as a repository gene bank. Previous

attempts to obtain sterile yellowtail tetra were conducted

by the depletion of germ cells, but the approach did not

succeed a hundred percent in producing all sterile fish

(Siqueira-Silva et al., 2015), so our group focused on

polyploidization.

Initially, basic cytology information for chromosome set

manipulation, including timing for second polar body release

and fusion of male and female pronucleus, was studied

(Santos et al., 2016). Based on such information, a more

precise timing for diploidization and second polar body

retention was established. This generated high percentages

of triploids produced by using heat shock (40°C for 2 min) at

2 mpf, which guarantees 97.44% of triploids at the larvae

stage (Adamov et al., 2017). The growth and reproductive

performance of triploids were then studied (Nascimento

et al., 2017a), showing that triploid females are sterile

(Nascimento et al., 2017a) and present an increased

carcass yield (%) (Nascimento et al., 2017b) when

compared with diploids. On the other hand, triploid males

were not sterile (Nascimento et al., 2017a; 2017b), limiting

their application in aquaculture. In a later study, 100% sterile

fish were achieved using triploid hybrids (Piva et al., 2018) in

a special crossing of A. altiparanae and A. fasciatus. In this

set of experiments, oocytes from yellowtail tetra Astyanax

altiparanae were inseminated with sperm from five males (A.

altiparanae, A. fasciatus, A. schubarti, Hyphessobrycon

anisitsi, and Oligosarcus pintoi) in order to produce

several interspecies hybrids and triploid hybrids.

Surprisingly, only one cross (A. altiparanae x A. fasciatus)

generated sterile offspring, and the progenies did not present

germ lineage in the gonads.

The rise of spontaneously occurring
triploids

Surprisingly, spontaneously occurring triploids arose in

some progenies, even without any treatment for second polar

body retention. This phenomenon led our group to

investigate the rise of these triploids, and aged oocytes

stored in vivo (Nascimento et al., 2018) and in vitro

(Pereira-Santos et al., 2018) gave rise to these triploids,

indicating that oocytes must be fertilized just after

ovulation in order to prevent the rise of triploids.

Tetraploids

Based on the timing of pronucleus fusion (within 10 min)

studied by Pereira-Santos et al. (2016) and the temperature

(40°C) for heat shock obtained by Adamov et al. (2017), a
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more precise tetraploidization procedure was established,

improving the success rate of tetraploidization

(Nascimento et al., 2020b). The procedures were optimized

using temperature shock at 26 mpf (40°C for 2 min), followed

by incubation at 26°C, and this resulted in 94.55% tetraploids

at the larvae stage. This was the first reported tetraploids

within the characin group. In addition, these protocols were

recently improved (Martins et al., 2021), where it was

observed that post-shock temperature (22°C, 26°C, and

28°C) affects tetraploid production in A. altiparanae and

must be considered in future protocols. Tetraploid males

and females were also able to produce viable and diploid

spermatozoa and oocytes, respectively, which are capable of

mass production (100%) of triploid fish (Nascimento et al.,

2020b; Alves et al., 2022). As tetraploidization is difficult to

achieve and viable lines are limited to a few species (Piferrer

et al., 2009), the current protocol makes the yellowtail tetra

one of the most successful species with respect to

tetraploidization. The tetraploids are fertile, and they are

being used to produce 100% triploid progenies.

Gynogenesis: Searching for monosex
female progenies

Female yellowtail tetra fish are large and present increased

growth performance when compared to males (Nascimento

et al., 2017b), emphasizing the need for the establishment of a

monosex female population in aquaculture. Studies on sex

chromosomes using induced gynogenesis were then

conducted (Nascimento et al., 2020a), indicating that the

species presents an XX sex-determining system. This was

the first attempt in gynogenesis within a Neotropical

species, and most of the progenies reached 100% females

(three out of four crosses). The resultant males derived

from gynogenetic progenies were studied, concluding they

were functional males (Lázaro et al., 2021).

Development of flow cytometric
procedures

In order to assess the success of chromosome

manipulation, flow cytometry is a valuable tool to confirm

the ploidy status of the polyploids and the efficacy of

chromosome inactivation and doubling in uniparental

progenies (i.e., gynogenesis and androgenesis). An

important step for chromosome manipulation in yellowtail

tetra was to develop flow cytometric analysis using dorsal fin

samples (Xavier et al., 2017). This technique is based on a

two-step procedure with cell lysing and nuclear staining for

the subsequent analysis. In addition, cold storage of the fin

samples for the subsequent flow cytometric analysis was

developed (Yasui et al., 2020a). Regarding chromosome

FIGURE 2
Cytological and ultrastructural images from the oocytes and spermatozoa of the yellowtail tetra Astyanax altiparanae. Ultrastructural analysis
(scanning electron microscopy,SEM) of the oocyte micropyle (A) showing grooves that guide the sperm entry. DAPI staining of the fertilized oocyte
showing male and female pronucleus (B). Second polar body extrusion (C). Spermatozoon of the yellowtail tetra (D). This information was important
to develop chromosome set manipulation techniques.
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manipulation in a Neotropical species, the yellowtail tetra

was the first to be analyzed using flow cytometry.

Larvae feeding under laboratory
conditions

In aquaculture, the general procedure for larvae feeding

and raising them into a juvenile stage consists of releasing the

larvae into a fertilized pond containing plankton. On the

other hand, it is important to feed the fish under laboratory

conditions in small containers (Petri dishes, aquaria, or

plastic containers). It was necessary then to understand in

detail the adequate food for the yellowtail tetra. In order to

fill this gap, Bertolini et al. (2018) evaluated different diets

and concluded that artemia and dry food optimized the

growth and survival under laboratory conditions, giving

them a routine for dependable growth of larvae into the

juvenile stage.

Prevention of sperm activation by
urine

In small-bodied fish like the yellowtail tetra, sperm

sampling is difficult to achieve because of small size. In

the yellowtail tetra, the sperm is collected using a 1,000-

µL micropipette. However, urine and sperm are released

during sperm sampling, and the urine activates sperm

motility and decreases the fertilization ability. The

problem was partially solved using an immobilizing

solution to re-immobilize the sperm (Yasui et al., 2015),

although some activation still occurs. In a recent study

(Rocha et al., 2020), the problem of activation was solved

by maintaining males in a hyperosmotic environment (1%

NaCl) for a few hours. The males were induced to

spermatization and maintained in 1% NaCl for 6 h. The

hyperosmotic environment concentrates the urine and

does not activate the sperm motility at sampling. This

procedure is now used for sperm sampling under

laboratory conditions.

Surrogate propagation using
yellowtail tetra

Surrogate propagation denotes a fish producing gametes

from other fish. This approach is interesting for aquaculture

and conservation of genetic resources. Considering the yellowtail

tetra as a model organism, this species may be used to produce

gametes from endangered fish species. In addition, cells from

endangered species may be cryopreserved in liquid nitrogen,

serving later as a repository gene bank. The yellowtail tetra is

being used as a model for other endangered characin species,

such as Brycon orbignyanus. Other aquaculture characins, such as

the streaked prochilod (Prochilodus lineatus) and pacu (Piaractus

mesopotamicus) (Coelho et al., 2019, 2021, respectively), are also

being studied to serve as cell donors, using yellowtail tetra to

produce gametes from those species. As the sterile host was

already established (Piva et al., 2018), transplantation procedures

are now being established for several characin species.

The PGCs of the yellowtail tetra were identified in vivo using

a GFP-nos1 3′UTR mRNA from Danio rerio. The injection of

this artificial mRNA resulted in the expression of GFP in the

PGCs (Figure 3). In addition, the spermatogonial stem cells from

endangered B. orbygnianus were successfully transplanted into

sterile adults of yellowtail tetra (Figure 3). Those procedures are

being established as repository procedures for endangered

species.

The use of yellowtail tetra in other
studies

The yellowtail tetra is also being used in other studies. For

instance, based on the first attempt to analyze sperm motility

by CASA (Pereira-Santos et al., 2016), motility parameters are

being used in toxicological studies about pollutants, such as

herbicides (Gonçalves et al., 2018) and aluminum (Pinheiro

et al., 2020). The embryos and adults of yellowtail tetra species

were used to evaluate toxicity of cyanopeptides (Fernandes

et al., 2019) and aflatoxins (Michelin et al., 2017). An

immunological study using triploids was conducted by

Levy-Pereira et al. (2021), who observed that the cell

counts of erythrocytes, leukocytes, and neutrophils were

lower in triploid fish than diploids. Triploid erythrocytes

were also larger with higher frequencies of abnormalities.

Differences in gene expression related to immune response

were also observed, reporting the lower expression of cytokine

IL-1 (in the head, kidney, liver, and spleen) and TGF-β (in the

spleen) in triploids. These results indicate that triploid fish

present impaired immune systems and probably lower

resistance to diseases. However, future studies involving

pathogen challenges are necessary to confirm these

assumptions.

Application of technologies in other
species

Based on the results obtained for yellowtail tetra, several

advances within other Neotropical species were established.

Using the same temperature (40°C) to induce triploids in the

yellowtail tetra, triploid progenies were obtained for the streaked

prochilod Prochilodus lineatus (Yasui et al., 2020b) and Brycon

amazonicus (Nascimento et al., 2021). With some minor
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modifications, triploids and tetraploids were also generated when

the temperature was set at 38°C for Pimelodus maculatus

(Bertolini et al., 2020) and Rhamdia quelen (Garcia et al.,

2017; García et al., 2017). B. amazonicus (Da Silva et al.,

2017), Pimelodus maculatus and Pseudopimelodus mangurus

(Arashiro et al., 2018), and P. lineatus (Coelho et al., 2019)

were also studied in the field of embryology using the same

procedures and temperatures (22°C, 26°C, and 30°C) as used for

the yellowtail tetra. The same protocol for cytometric analysis

established in the yellowtail tetra (Xavier et al., 2017) was used to

identify polyploids in B. amazonicus (Nascimento et al., 2021), P.

lineatus (Yasui et al., 2020b), P. maculatus (Bertolini et al., 2020),

and R. quelen (Garcia et al., 2017).

Future directions

Development of molecular markers is a priority for the

yellowtail tetra, since it is the main confirmation tool for

paternity within androgenesis, gynogenesis, and surrogate

propagation. Techniques regarding cryopreservation of

unusual fish developed recently are also being developed, such

as gynogenetic, androgenetic, and polyploid genebanking.

Cryopreservation of X spermatozoa obtained from

spontaneously occurring gynogenetic males will be important

to obtain monosex female populations. Regarding aquaculture,

the establishment of sterile female populations will increase

growth performance and also avoid the negative

environmental impact caused by fish escaping. Transgenesis,

single and multiple ICSI, and germ cell transplantation are

among the ongoing studies in our group. However, several

biotechniques currently used in other fish species have

potential for A. altiparanae, such as the use of single

nucleotide polymorphisms (SNPs), CRISPR/Cas9, transgenic,

and microRNAs (miRNAs), and are discussed in the following

paragraphs.

Clustered regularly interspaced palindromic repeats

(CRISPR/Cas9) are DNA sequences that are used in genome

editing technology. This technology, unprecedented in native fish

species, has been increasingly used in aquaculture to manipulate

reproduction and omega-3 content, growth, and metabolism

(Straume et al., 2020; Sun et al., 2020), and the main model

species for CRISPR/Cas9 in fish is the zebrafish (Danio rerio)

(Chaudhary et al., 2020).

FIGURE 3
Transplantation of spermatogonial stem cells from endangered Brycon orbignyanus through the papillae of sterile juvenile yellowtail tetra
Astyanax altiparanae (A). Detached area indicates the testis containing transplanted cells stained with PKH26 and observed under fluorescence
microscopy (B). Same histological section visualized under normal light, and hematoxylin-eosin staining shows spermatocytes and spermatogonia
from B. orbignyanus. Scale (B–C): 50 µm. Below is a yellowtail tetra embryo injected with GFP-nos1 3′UTR mRNA from Danio rerio, observed
under normal light (D).Same embryo, observed under fluorescence microscopy, shows the presumptive primordial germ cells (PGCs) with GFP
expression (E). Gonadal ridge area in detail (F).
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Transgenic fish, on the other hand, have already been

developed for many fish species, such as the medaka (Oryzias

latipes), zebrafish (Danio rerio), rainbow trout (Oncorhynchus

mykiss), and loach (M. anguillicaudatus). Transgenic organisms

receive DNA sequencing by artificial methods, incorporating one

or more sequences into their chromosomal DNA. This type of

animal is generally produced by microinjection or

electroporation of newly fertilized oocytes or unfertilized

gametes (egg or spermatozoa) (Maclean and Laight, 2000;

Chen and Chen, 2020). Among the potential applications of

transgenics in aquatic organisms, the increase in growth (Nam

et al., 2001), tolerance to temperature (Cortemeglia and

Beitinger, 2005) and salinity (El-Zaeem et al., 2014;

Bystriansky et al., 2017), resistance to diseases (Dunham,

2009), and induction of sterility (Yu et al., 2011) are highlighted.

The SNPs are produced by mutations that occur in the

genome, and its analysis has offered several applications in

fish biology and aquaculture. An SNP marker was developed

by liver transcriptome sequencing in pacu (Piaractus

mesopotamicus), enabling a broad understanding of the

population structure in the species and the possibility of

elucidating adaptive mechanisms and manipulation of

assisted reproduction. The establishment of SNPs also

enabled the selection of groups with better genetic

variability for storage and production (Mastrochirico-Filho

et al., 2016).

The use of miRNAs, which are small and non-protein-

coding RNA sequences, has increased the knowledge about

several aspects of biological regulation mechanisms in animals

and plants (Bizuayehu and Babiak, 2014; Mennigen, 2016). In

fish, miRNAs are involved in several biological functions, such

as regulation of development, organogenesis, growth, immune

response, and reproduction (Mennigen, 2016; Andreassen and

Høyheim, 2017; Tang et al., 2019; Zayed et al., 2019). As the

study with miRNAs in fish are relatively recent and focused on

a few species, more efforts are necessary.

In light of this, A. altiparanae can be considered the perfect

model for Neotropical fish mainly because it is used in both basic

and applied studies, such as aquaculture.

Discussion

The establishment of a model fish is strategic for basic and

applied sciences. The yellowtail tetra is being successfully used for

this purpose. Triploids, tetraploids, gynogenetic, and chimeric fish

were successfully developed by means of advanced biotechnologies

(Adamov et al., 2017; Nascimento et al., 2020a, 2020b). In the

Neotropical region, the yellowtail tetra became the most advanced

with regards to such technologies, having important implications in

embryology, genetics, reproduction, cryobiology, and even in

medical sciences such as flow cytometry (Santos et al., 2016;

Xavier et al., 2017; Yasui et al., 2020a). Several characin species

present critical reproduction challenges or are considered

endangered (Silveira and Straube, 2008). Some of the migratory

aquaculture species such as Prochilodus lineatus, Piaractus

mesopotamicus, Colossoma macropomum, Brycon amazonicus,

and Salminus brasiliensis present large size (2–15 kg), and sex

maturation occurs within 2–3 years (Hainfellner et al., 2012;

Pardo-Carrasco et al., 2006; da Costa and Mateus, 2009; Almeida

et al., 2016; Barzotto andMateus, 2017). The yellowtail tetra, notably

also a characin species, may then be used to produce gametes from

these characins. This would facilitate the reproductive management

and accelerate techniques for genetic improvement, which requires

several successive generations (Arai, 2001; Du et al., 2021).

Despite their importance to aquaculture and inland fisheries, the

development of biotechniques is difficult to achieve because

spawning management is more difficult. However, some

techniques developed for the yellowtail tetra may be promptly

used in other species. For instance, triploidization of Brycon

amazonicus (Nascimento et al., 2021) and Prochilodus lineatus

(Yasui et al., 2020b) was successful when using the same

procedures of heat shocking for second polar body retention

(2 mpf for 2 min, 40°C). In addition, confirmation of the ploidy

status using flow cytometry was achieved using the protocol

established for yellowtail tetra (Xavier et al., 2017; Yasui et al., 2020a).

In the case of chromosome set manipulation, cytological

observation of post-insemination events (second polar body

extrusion and pronucleus fusion) gave a precise timing for the

successfulmanipulation of the reproduction cycle. The observation

of second polar body release by histological sections and scanning

electron microscopy improved the production of triploids and

gynogenetic progenies. The use of fluorescent dyes such as DAPI

(4′,6-diamidino-2-phenylindole) to observe pronucleus fusion

(Itono et al., 2006) gave a precise timing for diploidization.

Most of the previous protocols to obtain triploids and

tetraploids used trial-and-error procedures (Piferrer et al., 2009)

without cytological observations, which is time-consuming and

more difficult to achieve.

Toxicological studies conducted on the yellowtail tetra are

being used to establish safe concentrations for the environment

(Gonçalves et al., 2018; Fernandes et al., 2019) and food products

(Michelin et al., 2017), which also emphasize the importance of a

model species.

Establishment of a model organism requires long-term

research efforts for not only in the field of genetics and

reproduction, but it also lays the foundation for complementary

studies in the field of nutrition, physiology, animal behavior, water

quality, immunology, pathology, and many other research fields.

In addition, several confirmation tools become necessary for each

of them (flow cytometry and water analysis, etc). In order to

develop advanced biotechnologies in the yellowtail tetra, several

initial stages were developed using trial-and-error experiments

with most resulting in unpublished data, focusing on parameters

that include container volume to maintain fish, materials (plastic

and glass, etc.), type of food, substrate (as plants or tubes to avoid
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aggressive behavior), and many other steps that are time-

consuming. Although it is simple to evaluate, in general, these

kinds of bottlenecks are not published in the literature, and the

successful procedures and parameters take long periods to be

developed. As seen previously, establishing a model organism is

thus a multidisciplinary task, for which teamwork is extremely

necessary. In the case of the yellowtail tetra, a part of the

laboratorial procedures were adapted and transferred from the

loach Misgurnus anguillicaudatus, but several biological

differences did not allow for advancement in some research

fields. In the case of gamete sampling, transfer of the

procedures was successful, but the transplantation of embryonic

cells was not possible in the yellowtail tetra because of the enzymes

for chorion digestion and solutions to maintain the denuded

embryos. For example, the hatching period from fertilization to

hatching, depending on the temperature, takes 2–3 days in the

loach (Fujimoto et al., 2006) and approximately 60 days in

salmonids (Danner, 2008), but in the yellowtail tetra, hatching

occurs in only 11 h (Santos et al., 2016). This difference makes

PGC transplantation much more difficult in the yellowtail tetra,

since transplantation is possible only within a few minutes. On the

other hand, other biological features of the yellowtail tetra are

interesting, such as the possibility of blood sampling and a

subsequent serum analysis. Notably, this is difficult to achieve

in some small-bodied fish like the medaka and the zebrafish.

In conclusion, the yellowtail tetra is an emerging experimental

fish model for several research fields, especially with regards to

genetics and reproduction. Basic and advanced studies were carried

out during the last decade in order to establish this species as amodel

organism, and it is currently considered the most advanced model

organism in techniques such as germ cell transplantation,

micromanipulation, and chromosome set manipulation. Other

research efforts are still ongoing.
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