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Due to the COVID-19 pandemic, the global need for vaccines to prevent the disease is
imperative. To date, several manufacturers have made efforts to develop vaccines against
SARS-CoV-2. In spite of the success of developing many useful vaccines so far, it will be
helpful for future vaccine designs, targetting long-term disease protection. For this, we
need to know more details of the mechanism of T cell responses to SARS-CoV-2. In this
study, we first detected pairwise differentially expressed genes among the healthy, mild,
and severe COVID-19 groups of patients based on the expression of CD4+ T cells and
CD8+ T cells, respectively. The CD4+ T cells dataset contains 6 mild COVID-19 patients, 8
severe COVID-19 patients, and 6 healthy donors, while the CD8+ T cells dataset has 15
mild COVID-19 patients, 22 severe COVID-19 patients, and 4 healthy donors.
Furthermore, we utilized the deep learning algorithm to investigate the potential of
differentially expressed genes in distinguishing different disease states. Finally, we built
co-expression networks among those genes separately. For CD4+ T cells, we identified 6
modules for the healthy network, 4 modules for the mild network, and 1 module for the
severe network; for CD8+ T cells, we detected 6 modules for the healthy network, 4
modules for the mild network, and 3 modules for the severe network. We also obtained
hub genes for each module and evaluated the differential connectivity of each gene
between pairs of networks constructed on different disease states. Summarizing the
results, we find that the following genes TNF, CCL4, XCL1, and IFITM1 can be highly
identified with SARS-CoV-2. It is interesting to see that IFITM1 has already been known to
inhibit multiple infections with other enveloped viruses, including coronavirus. In addition,
our networks show some specific patterns of connectivity among genes and some
meaningful clusters related to COVID-19. The results might improve the insight of gene
expression mechanisms associated with both CD4+ and CD8+ T cells, expand our
understanding of COVID-19 and help develop vaccines with long-term protection.
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1 INTRODUCTION

As of April 3rd, 2022, the coronavirus disease 2019 (COVID-19) global pandemic has lasted for about
2 years, with more than 491 million confirmed cases, including around 6.15 million deaths
worldwide (Dong et al., 2020). This disease is caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), whose genome sequence identity is more similar to two bat-derived
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coronavirus strains than any known human-infecting virus (Lu
et al., 2020). Vaccination can offer the most effective way with a
long-term strategy to prevent and control the spread of COVID-
19 (Hu et al., 2021). Towards this effort, several manufacturers
have proposed different vaccine designs against SARS-CoV-2
(Creech et al., 2021). Specifically, the novel mRNA-based vaccines
provide significant efficacy and stability for some time (Le et al.,
2020; Pardi et al., 2020). The spike protein is one of the essential
structural proteins of the SARS-CoV-2 virus, which includes two
subunits to regulate receptor binding and membrane fusion,
respectively (Huang et al., 2020). SARS-CoV-2 enters host
cells through receptor angiotensin-converting enzyme 2
(ACE2) using its two spike protein subunits (Wheeler et al.,
2021). Because of that, improving antibody responses to the spike
protein becomes the primary research direction of current
vaccine development, and researchers put less effort into
following up with the T cell immunity (Saini et al., 2021).
However, Diao et al. (2020) found that COVID-19 patients,
especially patients who needed Intensive Care Unit (ICU) care,
had significantly fewer CD4+ and CD8+ T cells than healthy
people. Thus, understanding the mechanism of T cell responses
to SARS-CoV-2 can provide additional knowledge on vaccine
design (Grifoni et al., 2020).

Different expressions of the cell-surface receptors CD4 andCD8
indicate that T cells have different types, including CD4+ T cells
and CD8+ T cells (Jarjour et al., 2021). CD4+ T cells play a crucial
“helper” role in regulating anti-viral immune responses through
the secretion of specific cytokines, whereas CD8+ T cells are
“killers” that aim to directly attack and kill the pathogen-
infected cells (Luckheeram et al., 2012; Tay et al., 2020; Jarjour
et al., 2021). In this study, we analyzed the single-cell RNA
sequencing (scRNA-seq) data of both CD4+ and CD8+ T cells
through some downstream analyses, including differential
expression analysis of the genes, network analysis to detect gene
co-expression networks, and deep learning to classify the samples
with different disease states. In addition to T cells, B cells are also
engaged in the battle with the SARS-CoV-2 virus by mediating
partial immunological memory (Quast and Tarlinton, 2021).
Several studies have shown the appearance of B cells after the
onset of symptoms of the mild COVID-19 (Hoehn et al., 2021;
Rodda et al., 2021). Moreover, the longitudinal study of the bulk
level RNA sequencing (RNA-seq) data is also valuable to discover
the evolution of the disease. Recent studies found that the COVID-
19 patients gradually developed symptoms and needed several
weeks or months to recover after the infection (Nehme et al., 2021;
Petersen et al., 2021). Thus, we included two additional datasets,
i.e., longitudinal blood samples using bulk level RNA-seq data and
B cells at the single-cell level, to enrich our study. The overall goal
of our study is to enhance the insight of gene expression associated
with CD4+ and CD8+ T cells along with B cells, and provide some
potential genes associated with the immune responses of the
patients at different stages of SARS-CoV-2.

The CAMDA challenge provided the CD4+ T cells data
(Bacher et al., 2020) and the longitudinal bulk data (McClain
et al., 2021); we integrated them with the additional CD8+ T cells
data (Kusnadi et al., 2021) and the B cells data (Hoehn et al.,
2021).

2 MATERIALS AND METHODS

We show the workflow of this project in Figure 1. Most of
analytical steps were conducted using R (R Core Team, 2021).
The network development in Figure 1B was implemented using
Julia (Bezanson et al., 2017). The codes for the analyses are
available on https://github.com/dongyuanwu/UTRCOV2. We
will introduce all the steps in the following sections.

2.1 Data and Preprocessing
The primary datasets we used are the scRNA-seq data of CD4+

T cells (Bacher et al., 2020) and CD8+ T cells (Kusnadi et al., 2021)
from blood samples. Both studies categorize the COVID-19
patients into two groups: mild (non-hospitalized) and severe
(hospitalized). The CD4+ T cells dataset contains 104,417 cells,
including 23,573 cells from 6 mild COVID-19 patients, 76,887
cells from 8 severe COVID-19 patients, and 3,957 cells from 6
healthy donors; while the CD8+ T cells dataset has 72,905 cells
including 13,108 cells from 15 mild COVID-19 patients, 55,169
cells from 22 severe COVID-19 patients, and 4,628 cells from 4
healthy donors.

Since the datasets are pretty sparse, we filtered out genes not
expressed in most cells. We implemented different criteria since
different datasets have different degrees of sparsity. For the CD4+

T cells, genes not expressed in at least 1% of the total cells were
removed, leaving a total of 8,959 genes (23,945 genes before
filtering) in the analysis; for the CD8+ T cells, genes not expressed
in at least 2.5% of the total cells were filtered out, leaving a total of
9,112 genes (13,816 genes before filtering) in the analysis. We
used the R package Seurat V3 (Stuart et al., 2019) to normalize
and scale the raw expression counts.

Furthermore, in order to enrich the discoveries from T cells,
we used another bulk RNA-seq data of whole blood samples
(McClain et al., 2021), which contains the information of time
from COVID-19 symptom onset (early ≤ 10 days, middle
11–21 days, late > 21 days), for tracing the changes of gene
expressions longitudinally. On another note, in addition to the
T cells, B cells also play a critical role in the immune system. Thus,
we also analyzed scRNA-seq data of B cells (Hoehn et al., 2021),
including healthy donors and mild (non-hospitalized) COVID-
19 patients.

2.2 Differential Expression Analysis
We adopt the pairwise differential expression analysis among the
mild COVID-19 patients, the severe COVID-19 patients, and the
healthy donors. Due to the highly unbalanced distribution of the
scRNA-seq data, we used the random under-sampling algorithm
to make sure the number of cells in the majority class is almost
equal to the minority class in each pairwise comparison. We
repeated the random selections 100 times to eliminate the
potential bias due to unbalanced data. In each iteration, we
implemented the differential expression analysis between two
groups using MAST (Finak et al., 2015), a two-part hurdle model.
The first part of this model is a logistic regression model to
account for the gene expression rate, and the second part is a
linear model with the normal distribution assumption for the
expression level, conditioning on a cell expressing the gene. We
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declared a gene differentially expressed (DE) if it was selected as
DE gene in all the 100 rounds with the |log2FC|> 0.25 and the
false discovery rate (FDR) adjusted p-value (q-value) < 0.05,
where FC is the fold change that measures the amount of
changes of the expression value of a gene between two groups.

2.3 Network Analysis
As the genes rarely work independently, we constructed co-
expression networks among the genes. For a lesser
computational burden, we included only DE genes to build the
network. A few novel gene co-expression network construction
approaches designed explicitly for scRNA-seq data have been
proposed in recent years, but most of them require pseudo-time
information for the cell differentiation process. To avoid the
uncertainty of its estimation, we applied the partial information
decomposition and context (PIDC) algorithm (Chan et al., 2017) to
study the gene-gene associations among the DE genes. And then,
we built gene co-expression networks based on partial information
decomposition (PID) for the healthy donors, the mild COVID-19
patients, and the severe COVID-19 patients, respectively. PIDC
calculates a proportional unique contribution (PUC) score ui,j for
each pair of genes i and j, and the edge weightWi,j between a pair
of genes i and j can be given by

Wi,j � Fi(ui,j) + Fj(ui,j),

where Fi(U) represents the cumulative distribution (Gamma or
Gaussian empirical probability distribution) function of all the
PUC scores related to gene i. In this way, the edge weights are all
bounded between 0 and 2.

To detect the modules for each network (Gill et al., 2010), we
first divided the edge weights by 2 to let them range in [0, 1]. And

then set the minimum module size and the minimum accepted
edge weight depending on different datasets. We defined the
connectivity of a gene by the number of genes it is connected to.
In each module, we counted the connectivity for each gene. In
addition, we identified the hub gene in a specific module using the
following criteria:

1) Hub genes are the genes that have the highest connectivity, or
the genes whose connectivities are very close to the highest
connectivity, i.e., Chub ≥ 0.9 × max(Cm), where Chub

represents the connectivities of the hub genes, and Cm is a
vector of the connectivities of genes in module m;

2) The number of hub genes should not exceed 30% of the total
number of genes in one module.

Moreover, we used a permutation test (Gill et al., 2010) with
500 random permutations to evaluate the differential connectivity
of a single gene between two networks. The difference in the
connectivity of gene i between two networks π1 and π2 can be
assessed by

d(i) � 1
G − 1

∑
j≠i

∣∣∣∣∣Wπ1
i,j −Wπ2

i,j

∣∣∣∣∣,

where G is the total number of genes. Genes with the FDR
adjusted p-values less than 0.05 were treated as differentially
connected genes between two networks.

2.4 Deep Learning
To detect whether the DE genes are also able to classify the patient
samples into different disease states from the pairwise
comparison, we implemented a classification algorithm,

FIGURE 1 | Workflow of the study. The analysis primarily focused on two main datasets, and two supplemental datasets were included to enrich the findings (A)
Differential Expression analysis to obtain the differentially expressed (DE) genes among different disease states (B) Deep learning for validating the DE genes (C)Network
analysis comparing the connectivity of genes in different disease states (D) Functional annotation.
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i.e., Multi-layer Perceptron (MLP). Firstly, in each dataset, we
treated the cells from each patient in turn as the test set and those
from other patients as the training set. In other words, the
number of independent training sets (or their corresponding
test sets) is identical to the number of patients. By dividing the
dataset in this way, we aimed to investigate if the cell disease states
of one patient could be predicted by cells from the remaining
patients. Secondly, we implemented 5-folds cross-validation on
each training set for parameter tuning. In this way, we can
optimize the MLP models and use them to predict the
corresponding test sets. Specifically, we fitted MLP models
with the combinations of two optimizers, including adaptive
moment estimation (Adam) (Kingma and Ba, 2017) and root
mean square propagation (Rmsprop) (Tieleman and Hinton,
2012), and different group weights, i.e., using weight and not
using weight. In addition, we used a mixture of the rectified linear
unit (ReLU) and sigmoid activations, which are commonly used
in a neural network for binary classification, along with dropout
(Hinton et al., 2012) in MLP. Lastly, the MLP model with the
highest accuracy in CV was used for the test set prediction.

3 RESULTS

3.1 Differentially Expressed Gene
After the differential expression analysis, we obtained different
numbers of DE genes for each pairwise comparison among the
healthy, mild and severe groups, based on CD4+ T cells and CD8+

T cells, separately. We also conducted the differential expression
analysis for B cells with only healthy and mild groups included.
Figure 2 displays the Venn diagrams of these comparisons. As we
can see, there are more DE genes detected in the mild vs healthy
comparison than the severe vs mild comparison. It is worth
noting that the number of DE genes between the mild and the
severe groups from CD8+ T cells is much lower than any other
comparisons. Additionally, in the comparison of the mild and the
healthy groups, although the number of DE genes from CD8+

T cells is lower than both CD4+ T cells and B cells, there are still
36 shared DE genes from all 3 cell types. The detailed DE genes
list can be found in the Supplementary Material. Interestingly,
the 33 shared DE genes in CD4+ T cells comparisons and the 19
shared DE genes in CD8+ T cells comparisons do not overlap. It
could be due to the various functions and corresponding
encoding genes CD4+ and CD8+ T cells express.

Although, we detected DE genes using the under-sampling
method, it is still important to know the original distributions of
the expression levels of these genes. Since the differential
expression analysis was based on the 100 balanced datasets, we
used the average q-values across 100 analyses. However, we used
the original fold changes of the DE genes to draw the volcano
plots. In Figure 3, we annotated the shared DE genes among three
comparisons. Although the original fold changes of some DE
genes do not reach the threshold we set (|log2FC|> 0.25), most of
the shared DE genes have met this criterion, especially for the
comparisons between COVID-19 patients and healthy donors.
Moreover, most of the shared DE genes of mild vs healthy across
CD4+ T cells, CD8+ T cells, and B cells display significant
differences based on the original unbalanced data
(Supplementary Figure S1).

3.2 Classification Based on DE Genes
Based on the selected MLP models, we implemented the
prediction to see if the DE genes could help to identify the
different COVID-19 disease states. The details of the selected
MLP models for each comparison can be found in
Supplementary Table S1. Since each test set contains just one
actual class, we only calculated the accuracy for each test set
(Supplementary Tables S2–S8). However, we stacked the
predicted results from all test sets to obtain the overall
accuracy, sensitivity, specificity, and area under the curve
(AUC) of the receiver operating characteristic (ROC).
According to Table 1, the corresponding DE genes can
distinguish the COVID-19 patients (mild or severe) from
healthy donors using CD4+ T cells, CD8+ T cells, or B cells.

FIGURE 2 | Venn diagrams for DE genes (A) Pairwise comparisons of the healthy, mild, and severe groups for CD4+ and CD8+ T cells (B)Comparison of themild vs
healthy group for CD4+ T cells, CD8+ T cells, and B cells.
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However, it is difficult to classify the mild and severe COVID-19
patients based on CD4+ T cells and CD8+ T cells. On the other
hand, we found a worse prediction in CD8+ T cells than in CD4+

T cells for the comparisons between the severe and mild groups.
It could be due to the fewer DE genes detected in this
comparison of CD8+ T cells. In summary, MLP models can
efficiently distinguish the healthy people and the COVID-19
(mild or severe) patients using their corresponding DE genes.

3.3 Gene Co-Expression Network
We summarized unions of DE genes from different comparisons
of CD4+ T cells (759 genes) and CD8+ T cells (451 genes),
respectively. Based on these DE genes, we built a network for
each group. We set the minimummodule size of the network as 5
for both cell types. Due to various number of DE genes included
in networks of different cell types, we set different minimum
accepted edge weights (0.999 for CD4+ T cells and 0.997 for CD8+

FIGURE 3 | Volcano plots for DE genes. The thresholds of the absolute log2FC is 0.25 (A)Comparisons based on CD4+ T cells. DE genesDDX3Y and EIF1AY have
been removed from the mild vs healthy plot and the severe vs healthy plot because of their infinite log2FC (B) Comparisons based on CD8+ T cells.

TABLE 1 | Results of the prediction of the selected MLP models. H, M, and S indicate the healthy, the mild and the severe COVID-19 groups, respectively.

Cell Type Comparison Stacked accuracy Stacked sensitivity Stacked specificity Stacked AUC

CD4+ T cells M vs. H 0.9066 0.9087 0.8944 0.9015
S vs. H 0.9783 0.9870 0.8100 0.8985
S vs. M 0.8070 0.8397 0.7003 0.7700

CD8+ T cells M vs. H 0.9827 0.9904 0.9611 0.9757
S vs. H 0.9757 0.9866 0.8468 0.9167
S vs. M 0.7595 0.8521 0.3701 0.6111

B cells M vs. H 0.9775 0.9857 0.9694 0.9775
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T cells). These settings result in 130 and 156 DE genes included in
the CD4+ and CD8+T cells networks, respectively.

Figure 4 and Figure 5 show the networks in different disease
states for CD4+ T cells and CD8+ T cells, respectively. In both cell
types, we can see that the number of modules decreases in the
order of healthy, mild COVID-19, and severe COVID-19. In
other words, the connectivity of genes increases with the
progression of the disease. This phenomenon has been noticed
in many previous studies as well (Feldman et al., 2008; Gill et al.,
2010). As seen in Figure 4, there is remarkable heterogeneity of
the connectivity across the three networks of CD4+ T cells.
Module 1 of the healthy network has been divided into two
parts in the mild network. One part connects module 2 of the
healthy network to form module 1 of the mild network, and
another part connects module 5 of the healthy network to form
module 3 of the mild network. And finally, all these modules link

together to be a large module in the severe network. In contrast,
the networks of CD8+ T cells seem to be more stable. This
property suggests that the functions encoded by genes from
CD4+ T cells are more varied in different disease states than
CD8+ T cells.

According to Table 2, for CD4+ T cells, there are 11 hub genes
in the healthy network, 12 hub genes in the mild COVID-19
network, and 7 hub genes in the severe COVID-19 network. In
contrast, networks of CD8+ T cells contain fewer hub genes.
There are 9, 10, and 2 hub genes in the healthy, mild COVID-19,
and severe COVID-19 networks of CD8+ T cells, separately.
Exploring the biological mechanism behind the connectivities
of these hub genes would be helpful to understand the infection
etiology.

For CD4+ T cells, it is worth noting that TNF is a hub gene in
all three networksand has the most connectivity in the

FIGURE 4 | PIDC networks for CD4+ T cells. Node size and edge width represent the average expression level of the gene and the confidence of connectivity
between a pair of genes in the network, separately. Red nodes are hub genes in the corresponding modules.

FIGURE 5 | PIDC networks for CD8+ T cells. Node size and edge width represent the average expression level of the gene and the confidence of connectivity
between a pair of genes in the network, separately. Red nodes are hub genes in the corresponding modules.
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corresponding module. However, its connectivities are only
significantly different between the mild and the severe
COVID-19 network. Its average expression level in the severe
group is significantly higher than in the mild group. According to
the Entrez Gene database (Maglott et al., 2010), TNF encodes a
multifunctional proinflammatory cytokine related to multiple
biological processes and diseases. Schett et al. (2020)
discovered that targeting TNF is crucial for the inflammatory
response instead of viral clearance in the cytokine pathogenesis of
COVID-19. CCL4 and XCL1 are the hub genes in both the mild
and severe networks. CCL4 is significantly differentially
connected between any pairwise comparisons among the three
networks. It is also the DE gene across three disease states. On the
other hand, the expression levels and connectivities of XCL1 are
both significantly different in comparing the healthy group and
the COVID-19 group (either mild or severe). Actually, CCL4 and
XCL1 are both related to chemokines and inflammatory
responses (Maglott et al., 2010). Meckiff et al. (2020) also
suggested that CCL4 and XCL1 are likely to play an essential
role in the pathogenesis of COVID-19.

In addition, GBP1, GBP4, and GBP5 always connect with each
other in all three networks of CD4+ T cells. However, the number
of genes associated with them decreases as the disease gets worse
as shown in Figure 4. They are all responsible for encoding
guanylate binding protein (Stelzer et al., 2016). Among these
three genes, GBP4 and GBP5 are DE genes in the longitudinal
bulk RNA-seq data (McClain et al., 2021). Figure 6 shows the

changes of them in gene expression over time from the
corresponding dataset. These two genes have higher expression
levels for healthy donors and patients in the early stage of
COVID-19 and show a significantly decreasing trend as time
goes by (especially a significant drop at the middle stage).
Interestingly, their expression levels in the healthy group are
significantly lower than the disease group according to the CD4+

T cells data at the single-cell level. Since the longitudinal blood
sample data in Figure 6 is at the bulk level, other elements
different fromCD4+ T cells may exist to make the expression level
for disease patients lower than healthy donors. In particular, the
expression levels of GBP5 from CD8+ T cells in the disease group
are significantly lower than in the healthy group.

For CD8+ T cells, we found that although IFITM1 and RPS15A
are hub genes in all three networks, they have very different
properties. The connectivity of IFITM1 is significantly different in
any pairwise comparison of the three networks, while the
connectivity of RPS15A holds the same level in the three
networks. Moreover, IFITM1 is down-regulated in the
COVID-19 group (either mild or severe) compared with the
healthy group, while RPS15A is down-regulated in the severe
group compared with the healthy group. Based on the GeneCards
database (Stelzer et al., 2016), IFITM1 is highly associated with
several viral diseases and can inhibit multiple infection with other
enveloped viruses including coronavirus. Shi et al. (2021)
identified that IFITM1 is one of the restrictors of SARS-CoV-2
infection of cells. Although RPS15A is also a hub gene in all three

TABLE 2 | Hub genes in each module of each network.

Cell Type Network Module Total number of genes Hub gene

CD4+ T Cells Healthy Module 1 31 RPS21a, RPS27a

Module 2 25 CD40LG, IL2, NFKBID, TNF
Module 3 7 IL4I1a

Module 4 15 GBP5a

Module 5 13 MT-CO1a, MT-ATP6
Module 6 5 INSIG1a

Mild COVID-19 Module 1 53 CCL4ac, CCL5ac, GZMBa, TNFc, CSF2c, XCL1a

Module 2 11 GBP1
Module 3 44 RPS28ac, MTRNR2L12ac, RPL39ac

Module 4 7 HLA-Eac, MIR4435-2HGac

Severe COVID-19 Module 1 63 RPL34c, CCL4bc, RPL37, RPS27, RPS27Ac, TNFc, XCL1b

CD8+ T Cells Healthy Module 1 38 XCL1ab, XCL2ab

Module 2 15 MT-ND3ab

Module 3 18 CD27ab

Module 4 17 IFIT3ab, IFITM1d

Module 5 6 ACTG1
Module 6 23 RPS25, RPS15A

Mild COVID-19 Module 1 74 CRTAMa, IL32
Module 2 15 MT-CYBac, MT-ND4Lc, MT-ATP6c

Module 3 15 IFIT3a, IFITM1d

Module 4 19 RPS25, RPS28c, RPS15A
Severe COVID-19 Module 1 79 RPS15A

Module 2 21 IFITM1d

Module 3 5 -

aSignificant differential connection between the healthy network and the mild COVID-19 network.
bSignificant differential connection between the healthy network and the severe COVID-19 network.
cSignificant differential connection between the mild COVID-19 network and the severe COVID-19 network.
dSignificant differential connection in any pairwise comparison of three networks.
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networks of CD8+ T cells, it is just a ribosomal protein-coding
gene that commonly exists in samples (Stelzer et al., 2016).

3.4 Functional Annotation
Weperformed functional annotation for the genes in eachmodule of
the networks with Homo Sapiens background using the R package
clusterProfiler (Yu et al., 2012). An annotation with an FDR
corrected p-value less than 0.05 was viewed as a significant
annotation. We picked up the top 5 significant terms of the
Gene Ontology (GO) biological process and the KEGG pathway
for each module and summarized them in Tables 3, 4. The detailed

dotplots for different modules in CD4+ and CD8+ T cell networks
can be found in Supplementary Figures S2–S5. It is worth noting
that most of the genes in module 5 of the healthy network of CD4+

T cells or module 2 of the healthy andmild networks of CD8+ T cells
failed to bemapped in both theGObiological process and theKEGG
pathway databases.Many of them aremitochondrial genes related to
oxidative phosphorylation and translation (Errichiello et al., 2015).
We also did the functional annotation for the 36 shared DE genes
(Figure 2B) from the comparison of themild and the healthy groups
across CD4+ T cells, CD8+ T cells, and B cells. The results show that
those genes are highly related to the viral transcription and

FIGURE 6 | The changes ofGBP4 andGBP5 in gene expression over time from the bulk RNA-seq data. The FDR adjusted p-values of the overall difference across
three stages (using R package DESeq2) for GBP4 and GBP5 are 0.00156 and 0.00111, separately.

TABLE 3 | The main related GO biological process of each module of each network.

Cell Type Network Module Number of genes Main related biological processa

CD4+ T Cells Healthy Module 1 31 Viral transcription; Translational initiation
Module 2 25 Cell-cell adhesion; Regulation of T cell and leukocyte activation; T cell proliferation
Module 3 7 Regulation of fat cell, B cell, and myeloid cell differentiation
Module 4 15 Response to IFN-γ; Antigen processing and presentation
Module 6 5 Mediation of IFN-γ; Maintenance of protein location

Mild COVID-19 Module 1 53 Leukocyte cell-cell adhesion; Cellular response to tumor necrosis factor; T cell proliferation
Module 2 11 Response to IFN-γ; Immune response
Module 3 44 Viral transcription; Translation initiation
Module 4 7 IL-4 production; Immune response

Severe COVID-19 Module 1 63 Viral transcription; Translation initiation

CD8+ T Cells Healthy Module 1 38 Response to tumor necrosis factor and IFN-γ; Regulation of cytokine production and
inflammatory response

Module 3 18 Regulation of leukocyte cell-cell adhesion and T cell activation; Cell killing; Lymphocyte
apoptotic process

Module 4 17 Response to type I IFN and virus; Negative regulation of viral genome replication
Module 5 6 Actin filament and synapse organization
Module 6 23 Viral transcription; Translational initiation

Mild COVID-19 Module 1 74 Response to IFN-γ; T cell activation; Leukocyte cell-cell adhesion
Module 3 15 Response to type I IFN and virus; Negative regulation of viral genome replication
Module 4 19 Viral transcription; Translational initiation

Severe COVID-19 Module 1 79 Translational initiation; Viral transcription; Cell killing
Module 2 21 Response to type I IFN and virus
Module 3 5 DNA replication

aIFN: interferon; IL: interleukin.
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translational initiation processes, and the COVID-19 pathway
(Supplementary Figure S6).

3.4.1 CD4+ T Cells
As we can see, functions among modules overlap with each
other in the networks of CD4+ T cells. As seen in Tables 3 and
4, genes in module 1 of the healthy network and module 3 of
the mild network can express viral transcription and some
translational activities. They are also included in the COVID-
19 pathway. Module 2 of the healthy network shows a crucial
cluster for cellular activation and is associated with the
cytokine-cytokine receptor interaction pathway. In contrast,
these functions are partially displayed by genes in module 1 of
the mild network only. Genes in module 4 of the healthy
network and module 2 of the mild network contribute to the
functions that can provide immune responses, specifically
responding to IFN-γ. These genes are contained in the
NOD-like receptor signaling pathway as well. The
functions in module 6 of the healthy network and module
4 of the mild COVID-19 network are less critical due to the
fewer genes included in these modules, but they are associated
with some pathways in cancer. Since the only module in the
severe network is the combination of modules from the
healthy or mild network, it contains the most functions
expressed in the other two networks.

Furthermore, the connectivity of genes in module 4 of the
healthy network from CD4+ T cells gradually decreases with
the progression of COVID-19 (Figure 4). Those genes are
associated with several immune responses, as we discussed
above. In other words, the strength of collected immune

activities of these genes from CD4+ T cells may be lower
and lower with the development of COVID-19.

3.4.2 CD8+ T Cells
Functions among modules in the networks of CD8+ T cells seem to
be more dispersed than CD4+ T cells. As shown in Table 3, genes in
module 1 of the healthy network play an important role in response
to tumor necrosis factor and IFN-γ.Module 3 of the healthy network
mainly focuses on regulating leukocyte cell-cell adhesion and T cell
activation. Cell killing is also a crucial function in module 3 and has
never been expressed in CD4+ T cells. As for other modules of the
healthy network, module 4 is highly associated with cellular defense
response, module 5 is related to several fiber organizations, and
module 6 tends to viral transcription. The similarity of functions
among the healthy, mild, and severe networks supports our findings
from the network structure. Module 3 of the severe network, a new
module developed with the worsening of the disease, contributes to
DNA replication activities. In addition, based on Table 4, modules 4
and 6 of the healthy network, module 4 of the mild network, and
module 1 of the severe network focus on the COVID-19 pathway.
Module 3 of the severe network is associated with the DNA
replication pathway and the cell cycle pathway.

Because module 3 of the severe network based on CD8+

T cells gradually forms with the development of the disease
(Figure 5), it is valuable to find a possible explanation. Several
studies have reported that the SARS-CoV-2 infection will
cause DNA damage (Meyer et al., 2021; Victor et al., 2021).
Therefore, it is no surprise that the DNA replication and
reparation functions are enhanced from the CD8+ T cells
for COVID-19 patients.

TABLE 4 | The main KEGG pathway of each module of each network.

Cell Type Network Module Number of genes Main KEGG pathwaya

CD4+ T Cells Healthy Module 1 31 COVID-19
Module 2 25 Cytokine-cytokine receptor interaction
Module 3 7 Rheumatoid arthritis
Module 4 15 NOD-like receptor signaling pathway
Module 6 5 PD-L1 expression and PD-1 checkpoint pathway in cancer

Mild COVID-19 Module 1 53 Cytokine-cytokine receptor interaction
Module 2 11 NOD-like receptor signaling pathway
Module 3 44 COVID-19
Module 4 7 Central carbon metabolism in cancer

Severe COVID-19 Module 1 63 COVID-19; Cytokine-cytokine receptor interaction

CD8+ T Cells Healthy Module 1 38 Cytokine-cytokine receptor interaction
Module 3 18 Natural killer cell mediated cytotoxicity
Module 4 17 COVID-19; EBV infection
Module 5 6 Regulation of actin cytoskeleton
Module 6 23 COVID-19

Mild COVID-19 Module 1 74 Cytokine-cytokine receptor interaction
Module 3 15 EBV infection
Module 4 19 COVID-19

Severe COVID-19 Module 1 79 COVID-19; Cytokine-cytokine receptor interaction
Module 2 21 EBV infection
Module 3 5 DNA replication; Cell cycle

aNOD: Nucleotide-binding oligomerization domain; PD-L1: Programmed death ligand 1; PD-1: Programmed death 1; EBV: Epstein–Barr virus.
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4 DISCUSSION

Although researchers have placed a lot of attention on antibody-
based immunity (Cañete and Vinuesa, 2020), it will be helpful for
future vaccine designs, resulting in long-term disease protection,
if we know more details of the mechanism of T cell responses to
SARS-CoV-2. The coronavirus-specific T cells need to be
considered in vaccine strategies because it plays a critical role
in controlling the development of COVID-19 and eliminating the
infected virus (Tay et al., 2020).

In this study, we have applied several analytical approaches to
explore the mechanism of gene expression based on CD4+ T cells
and CD8+ T cells related to COVID-19. We first used MAST (Finak
et al., 2015) to detect the DE genes in pairwise comparisons of the
healthy, mild, and severe groups. We found that the number of DE
genes between the healthy andmild groups ismore than between the
mild and severe groups. It indicates that the genes are expressed
much differently between healthy individuals and COVID-19
groups of patients irrespective of their mild or severe disease
status. In particular, we found that the average absolute value of
log2FC across the corresponding DE genes for the severe vs mild
comparison is significantly smaller than the average value for the
disease vs healthy comparison. This general trend of the changes is
similar to a previous study (Su et al., 2020), which found a sharper
difference of immune cells between mild and moderate cases than
between moderate and severe cases. The results of MLP models also
validate this finding in terms of classification of samples. It indicates
that the difference between the disease and healthy groups is more
apparent than between severe and mild states.

After detecting the DE genes, we built networks of those DE
genes specific to the sample status, such as healthy, mild, and
severe networks, using the PIDC algorithm (Chan et al., 2017).
We identified the topologies of the networks, such as modules for
each network, hub genes for each module, and evaluated the
difference in connectivity of each gene in three different
networks. Based on the gene co-expression networks, we
found that the connectivity of genes increases in both CD4+

and CD8+ T cells as the disease symptoms worsen. This
relationship between the connectivity of genes and the severity
of the disease has been noticed in many previous studies as well
(Feldman et al., 2008; Gill et al., 2010).

In general, we found genes TNF, CCL4, and XCL1 can be highly
identified with SARS-CoV-2 based on CD4+ T cells, while IFITM1
plays an essential role in fighting with SARS-CoV-2 from CD8+

T cells. On the other hand, the gene co-expression networks and the
corresponding functional annotations let us know some crucial
clusters of genes related to COVID-19. For CD4+ T cells, genes in
module 1 of the healthy network, module 3 of the mild network, and
module 1 of the severe network are worth noticing. For CD8+ T cells,
genes in modules 4 and 6 of the healthy network, module 4 of the
mild network, and module 1 of the severe network are nonnegligible.
The overall results of this study might improve the insight of gene
expression mechanisms associated with T cells and expand our
understanding of the molecular mechanism of COVID-19.

As time progresses, SARS-CoV-2 virus evolves with multiple
variants, such as Alpha, Beta, Delta, and Omicron, have spread
worldwide. Specifically, the Delta and Omicron variants have

extremely high infectivity, but the Omicron variant is less likely
to cause severe disease (Campbell et al., 2021; Haque and Pant,
2022). Although the protective efficacy of existing vaccines against
the variants has a certain degree of protective efficacy, people still
need to develop vaccines which can protect against multiple strains
of the virus and the effect lasts for a longer period (Bian et al., 2021;
Nemet et al., 2021). Hence, the immunity related cells, such as CD4+

T cells and CD8+ T cells, are extremely important. Due to the
limitation of available data, we could not identify the viral strain-
specific differences for the T cell responses. Consequently, further
studies of the correlation of immune cells, including T cells and
B cells, and the specific variants of SARS-CoV-2 are necessary. That
will also help for future vaccine development for long-term
protection for all variants of the virus.
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