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Programmedcell death (PCD) is a process that regulates the homeostasis of cells in the body,
and it plays an important role in tumor immunity. However, the expression profile and clinical
characteristics of PCD-related genes remain unclear. In this study, we comprehensively
analysed the PCD genes with the tumor microenvironment (TME), drug sensitivity,
immunothearapy response, and evaluated their prognostic value through systematic
bioinformatics methods.We identified 125 PCD-related regulatory factors, which were
expressed differently in lung adenocarcinoma (LUAD) and normal lung tissues. 32 PCD
related prognostic genes associated with LUAD were identified by univariate Cox analysis.
23 PCD-related gene signature was constructed, and all LUAD patients in the Cancer
Genome Atlas (TCGA) dataset were stratified as low-risk or high-risk groups according to the
risk score. This signature had a powerful prognostic value, which was validated in three
independent data sets and clinical subtypes. Additionally, it has unique properties in TME.
Further analysis showed that different risk groups have different immune cell infiltration,
immune inflammation profile, immune pathways, and immune subtypes. In addition, the low-
risk group had a better immunotherapy response with higher levels of multiple immune
checkpoints and lower Tumor immune dysfunction and exclusion (TIDE) score, while the
high-risk group was sensitive to multiple chemotherapeutic drugs because of its lower IC50.
In short, this is the first model to predict the prognosis and immunological status of LUAD
patients based on PCD-related genes. It may be used as a predictor of immunotherapy
response to achieve customized treatment of LUAD.
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BACKGROUND

In recent decades, lung cancer has become a public health
burden threatening global health, and its incidence has
remained high (Zhang and Luo, 2021). In 2020, there are
an estimated 2.2 million new cancer cases and 1.8 million
deaths worldwide. Its incidence is second only to female breast
cancer and is the main cause of male cancer morbidity and
mortality (Sung and Ferlay, 2021). Among all primary types of
lung cancer, non-small cell lung cancer accounts for about
85%, which includes adenocarcinoma, squamous cell
carcinoma, bronchoalveolar adenocarcinoma, large cell
carcinoma, and other pathological types (Torre and Bray,
2015). Among them, LUAD accounts for more than 40% of
lung cancers and is also a major pathological subtype of lung
cancer (Abe and Tanaka, 2016). For many years, lung cancer
genesis mechanism and potential treatment methods have
always been the endpoints of lung cancer research. A large
amount of investment has been made in clinical treatment
strategies for lung cancer, such as molecularly targeted drugs
and immune checkpoint blockades (ICBs). However, despite
the remarkable research, the 5-years survival rate for lung
cancer is still only 17% (Zhao and Varn, 2018). Therefore,
novel prognostic methods to identify high-risk patients are
required to further assist in the design of new therapeutic
options for LUAD patients. With the development of
bioinformatics, there had been many PCD-related
prognosis signatures to stratify lung adenocarcinoma in the
past (Dong and Bian, 2021; Zhang and Yang, 2021). However,
these signatures constructed the model using just a single cell
death-related gene, ignoring the inner association or cross-
talk in PCDs. As a consequence, including all PCD-related
genes into the model may be more persuasive.

PCD is an essential process that is vital for the growth and
development of an organism. There are five classical cell death
pathways: cell death associated with autophagy, apoptosis,
necrosis, pyroptosis, and ferroptosis (Dixon and Lemberg,
2012; Vande Walle and Lamkanfi, 2016; Chen and Kang, 2018;
Green, 2019). It has been demonstrated that these PCDs are
interconnected and can be cross-regulated with each other.
Autophagy, also known as type II programmed cell death,
plays a role in the onset and progression of a variety of
illnesses (Su and Mei, 2013). Autophagy and apoptosis
have a complicated relationship. Autophagy can block
apoptosis in some instances, but it can also trigger cell
death in combination with apoptosis or on its own as a
backup mechanism in the case of apoptosis deficit (Su and
Mei, 2013). Some drug studies targeting the autophagy
pathway have shown that promoting autophagic death or
inhibiting autophagy protection is an effective measure to
eliminate tumor cells and resist drug resistance to
chemotherapy in recent years, providing a glimmer of hope
for overcoming the difficult problem of the tumor (Baraz and
Cisterne, 2014). Both apoptosis and pyroptosis are involved in
the activation of caspase family members, and they may have a
common evolutionary origin. The latest results also suggest
that gasdermin E (GSDM-E) is homologous to gasdermin D

(GSDM-D) in structure and pore-forming function, and can
be cleaved and activated by caspase-3, the executor of
apoptosis (Jiang and Qi, 2020). The solubility and
inflammatory morphology of necroptosis and pyroptosis
are similar, resulting in a cross-over of both processes.
NLRP3 inflammatory bodies can produce pyroptosis and
can be triggered when cellular ion homeostasis changes;
however, this trait also permits it to be activated in
response to necroptosis-induced membrane destruction
(Frank and Vince, 2019). Ferroptosis is a form of cell death
caused by uncontrolled peroxidation of phospholipid
membrane caused by iron dependence. NCOA4 can play a
role in the degradation of ferritin (cellular iron storage
protein) and support ferroptosis. Blocking autophagy or
knocking out NCOA4 can inhibit the accumulation of
labile iron and ROS associated with ferroptosis and prevent
eventual ferroptosis (Zhou and Liu, 2020). These results
indicate that these PCDs not only regulate each other in
function but also have crosstalk with each other in the
process of tumor development (Tang and Xu, 2020).

As early as the 1990s, the important relationship between PCD
and the immune system was valued. In healthy people, the
removal of thymocytes that express autoreactive or non-
reactive T cell receptors (TCRs), the removal of autoreactive
immature B cells, and the regression of inflammation are
inseparable from PCD(Nagata and Tanaka, 2017). When PCD
in the body is abnormal, the immune system will also change
accordingly, such as apoptosis leading to immune deficiency
(Rieux-Laucat and Le Deist, 1995; Madkaikar and Mhatre,
2011). As one of the important regulation methods of the
body’s immune system, PCD may have potential biological
significance in tumor treatment (Zhang and Zhang, 2020).
However, the role of PCD in the immune microenvironment
of LUAD has not been thoroughly studied.

In this study, we explored the prognostic significance of
PCD genes and developed a new risk score based on the PCD
related genes, which had a powerful value to predict the
prognosis of LUAD. Investigating the immune cell
infiltration, TME, and drug sensitivity in different risk
groups, it is possible to predict immunotherapy response
and find sensitive drugs for patients with LUAD in
different risk groups.

MATERIALS AND METHODS

Publicly Data Collection
The entire flow chart of this study was shown in
Supplementary Figure S1. Cases with LUAD from four
public databases were enrolled in this study. Among them,
368 LUAD samples with clinical characteristics were collected
from TCGA(https://portal.gdc.cancer.gov/), which served as
the training set. The other three independent validation sets
containing 1067 cases were downloaded from Gene
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo), including226 samples from GSE31210, 398 samples
from GSE72094, and 443 samples from GSE68465. Log2
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conversion was performed for mRNA expression data, and the
average expression amount was taken as the gene expression
quantity. The basic clinical characteristics of these four
cohorts are shown in Table 1.

The Identification of PCDs Mode Gene Sets
Apoptosis and necroptosis, these two gene sets related to
programmed cell death mode were downloaded from Gene
Set Enrichment Analysis (GSEA) (http://www.gsea-msigdb.
org/gsea). The gene set of autophagy was downloaded from
Human Autophagy Database (HADb) (http://www.
autophagy.lu/index.html) The gene set of pyroptosis was
referenced in the following literature reports (Wang and
Yin, 2017; Karki and Kanneganti, 2019; Xia and Wang,
2019). The gene set of ferroptosis was downloaded from
FerrDb (http://www.zhounan.org/ferrdb). We identified the
DEGs between normal and malignant tissues in TCGA
samples. The DEGs were identified using the “limma”
package with p-value <0.05. Using the search tool of
Retrieval of Interacting Genes (STRING), the network of
DEG was constructed.

The PCD Signature Generation in LUAD
The DEGs were selected from the TCGA validation set for
univariate cox regression analysis. p <0.05 was selected as the
p-value, and 32 prognosis-related genes were obtained by
using univariate Cox analysis. Then lasso regression was
used to narrow the candidate genes and construct a
prognostic model. Finally, the 23 genes and their regression
coefficients were retained by multivariable Cox regression
analysis. Then, the risk score was generated according to
the following formula. Risk score = β1× G1+ β 2 × G2 +
. . .β n × Gn, where βn represented the coefficient of the gene,
and Gn presented the expression level of the gene. The
samples in the training and validation sets were divided
into the high and low-risk groups based on the optimal
cut-off value of the risk scores. Detailed methods of this
part could be found in the previous article (Fan and Pan,
2021).

Pathway and Function Enrichment Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) pathway and functional enrichment analysis were
performed using R statistical software and R packages.

Analysis of Immune Cell Infiltration, Immune
Pathway, and TME
To describe the immune landscape of LUAD,
CIBERSORT(Newman and Liu, 2015) and single sample
GSEA (ssGSEA) (Barbie and Tamayo 2009) analysis were used
to quantify the infiltration abundance of various immune cells
and immune pathways in TME. The ESTIMATE algorithm
(Becht and Giraldo, 2016) was used to estimate the content of
Stromal and Immune cells in malignant tumors, and to infer
tumor purity and calculate immune score and stromal score.

GSVA and GSEA Analysis
The results of the seven metagenes clusters were emulated by
Gene Sets Variation Analysis (GSVA), which evaluates whether a
gene is highly or lowly expressed in a sample in the context of the
sample population distribution (Hänzelmann et al., 2013).
Signaling pathways related to the PCD-based signature were
analyzed through Gene Set Enrichment Analysis (GSEA).
GSEA is commonly used to evaluate the distribution trend of
genes in a predefined gene set, which has been widely reported to
investigate the biological process difference between subtypes
(Hu and Wu., 2021; Zhang and Qin, 2021).

Tumor Mutational Burden and Neoantigen
Analysis
Gene mutation data of patients with LUAD was generated from the
TCGA dataset (https://portal.gdc.cancer.gov/). The definition of
tumor mutational burden (TMB) is mutations per million bases.
The protein with specific amino acid sequence variation produced by
cancer cells based on genetic variation is called“neoantigen”. We
obtained neoantigen data of LUAD patients from The Cancer
Immunome Atlas (TCIA) (https://tcia.at/home).

TABLE 1 | Clinical characteristics of the patients from multiple institutions.

Characteristics TCGA N = 368 GSE31210 N = 226 GSE68465 N = 443 GSE72094 N = 398

Age 65.06 ± 0.5062 59.57 ± 0.4924 64.42 ± 0.4799 69.36 ± 0.4736
Gender
Male 172 (46.7%) 105 (46.5%) 223 (50.3%) 176 (44.2%)
Female 196 (53.3%) 121 (53.5%) 220 (49.7%) 222 (55.8%)

Smoking
Yes 252 (68.5%) 111 (49.1%) 300 (67.7%) 300 (75.4%)
No 116 (31.5%) 115 (50.9%) 49 (11.1%) 31 (7.9%)
NA 0 0 94 (21.2%) 67 (16.8%)

Stage
I and II 309 (84.0%) 226 (100%) NA 321 (80.7%)
III and IV 59 (16.0%) 0 NA 72 (19.3%)

Status
Alive 304 (82.6%) 191 (84.5%) 236 (53.3%) 113 (28.4%)
Death 64 (17.4%) 35 (15.5%) 207 (46.7%) 285 (71.6%)
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TIDE and Immune Checkpoint Analysis
TIDE score was first defined by Jiang and his colleagues (Jiang
and Gu, 2018), which has been proven to have robust power for
predicting the prognosis and immunotherapy response of cancer
patients. We obtained the TIDE score, IFN-g (IFNG), merck18
(T-cell-inflamed signature) score, CD8 score, dysfunction score,
and exclusion score from the TIDE web (http://tide.dfci.harvard.
edu). The expression of immune checkpoints (PD-1, PD-L1,
CTLA4, TIM-3, and LAG3) was extracted from the TCGA
database.

Statistical Analysis
The patients with LUAD were divided into high- and low-risk
groups according to the optimal cutoff value. The Kaplan–Meier
method was used to evaluate the OS between the high- and the
low-risk group, and the log-rank was used to verify the significant
difference. The unpaired u-test was used to analyze the
distribution of immune cells, TMB, number of neoantigens,
number of clonal neoantigens, number of sub-clonal
neoantigens, PD-L1 protein expression, and TIDE in the
different risk groups. Independent prognostic factors were
calculated by Cox proportional hazard regression model.
Among all the analysis methods, p < 0.05 was considered
statistically different. R 3.6.1 (https://www.r-project.org) and
GraphPad Prism 8.0.1. were used to analyze data and create
tables and figures.

RESULTS

Identification of Programmed Cell Death
Mode in LUAD
PCD pathways include five specific cell death modes, namely
apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis.
We analyzed the cell death mode gene sets from different sources,
and the sizes of the five PCD pathway gene sets are not consistent,
568 genes for apoptosis, 52 genes for necroptosis, 328 genes for
autophagy, 33 genes for pyroptosis, and 258 genes for ferroptosis.
The Venn diagram shows that the five PCD pathway genes
partially overlap, suggesting that there is crosstalk in the PCD
pathway (Supplementary Figure S2A). Heatmap
(Supplementary Figure S2B) showed the expression
characteristics of each gene of PCD. Then we selected two-fold
at least DEGs to draw a gene regulatory network in all PCD genes
(Supplementary Figure S2C), which indicates there is cross-talk
in these PCD genes.

Features of Consensus Matrix
Post-clustering in LUAD
Subsequently, we use unsupervised clustering analysis to cluster
the LUAD data into cluster 1 and cluster 2 (Figure 1A). Heatmap
(Figure 1B) showed the difference in gene expression between the
two clusters. It can be seen that the most of gene expression of

FIGURE 1 | Unsupervised clustering analysis in TCGA dataset. (A) The TCGA dataset were stratified into two clusters based on the consensus matrix (k = 2). (B)
Differences in clinicopathologic features and expression levels of differentially expressed PCDs between the two distinct clusters. (blue: low expression level; red: high
expression level). (C) Survival curve analysis show no difference in Os between the two clusters (p > 0.05).
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FIGURE 2 | Construction of the PCD-based signature in TCGA datasets. (A)The forest map showing the 32 prognostic PCD-related DEGs by univariate cox
regression analysis (p < 0.05). (B) Cross-validation for adjusting the parameter selection in the LASSO regression. (C) LASSO regression analysis of the 32 OS-related
DEGs. (D)Heatmap showing the features of 23 identified genes and clinical characteristics of two molecular clusters. (E) The distribution of risk score and survival states.
Kaplan Meier plot showing the significant difference of OS in total LUAD (n = 368) (F) ; in early-stage (I or II) (n = 309) (G)and in advanced stage (III or IV) (n = 59) (H) in
the high-risk and low-risk groups. (I) ROC curve showing the sensitivity and specificity to predict 1-, 3-, and 5-years survival based on PCD-based signature, with the
area under curve being 0.8210.834, and 0.812, respectively.
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cluster 2 is higher than that of cluster 1. However, these two
clusters did not show a clear difference in survival (Figure 1C).

The Landscape and Prognostic
Significance of the PCD-Based Signature in
LUAD
32 prognostic related genes were screened out by univariate
regression analysis for further analysis (Figure 2A). Lasso
regression analysis was performed on these genes to narrow
the candidate genes (Figures 2B,C). Finally, we selected 23
genes to construct a PCD-related signature with the risk score
= 0.4460 ACSL3 +(-0.05857 BMP5)+(-0.0820 CX3CL1)+(-0.0062
CX3CR1)+(-0.3164 EEF1A1)+(0.6089 EMC2) +(0.4358
FADD)+(0.0208 GPX2)+(-0.1823 HGF)+(0.0215
KRT18)+(0.0217 KRT8)+(0.5293 MSX1)+(-0.8964 NFS1
)+(0.1788 NOX1 )+(0.0659 PDX1)+(-0.2112 PEBP1 )+(-0.0517
PIM2)+(-0.0541 PLK3) +(-0.1423 PRKCD )+(-0.46223 PSAP
)+(0.4212 TLR3 )+(-0.2217 UBE4B)+(0.0794 YWHAG).
Figure 2D showed that the distribution of these 23 genes was
significantly different in different risk groups. Additionally, we
depicted the copy number variation (CNV) profiles in the human
chromosome and frequency of somatic mutations of these 23
genes and found that HGF presented the highest mutation
frequency, followed by UBE4B (Supplementary Figure S3).
The samples with LUAD were divided into two risk groups
based on the cut-off value of the risk score. Among them, the
high-risk group had a higher proportion of death samples, while
the low-risk group had more survivors (Figure 2E). Principal
component analysis (PCA) and t-distributed stochastic neighbor
embedding analysis (t-SNE) showed that LUAD can be well
divided into two categories according to the risk score, which
indicated that the PCD genes-based signature had good
stratification ability (Figure 2E). This was fully verified by the
later survival analysis, with the overall survival (OS) of the high-
risk group being significantly lower than that of the low-risk
group (p < 0.001, Figure 2F), regardless of whether the patients
were in early-stage (I or II) or advanced stage (III or IV) (Figures
2G,H). By performing a time-dependent receiver operating
characteristic (ROC) analysis to evaluate the model’s
sensitivity and specificity (Figure 2I), we noticed that the area
under the ROC curve was 0.821, 0.834, and 0.812 for 1 year,
2 years, and 3 years, respectively, suggesting that PCD-related
gene sets were valuable for the diagnosis of LUAD. Meanwhile,
we also used three independent GEO data sets for confirmatory
ROC analysis indicating that our PCD-based signature had a
good prognostic ability (Supplementary Figure S4).

Validation of the Risk Model in the GEO
Cohort
We enrolled three GEO sets for external validation to validate our
risk model’s forecasting capacity. Patients in the three GEO
validation sets were separated into two groups based on the
optional cut-off value of their risk score. Comparing the OS
time of the high-risk and low-risk groups in GES31210, it was
found that the OS of the low-risk group was significantly higher

than that of the high-risk group (Figure 3A). GSE72094 and
GSE68465 yielded the same results (Figures 3B,C). In addition,
we determined the prognostic significance of PCD-related
signature in these public cohorts through a prognostic meta-
analysis based on these four groups (n = 1,434). Our results
confirmed that PCD-related signature was a risk factor for LUAD
patients (OR, 3.93; 95%CI, 1.46–10.54, p < 0.01) (Figure 3D). To
demonstrate the prognostic ability of this RCD-related signature,
we investigated the effect of risk groups on OS in various clinical
subtypes and noticed that the low-risk group had better OS than
the high-risk group no matter whether the patients were old or
young, male or female, in early-stage T stage (T1-2) or advanced
T stage (T3-4), in N0 or N1-3 stage. For the M1 stage, there is no
obvious OS difference between the two groups, and probably due
to too few cases (Supplementary Figure.S5).

The PCD-Related Gene Signature Is an
Independent Risk Factor for LUAD
Univariate and multivariate regression analyses were undertaken
to confirm whether the PCD-related gene signature was
influenced by other clinical parameters, and the findings
revealed that risk score was an independent prognostic
predictor (p <0.001, HR: 4.0072, 95%CI: 2.7365–5.8682. Table 2)

Biological Pathways of the PCD-Related
Gene Signature
For such a powerful predictive status, We paid our interest on the
exploration of its potential mechanisms. Firstly, to analyze the
molecular biological characteristics of this model
comprehensively, we screened out these genes strongly related
to PCD-related gene signature score [log FC(fold change)＞1, p <
0.05]. The heatmap (Figure 4A) indicated that 146 differentially
expressed genes (DEGs) were selected, and most of them were
positively related to high-risk groups and negatively related to
low-risk groups. Then, for these genes, we further performed GO
and KEGG function enrichment analysis to deeply study the
mechanism. As shown in Figure 4B, these genes were mainly
involved in many immune-related pathways, such as the B cell-
mediated immunity pathway, immunoglobulin complex
pathway, antigen binding, etc. In addition, KEGG analysis
showed that these genes were closely related to hematopoietic
cell lineage, B cell receptor signaling pathway, primary
immunodeficiency, Ras pathway, MAPK pathway, etc.
(Figure 4C). GSEA analysis (Jiang and Gu, 2018) was
performed to prevent removing any genes that have vital
biological roles but are not differentially expressed in the high-
risk and low-risk groups. It was discovered that a variety of
immunological pathways were correlated with a risk score, with
strong enrichment in the low-risk group (Figures 4D–F).

Inflammatory and Immunologic Profile of
the PCD-Related Gene Signature
Given that the identified characteristics are closely related to a
series of immune pathways, we further studied the immune
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FIGURE 3 | Validation of the PCD-related signature in GEO datasets. (A)Kaplan-Meier curves showing the significance of OS in GSE31210 (n = 226) (B) in GSE
72094 (n = 398) and (C) in GSE68465 (n = 443). (D)A meta-analysis showed the prognostic outcomes in four independent datasets (HR:3.93; 95%CI:1.46–10.54).

TABLE 2 | Univariable and multivariable Cox regression analysis of the PCDs-based signature and clinical feature in TCGA dataset.

Variable Univariable Analysis Multivariable Analysis

HR 95%CI p Value HR 95%CI p Value

Stage
I-II or III-IV 1.8743 0.9612–3.6548 0.0652

T Stage
T1-2 or T3-4 2.7935 1.3750–5.5754 0.0045 1.2850 0.6181–2.6712 0.5019

N stage
N0 or N1-3 1.8613 1.0145–3.4148 0.0448 2.0176 1.0897–3.7356 0.0255

M stage
M0,M1 or Mx 2.1131 0.6484–6.8869 0.2146

Gender
Male or Female 1.6878 0.9100–3.1376 0.0966

Age
≤60 or ＞60 1.5049 0.8209–2.7588 0.1862

Smoking
Yes or No 0.6571 0.3563–1.2119 0.1788

Risk Score
High or Low 3.9516 2.7510–5.6760 <0.001 4.0072 2.7365–5.8682 <0.001

Abbreviations: HR, hazard ratio; CI, confidence interval.
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landscape of the LUAD high-risk and low-risk groups in the
TCGA dataset. Firstly, we conducted the stromal score, immune
score, and tumor purity in high-risk and low-risk groups. As we
can see, compared to the low-risk group, the high-risk group had
a lower stromal score (Figure 5A) and immune score
(Figure 5C), but a higher tumor purity (Figure 5E). We
conducted a correlation analysis between stromal score,
immune score, tumor purity, and risk score. Only the tumor
purity (Figure 5F) was positively correlated with the risk score,
and the stromal score (Figure 5B) and immune score

(Figure 5D) were negatively correlated with the risk score.
This meant that the high-risk group was related to higher
tumor purity and poorer immune infiltration environment.
Secondly, we analyzed how immune cells and immunological
pathways were enriched in the high- and low-risk groups. LM22
in CIBERSORT was used to evaluate immune cell infiltration in
the high-risk and low-risk groups. The low-risk group had higher
levels of B cells, CD8+ T cells, M2-type macrophages, natural
killer cells, and regulatory T cells. Only CD4+ cells have a better
infiltration proportion in the high-risk group (Figure 5G). To

FIGURE 4 |Biological pathway and function between the two risk groups. (A) Heatmap and the difference of clinical characteristics and DEGs between the
high- and low-risk groups (blue: low expression level; red: high expression level). (B)GO and (C)KEGG analysis revealed that DEGs in high- and low-risk
subgroups were enriched in multiple immune and tumor-related pathways. (D–F) GSEA analysis validated multiple biological pathways related to inmmunity
and tumor enriched in the high-risk group and low-risk group.
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FIGURE 5 | The immune landscape of PCD-related signature in LUAD. (A,B) Significant differences of stromal score in high- and low-risk groups and correlation
with risk score. (C,D) Significant differences of immune score in high- and low-risk groups and correlation with risk score. (E,F) Significant differences of tumor purity in
high- and low-risk groups and correlation with risk score. (G) Comparison of 10 types of immune cells in high- and low-risk groups through CIBERSORT. (H,I)
Comparison of 16 types of immune cells and 13 immune-related pathways in high-risk and low-risk groups through ssGSEA. (J)The heatmap showing different cell
type panels in different immune subtypes of lung cancer. (K) Estimated immune subtype proportion in high-risk and low-risk groups. (L) Comparison of the risk score in
inflammatory subtype and wound healing subtype. (*, **, ***, and **** represent p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively).
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make our results more convincing, we also used the ssGSEA
method to calculate the enrichment of 16 immune cells and 13
immune pathways in different risk groups. The results showed
that the low-risk group had higher levers in B cells, DC cells, mast
cells, pDC cells, T helper cells, Tfh cells, and TILs (Figure 5H).
Besides that, we examined the relationship between CD8+ T cells,
cancer-associated fibroblasts (CAFs), and myeloid-derived
suppressor cells (MDSCs) and risk score, and discovered that
MDSCs cells was highly expressed in the high-risk group and had
a significant negative correlation with a risk score, while CD8+

T cells had an opposite trend (Supplementary Figure.S6).
Interestingly, seven immunological pathways in the high-risk
group were less active than those in the low-risk group
(Supplementary Figure S5I). Finally, we further investigated
the relationship between our risk signature and the immune
subtypes, including wound healing, IFN-γ dominant,

inflammatory, lymphocyte, immunologically quiet, and TGF-β
dominant (Thorsson and Gibbs, 2018). The heatmap (Figure 5J)
showed the landscape of immune cells and pathways in different
immune subtypes. It was discovered that the low-risk group had
more inflammatory subtypes, whereas the high-risk group had
more wound healing subtypes (Figure 5K). Intriguingly, the
Would healing group had a higher risk score than the
Inflammatory group (Figure 5L).

Relationship Between the PCD-Related
Gene Signature and Inflammatory
Metagenes in LUAD
To further understand the immune-inflammatory
microenvironment in different risk groups, we depicted the
profile of seven metagenes in the high- and low-risk group

FIGURE 6 | Inflammatory and immunologic profile of the PCD-related signature in TCGA cohort. (A) Heatmap showed the gene expression of immune-inflammatory
metagenes in the two risk groups (blue: low expression level; red: high expression level). (B) A correlogram was generated based on Pearson p-value between risk score and
metagenes. (C)Comparison of the immune-inflammatorymetagenes in high-risk and low-risk groups. (D)Comparison of the stemness score in high-risk and low-risk groups. (E)
Correlation of stemness score and risk score (R = 0.23, p < 0.05). (*, **, ***, and **** represent p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively).
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FIGURE 7 | Relationship between the PCD-related signature and biomarkers of immunotherapy. (A) Comparison of the immune checkpoints in high-risk
and low-risk groups. (B) A correlogram was generated based on the Pearson p-value between risk score and immune checkpoints. (C) Correlation of risk score
and TIDE score, (D) T cells dysfunction score, (E)T cells exclusion score, (F) Merck18 score, (G) CD8, (H) IFNG in high-risk and low-risk groups. (*, **, ***, and
**** represent p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively).
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(Figure 6A). All the seven metagenes were IgG, STAT, MHC-I,
Interferon, MHC-II, HCK, and LCK(Rody and Holtrich, 2009).
Subsequently, we evaluated the relationship between risk score
and the metagenes and found that the risk score was negatively
related to IgG, HCK, MHC-II, and LCK (Figure 6B).
Additionally, the low-risk group showed higher enrichment in
IgG, HCK, MHC-II, and LCK than the high-risk group
(Figure 6C). Moreover, we also investigated the correlation
between risk score and stemness score, which was downloaded
from UCSC Xena. A higher stemness score indicated a poorer
anticancer immunity (Miranda and Hamilton, 2019). And in our
study, the high-risk group had a higher stemness score as we
expected (Figure 6D), while the risk score was positively related
to stemness score (Figure 6E).

Relationship Between the PCD-Related
Risk Model and Biomarkers of
Immunotherapy
Immunotherapy that targets immune checkpoints is currently the
first-line treatment for lung cancer, particularly in advanced
tumors. PD1, PD-L1, TMB, LAG3, CTLA4, and TIM3 are
being commonly used as immunotherapy response biomarkers
(Havel and Chowell, 2019). Considering the important role of
PCD signature in tumor immune inflammation and tumor
immune microenvironment, we deeply explored the
association between this PCD signature and immunotherapy
response. Firstly, we compared immune checkpoint gene
enrichment in different subgroups, and found that multiple

FIGURE 8 | Comparison of the predictive power of PCD-related signature with other biomarkers and construction of a nomogram in TCGA cohort. (A,B) ROC
curve compared the sensitivity and specificity of risk score and other biomarkers for predicting OS. (C) Nomogram combined the TNM staging and risk score for
predicting the 1-, 3-, 5-, and 10-years OS. (D) Calibration curves of the nomogram for predicting of 1-, 3-, and 5-years OS.
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genes were enriched in the low-risk group and negatively related
to risk score (BTLA, TNFRSF14,LAIR1,CD244,LAG3,ICOS,CD4
0LG,CTLA4,CD48,CD28,CD200R1,HAVCR2,ADORA2A,CD80,
PDCD1,CD160,IDO2,PDCD1LG2,TNFSF18,BTNL2,CD70,TNF
RSF8,CD27,TNFRSF25,VSIR,TNFRSF4,CD40,TIGIT,CD274,
CD86,CD44), only CD276 and TNFSF9 were enriched in the
low-risk group and positively related to risk score, while PD-
L1 (CD274) was not differentially expressed in the high- and
low-risk groups (Figures 7A,B). TIDE is a more accurate
biomarker than TMB and immune checkpoints because it
replicates the two primary mechanisms of tumor immune
escape: development of T cell dysfunction in tumors with high
cytotoxic T lymphocyte (CTL) invasion and suppression of T cell
invasion in cancers with low CTL levels (Jiang et al., 2018). T cell
dysfunction score and T cell exclusion score, which were calculated
based on the expression level of genes in a given gene set, were shown
to have good prediction performance for ICB response (Jiang et al.,
2018). The TIDE score, T-cell-inflamed signature (merck18),
T-cell dysfunction score, T-cell exclusion score, IFNG score,
and CD8 were obtained from the TIDE system. Subsequently,
we deeply explored the relationship between TIDE and our
risk signature, and the results showed that the PCD-based risk
score was positively related to TIDE score and T cells
exclusion score (Figures 7C,E), while negatively related to
T cells dysfunction score, Merck 18, IFNG and CD8 (Figures
7D–H). The study has shown that patients with high TMB
have better treatment outcomes with ICBs(Sholl and Hirsch,
2020). However, there was no correlation between neoantigen
and risk score, and TMB did not differ between high- and low-
risk groups (Supplementary Figure.S7-S8). Semi-inhibitory
concentration (IC50) is an important index to evaluate the
efficacy or response of drugs. Based on the sample transcriptome,
we evaluated the IC50 of each sample using the “prrophetic” R
package (Geeleher and Cox, 2014). As we expected, low-risk groups
had a higher IC50 than high-risk groups in multiple chemical drugs,
including Lapatinib, Imatinib, and so on, suggesting that the high-risk
groups were sensitive to these drugs (Supplementary Figure.S9).

Comparison of the Predictive Power of
PCD-Related Signature With Other
Biomarkers and Construction of a
Nomogram in LUAD Datasets
The PCD-based signature was strongly associated with other
immunotherapy-related biomarkers, and it was also an
independent risk factor for OS (Table 2). To confirm the
advantages of the signature in predicting the prognosis of
lung cancer, we compared this signature with other markers
by ROC analysis. The prediction performance of this signature
was better than TMB, TIDE score, IFNG, merck18, CD8,
T-cells dysfunction and exclusion, PD-1, PD-L1, CTLA-4,
LAG3, and TIM-3 (Figures 8A,B). Given the limitations of
the PCD score’s clinical value in predicting OS in patients with
LUAD, a nomogram integrating the PCD score and
clinicopathological characteristics was developed to predict
1-, 3-, 5-, and 10-years OS rates (Figure 8C). The subsequent
calibration plots suggested that the proposed nomogram had

an outstanding performance compared to an ideal model
(Figure 8D).

DISCUSSION

PCD is one of the important mechanisms to regulate cell
homeostasis, and its dysfunction often leads to the occurrence of
many diseases, including cancer. Programmed cell death includes
autophagy, apoptosis, pyroptosis, necroptosis, and ferroptosis. In
recent years, molecular prediction models for LUAD have emerged
one after another, but most of the models have limited effects (Bai
and Duan, 2020; Li and Li, 2020; Li and Long, 2020; Zhao and He,
2020). Moreover, many cell death models only focus on one process
of cell deaths, ignoring the crosstalk among cell deaths. In our study,
we integrated five classical PCD genes and constructed a prognostic
model based on the five PCD genes. Through unsupervised
clustering analysis, it was found that differentially expressed PCD
genes can well divide LUAD into two clusters. However, there was
no difference inOS between the two groups, whichmay be caused by
some genes unrelated to prognosis. Therefore, after excluding the
genes unrelated to prognosis, we constructed a risk model of 23
genes most related to prognosis through lasso and multivariate Cox
regression analysis. The high- and low-risk groups based on risk
score not only have significant differences in OS in all cases but also
have strong stratification ability in different LUAD staging groups
and clinical subtypes, which was also well verified in three
independent GEO validation datasets.

For all 23 genes, they could be roughly classified into apoptosis
(UBE4B, HGF, PRKCD, CX3CL1, KRT18, KRT8, PDX1,
YWHAG, NOX1, TLR3, FADD, MSX1, BMP5, and CX3CR1),
autophagy (PSAP, EEF1A1, HGF, PLK3, PIM2), necroptosis
(TLR3, FADD), and ferroptosis (NFS1, GPX2, NOX1, ACSL3,
EMC2, PEBP1). Interestingly, we found that four genes (NOX1,
FADD, HGF, and TLR3) in the model were involved in multiple
cell death pathways.

Nox1 is a homolog of the catalytic subunit of the NADPH
oxidase that produces superoxide. In a lung cancer research (Puca
and Nardinocchi, 2010), NOX1 can inhibit p53 acetylation, thereby
weakening the pro-apoptotic transcription activity of p53. The P53
pathway can induce tumor cell senescence and necrosis through its
pro-apoptotic properties, and exert its anti-tumor activity.
Ferroptosis is defined as an oxidative, iron-dependent RCD
characterized by the accumulation of reactive oxygen species
(ROS) and lipid peroxidation products to lethal levels. RAS is the
cause of cancer growth, invasion, and metastasis, so some highly
aggressive malignancies have been determined to be inherently
vulnerable to ferroptosis. Recently, ferroptosis has also been
shown to be related to cancer immunotherapy, in which T cells
and interferon-γ (IFN-γ) sensitize tumor cells to ferroptosis (Liang
and Zhang, 2019). NOX1 is also included in the ferroptosis gene set.
The potential of NOX1 as a ferroptosis-related predictor has been
analyzed in many cancers (Zhu et al., 2021; Zhu and Yang, 2021). In
the rhabdomyosarcoma cell (Dächert and Ehrenfeld, 2020) and non-
small lung cancer cell model, NOX1 can affect lipid peroxidation,
ROS production, and other aspects to participate in ferroptosis signal
transduction.
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TLR3 has been regarded as a tumor suppressor-related factor in
many lung cancer studies. In in vitro experiments, it has been found
that TLR3 activation induces apoptosis of lung cancer cell lines
(Bianchi and Alexiadis, 2020). The emergence of this tumor
suppressor function is that TLR3 can promote the apoptosis of
cancer cells on the one hand, and on the other hand, it is also related
to the induction of cytotoxic factors and the production of some
interferons (Lau and Zhu, 2017). However, in our data, although the
results were not significant, TLR3 did show a cancer-promoting
effect. In fact, with the deepening of research, the effect of TLR3
tends to be a “two-side effect”, that is, TLR3 can promote and inhibit
cancer at the same time. However, TLR3 may be associated with
tumor progression, metastasis, and treatment resistance, resulting in
poor prognostic outcomes (Muresan and Bouchal, 2020). In the lung
environment, the TLR3 of lung epithelial cells can be activated by
exosomal RNAderived from the primary tumor to stimulate theNF-
κB, ERK, and p38 pathways to secrete chemokines. The production
of these chemokines has significance for the construction of the
environment before tumor metastasis (Liu and Gu, 2016).

Among them, the HGF gene is not only involved in autophagy
but also one of the apoptosis-related genes. Mesenchymal
epithelial transforming factor (MET) and liver growth factor
receptor (HGF) pathway signals mediate wound healing and
liver regeneration under normal physiological conditions.
When the HGF/MET pathway is dysregulated, it participates
in mediating proliferation, apoptosis, and migration, and induces
a variety of cancers (Salgia, 2017; Liang and Wang, 2020).
Compared with MET, the potential of HGF as a prognostic
indicator of lung cancer is significantly smaller and
controversial (Moosavi and Giovannetti, 2019). In our
research, HGF acts more as a protective factor to inhibit the
progression of lung cancer. As for how HGF affects the
occurrence of lung cancer by regulating the cell death
program, its internal mechanism is still insufficiently studied.

FADD (Fas Associated Via Death Domain) can be recruited by
TNFRSF6/Fas-receptor, tumor necrosis factor receptor,
TNFRSF25, and TNFSF10/TRAIL-receptor, and thus it
participates in the death signaling initiated by these receptors.
FADD can be combined with TAT to rapidly constitute DISC
(death-inducing signaling complex) assembly. TAT-FADD
inhibits the initiation of classic NLRP3 inflammasomes and
limits the processing and secretion of pro-inflammatory IL-1β,
thereby regulating the anti-apoptotic and pro-inflammatory NF-
κB signal activation in cancer cells (Ranjan and Waghela, 2020).
In lung adenocarcinoma, FADD, a ferroptosis-related gene, was
also identified as a predictor (Wang and Wu, 2021).

To explore the potential mechanism to the significant difference
of OS in different risk groups, we further explored the biological
processes in high-risk and low-risk groups through GO, KEGG, and
GSEA analysis. Our results showed that the high-risk group was
significantly enriched in the processes of metabolism and cell
adhesion, including Amino Sugar and Nucleoside Sugar
Metabolism, Ascorbate and Aldarate Metabolism, Galactose
Metabolism and Cells Adhesion Molecules (CAMs).

Glucose, glutamine, fatty acids, and amino acids are the main
drivers of tumor growth. Therefore, metabolic changes and cell
energy imbalance are now considered to be the markers of all

cancers (Akella and Ciraku, 2019). There is a complex
relationship between the immune system and cancer, and the
immune system plays a dual role in tumor development. Immune
system effector cells can recognize and kill malignant cells, and
immune system-mediated inflammation can also promote tumor
growth and regulate cell inhibition of anti-tumor response. The
core of all anti-tumor responses is the ability of immune cells to
migrate to the tumor site and interact with malignant cells, where
CAMs are essential in mediating these processes (Harjunpää
et al., 2019). This research proposed that cell-to-cell
interaction and cell adhesion are key mediators of cancer
progression, including immune evasion and metastatic
transmission (Läubli and Borsig, 2019). Therefore, the reason
for the lower OS in the high-risk group may be regulated by these
pathways. However, the low-risk group was enriched in multiple
immune pathways, including Natural Killer cell-mediated
cytotoxicity, B cell, T cell receptor signaling pathway,
Lymphocyte mediated immunity. T cells, B cells, dendritic DC
cells, and natural killer cells are anti-tumor immune cells and play
a crucial role in anti-tumor (Corrales and Matson, 2017;
Chiossone and Dumas, 2018). In contrast, T (and B or DC)
cell-mediated tumor immunity was significantly enriched in the
low-risk group. Moreover, the low-risk group had higher immune
cell infiltration, immune pathways, immune score, and lower
tumor purity. These results showed that the PCD-based signature
presented unique characteristics in terms of a biological pathway,
immune cell infiltration, and immune inflammation profile in the
tumor microenvironment (TME).

With the in-depth study of tumor immunology and molecular
biology, ICBs provide a new way for the treatment of tumors,
especially in advanced lung cancer. The study of ICIs targeting
CTLA-4, PD-1, and PD-L1 is booming, and clinical trials have
proven their efficacy and safety (Chae and Arya, 2018; Huang and
Jiang, 2021). In this study, the expression levels of PD-1 and CTLA4
were significantly up-regulated in the low-risk group with a better
prognosis, suggesting that these patients may be sensitive to ICIs
targeting PD-1 andCTLA4. To test this conjecture, we compared the
relationship between the PCD based risk score and the markers of
immunotherapy response and found that the risk score was
positively correlated with TIDE score and T cells exclusion score,
but negatively correlated with T cells dysfunction score, Merck 18,
IFNG and CD8. TMB, PD-L1, and TIDE were newly discovered
predictors of immunotherapy response. In particular, TIDE has been
shown to have better prognostic performance than other biomarkers
or indicators. It was confirmed that the lower TIDE score showed
higher response rates to both anti-PD-1 and anti-CTLA-4 inhibitors,
and merck18 (T-cell inflamed signature) can contribute to T-cell
dysfunction (Woo and Corrales, 2015). Therefore, this PCD-based
signature identified low-risk LUAD patients should be suitable for
ICBs treatment because of their lower TIDE score and T cell
dysfunction score. To verify the superiority of the signature, we
compare the prognostic ability of the signature-based on PCD with
other indicators. The ROC curve showed that our signature had
better prediction performance than other biomarkers. In addition,
we constructed a nomogram to predict the OS of LUAD patients,
which showed a power predictive value in predicting the OS
of LUAD.
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Although the PCD-based signature may be utilized as an
independent prognostic factor and can predict immunotherapy
response in LUAD, there were several limitations to this study.
First and foremost, because all four cohorts are retrospective data
sets, a prospective analysis of this PCD-based signature is
required. Second, all expression data was obtained from a
public dataset, and the results must be confirmed using new
methodologies and fresh specimens. Third, we evaluated the
potential to predict immunotherapy response indirectly, and
more study is needed to confirm this conclusion.

CONCLUSION

In summary, our comprehensive analysis of PCD-based
signature showed a diverse set of regulatory mechanisms by
which they influence the tumor immunological landscape,
clinicopathological characteristics, and prognosis. We also
discovered the importance of PCD-based signature in
immunotherapy. These results emphasize the clinical
importance of PCD-based signature and propose innovative
thinking for guiding individualized immunotherapy for LUAD
patients.
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