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Bioinformatics is an amalgamation of biology, mathematics and computer science. It is
a science which gathers the information from biology in terms of molecules and applies
the informatic techniques to the gathered information for understanding and organizing
the data in a useful manner. With the help of bioinformatics, the experimental data
generated is stored in several databases available online like nucleotide database,
protein databases, GENBANK and others. The data stored in these databases is used
as reference for experimental evaluation and validation. Till now several online tools
have been developed to analyze the genomic, transcriptomic, proteomics,
epigenomics and metabolomics data. Some of them include Human Splicing Finder
(HSF), Exonic Splicing Enhancer Mutation taster, and others. A number of SNPs are
observed in the non-coding, intronic regions and play a role in the regulation of genes,
which may or may not directly impose an effect on the protein expression. Many
mutations are thought to influence the splicing mechanism by affecting the existing
splice sites or creating a new sites. To predict the effect of mutation (SNP) on splicing
mechanism/signal, HSF was developed. Thus, the tool is helpful in predicting the effect
of mutations on splicing signals and can provide data even for better understanding of
the intronic mutations that can be further validated experimentally. Additionally, rapid
advancement in proteomics have steered researchers to organize the study of protein
structure, function, relationships, and dynamics in space and time. Thus the effective
integration of all of these technological interventions will eventually lead to steering up
of next-generation systems biology, which will provide valuable biological insights in
the field of research, diagnostic, therapeutic and development of personalized
medicine.

Keywords: Single nucleotide polymorphisms (SNPs), HumanSplice finder (HSF), Next Generation Sequencing (NGS),
in silico, bioinformatics

INTRODUCTION

The emergence of “innovative biology” is accompanied by the birth/innovation of other sciences,
such as computational biology and bioinformatics, which have a combined interface of molecular
biology. Due to the large datasets generated, its management and storage become critically
important. Therefore, different databases came into existence, which organise a large amount of
biological information stored and processed to permit the scientific community access (Ritchie et al.,
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2015). The increasing amount of data has been abetted by an
increase in the number of biological databases (Pevsner, 2015).
Usually public databases accumulate big amounts of information,
and they are categorised into primary and secondary databases.
The primary databases are composed of the findings of
experimental data that are reported without any critical
analysis related to previous publications (Luscombe et al.,
2001; Prosdocimi, 2010). However, in the secondary databases,
there is a collection and explication of data, called process of
content curation. Besides various functional databases such as the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Reactome that allow analysis and explanation of metabolic
maps. Various primary databases like DNA Database of Japan
(DDBJ), GenBank at the National Center for Biotechnology
Information (NCBI), and European Molecular Biology
Laboratory (EMBL) remained as the main databases of
nucleotide sequences and proteins. International Nucleotide
Sequence Database Collaboration (INSDC) being the parent
organisation of these databases and sharing among each other
the deposited information daily (Prosdocimi et al., 2002; Amaral
et al., 2007; Pevsner, 2015).

Last 2 decades have witnessed great advancements in
molecular biology, data analysis procedures were established
at a fast pace to enable the interpretation of the large amount of
information produced mainly by DNA sequencing technologies
that produced the exponential amelioration of genomics,
transcriptomics and proteomics information. Biological data
of genomics/proteomics although considered to be the recent
domains, have emerged interdependently and created a
historical impact on the available information coupled with
innovations in computational resources, resulted in huge
biological data and data analysis that can enhance and
intensify the developments in medical science (Verli, 2014).
In the current modern times ‘-omics’ suffix include the
genomics, transcriptomics, proteomics, phylogenomics,
metabolomics and metagenomics, associated with large-scale
biological data and the allied bioinformatics analysis. The
emergence of newest high-throughput sequencing
innovations, starting with improvements in Sanger
sequencing, innovations in NGS technologies and next-
generation proteomics, resulted in emergence of novel
findings in the clinical settings (Zhou et al., 2010).

GENOME-WIDE APPROACH—FROM
GENOME TO PROTEOME

DNA sequencing plays a crucial role in the progression of
molecular biology, not only changing the genetic landscape of
genome designs but also opening up new opportunities in
therapeutic arena and personalised medicine

GENOMICS

Generally, Genomics is the domain that aims to uncover and
explore structure, function, and innovative realm of genomes

applying bioinformatics tools to explore sequenced genomes.
(Altmann et al., 2012).

Paul Berg’s (Jackson et al., 1972), Frederick Sanger’s (Sanger
and Coulson, 1975), and Walter Gilbert’s (Maxam and Gilbert,
1977) pioneering work on DNA sequencing enabled several
developments, including the advances that opened up
completely new potentials for DNA analysis, Sanger’s ‘chain-
termination’ sequencing technology, more commonly known as
Sanger sequencing (Sanger et al., 1977). Further technological
advancements steered in the rise of DNA sequencing, led to the
development of the first automated DNA sequencer (ABI PRISM
AB370A) to be released in 1986, allowing drafting of the human
genome to be completed during the next decade (Venter et al.,
2001). These new methods are meant to supplement and
eventually replace Sanger sequencing Figure 1. This
technology is commonly known as next-generation sequencing
(NGS) or massively parallel sequencing (MPS), which
encompasses a wide range of methodologies. It is feasible to
create huge amounts of data & each instrument runs in a faster
and more cost-effective manner using this technology. The Next
Generation Sequencing market is currently developing and
expanding, with the world-wide market expected to reach
21.62 billion US dollars by 2025, up around 20% from 2017
(BCC Research, 2019). As a result, multiple brands are
currently competing in this business, including BGI Genomics,
Illumina, Ion Torrent (Thermo Fisher Scientific), PacBio and
Oxford Nanopore Technologies etc. All of them provide distinct
approaches to the same query: the generation of sequencing data.
Second-generation sequencing relies on large parallel and clonal
amplification of molecules (PCR, polymerase chain reaction)
(Shendure and Ji, 2008), whereas third-generation sequencing
depends on sequencing of single-molecules without a preceding
clonal amplification (Schadt et al., 2010; van Dijk et al., 2018;
Ameur et al., 2019). Although the process of NGS include various
steps:

1) NGS library Preparation: A library comprises DNA/RNA
fragments that denotes the full genome/transcriptome or a region
of interest in next-generation sequencing. Each NGS platform has
its own unique features, in general, the production of an NGS
library begins with fragmentation of the DNA/RNA, followed by
the connection of sequence adaptors to fragments to permit
enrichment of those fragments. The sensitivity and specificity
of a good library should be high. This implies that all relevant
fragments should be properly represented in the library and that
there should be no random errors (non-specific products). It is
easier said than done, though, because genomic areas are not all
equally susceptible to sequencing, making the creation of a
sensitive and specialised library difficult and cumbersome
(Aird et al., 2011).

2) NGS Platforms
Platforms for Second-Generation Sequencing
The category of cyclic-array sequencing technologies (Amaral

et al., 2007) includes second-generation systems. The production
and library amplification (made from RNA/DNA samples),
clonal growth, sequencing, and investigation are all part of the
core workflow for second-generation platforms. Ion Torrent and
Illumina are the two most well-known sequencing firms for
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second-generation sequencing systems (Kircher et al., 2011; Quail
et al., 2012).

3) Platforms for Third-Generation Sequencing:
The ability to avoid limitations of PCR-based methods, such as

nucleotide misincorporation by a polymerase, formation of
chimaera and drop-outs of alleles resulting in an false
homozygosity call, was made possible by 3rd-generation NGS
technology (Thompson and Steinmann, 2010). The Helicos
Genetic Analysis System was the first commercial third-
generation sequencer (Pushkarev et al., 2009). The Pacific
Biosystems (PacBio RS II sequencer) established the notion of
single-molecule real-time (SMRT) sequencing in 2011
(McCarthy, 2010). Furthermore, this method allows for the
sequencing of lengthy reads (up to 30 kb on average).
Individual DNA polymerases are coupled to zero-mode
waveguide (ZMW) wells, which are nanoholes where a single
DNA polymerase enzyme molecule can be put directly
(McCarthy, 2010). PacBio has released the Sequel II System,
which claims to cut project costs and timelines by up to 175 kb
with highly accurate individual long reads (HiFi reads) compared
to previous versions (Pereira et al., 2020).

Merker and co-workers demonstrated initially to use a
PacBio System for sequencing of long-read genomes to find a
pathogenic variant in Mendelian disease patients, indicating
that this method has a lot of potential for identifying structural
variation (Merker et al., 2018). The Chromium instrument,
which uses gel beads in emulsion (GEMs) technology, was
released by 10X Genomics in 2016 (Pereira et al., 2020). The

benefit of GEMs technology is that it cuts down on time,
beginning material, and prices (Zheng et al., 2016; Zheng
et al., 2017; Pereira et al., 2020). With low false positives and
high throughput, the chromium system can also perform single-
cell genomic and transcriptional profiling, immunological
profiling, and chromatin accessibility studies at single-cell
resolution. As a result, intriguing new applications are
emerging, particularly in the areas of epigenetics research, de
novo genome assembly, and long sequencing reads (Delaneau
et al., 2019; Laurentino et al., 2019; Wang et al., 2019).

4) Innovative Bioinformatics approach: Sequencing
platforms are improving, and it is now possible to sequence
the human genome in as little as a week or two. Thus, the huge
data generated necessitates bioinformatics and computational
expertise to organise, analyse, and infer NGS data. As a result,
NGS bioinformatics is undergoing significant development,
which can only be aided by improving computational
capabilities (hardware) as well as algorithms and applications
(software) to streamline all required steps: from processing of raw
data to detailed data analysis and variant interpretation in a
clinical setting.

Analysis of the NGS data: NGS bioinformatics is usually
classified into three categories: primary, secondary, and tertiary
analysis (Pereira et al., 2020).

The primary data analysis includes the identification and
evaluation of raw data (signal analysis), the target of the
generation of legible sequencing reads (base calling), and the
estimation of base quality (Ledergerber and Dessimoz, 2011).

FIGURE 1 | specifies the timeline of DNA sequencing. Some of the most significant and ground-breaking developments in DNA sequencing. NG stands for next
generation, and PCR is for polymerase chain reaction. SMS stands for single molecule sequencing, and SeqLL stands for sequence the lower limit.
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This main analysis often produces a FASTQ file (Illumina) or an
unmapped binary alignment map (uBAM) file (Ion Torrent).

Secondary analysis, which involves read alignment against the
reference human genome (usually hg19 or hg38) and variant
calling, is the next step in the NGS data analysis workflow.

Read alignment, which includes aligning sequenced fragments
(processed data) against a reference genome, or de-novo
assembly, which involves constructing a genome from basic
without the use of external data, are two options for mapping
sequencing reads. The availability or absence of a reference
genome could be enough to decide between one technique and
another. Nonetheless, reference sequence mapping is the
preferred method for most NGS applications, particularly in
clinical genetics (Flicek and Birney, 2009). However, de-novo
assembly, on the other hand, is primarily limited to more focused
tasks, such as correcting flaws in the reference genome and
improving the detection of SV and other complicated
rearrangements and newer findings (Ameur et al., 2018).

In the context of human clinical genetics, the third main phase
of the NGS analysis pipeline addresses the essential issue of
“making sense” or data interpretation, which requires finding
the basic link between variant data and the observed phenotype in
a patient. The tertiary analysis starts with variant annotation,
which adds a fresh layer of data to predict the functional impact of
all variants found during the variant calling procedure. Variant
filtering, prioritisation, and data visualisation approaches are
utilised after variant annotation. These procedures can be
carried out utilising a number of software suites, which must
be updated on a regular basis to reflect the most recent scientific

findings, necessitating ongoing maintenance and development on
the part of the developers. The generalised workflow of NGS is
shown in Figure 2.

Variant annotation is a crucial first step in the assessment of
sequencing variants. As previously indicated (Scherer et al.,
2007), variant calling generates a VCF file. Each line in such a
file contains high-level information about a variant, such as
genomic position, reference, and alternate bases, but no
information biological implications. Variant annotation
provides biological context for all discovered variants. Data
annotation is performed automatically due to the large
amount of NGS data. For variant annotation, several
programmes are currently available, each of which uses
distinct approaches and databases such as Sorting Intolerant
from Tolerant (SIFT), (Ng and Henikoff, 2003), PolyPhen-2,
(Adzhubei et al., 2010), Combined Annotation Dependent
Depletion (CADD) (Kircher et al., 2014) and Condel
(González-Pérez and López-Bigas, 2011), compute the impact
scores for each variant based on various specifications, such as
sequence homology, conservation of amino acid residues,
evolutionary conservation, structure of protein, or statistical
prediction based on known mutations, are integrated into such
annotation tools. Furthermore, annotation can be used to search
disease variant databases like ClinVar and HGMD for
information on their clinical associations. Annotate Variation
(ANNOVAR) (Yang and Wang, 2015) variant effect predictor
(VEP) (McLaren et al., 2010), Single Nucleotide polymorphism
effect (snpEff) (Cingolani et al., 2012), and SeattleSeq (Ng et al.,
2009) are the most extensively used annotation tools among the

FIGURE 2 | illustrates the various steps like Raw Data Quality Control, Alignment, Post Alignment Processing, Variant Filtration, Annotation and Reporting of
variants involved in bioinformatics workflow for next-generation sequencing (NGS).
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many available. SNPs, INDELs, and Copy Number Variation
(CNVs) can all be found using ANNOVAR, a command-line tool.
It compares variants and explicates the functional consequence of
variants on genes and other genomic components (Wang et al.,
2010a). The overall number of variants obtained after analysis of a
VCF file from WES may range between 30,000 and 50,000.
Filtering algorithms are required to find the variant(s)
responsible for a particular disorder. Some more examples in
Table 1. As a result, it is strongly advised to eliminate false-
positive calls and variant call errors when beginning the third
level of NGS analysis, depending on quality parameters or prior
knowledge of artefacts. The population frequency filter is one of
the most widely used NGS filters. One of the filter based on allele
frequency is minor allele frequency (MAF), which can sort
variations into different categories: uncommon variants (MAF
0.5, usually picked for Mendelian illnesses), low frequency
variants (minor allele frequency between 0.5 and 5%), and
common variants (MAF >5%) (Consortium et al., 2010). It
not only aids in better identifying disease alleles, but also in
understanding population migrations, relationships, origins,

admixtures, and population size changes, which may be useful
in understanding various disease patterns (Stoneking and Krause,
2011). The most extensively utilised databases are the 1,000
genome project (Siva, 2008), Exome Aggregation Consortium
(ExAC) (Lek et al., 2016), and the Genome Aggregation Database
(gnomAD; http://gnomad.broadinstitute.org/). This filter,
however, has limits and may result in incorrect exclusion.

Even though, functional annotation offers a significant
information for filtering, the most critical question to answer,
especially in the context of gene discovery, is whether a given
variant or mutant gene the disease-causing gene? What is its
frequency in different population sets studied globally? To solve
this difficult issue, a new generation of tools is being created that,
rather than just omitting information, rate variants and allow
them to be prioritised. (MacArthur et al., 2012; Lelieveld et al.,
2016; Harper, 2017). Various ways have been suggested e.g.
PHIVE investigates the similarities between human illness
phenotypes and those derived from animal model organism
knockout experiments (Robinson et al., 2014). While other
methods try to handle the problem in a novel way, by

TABLE 1 | Demonstrates a list of commonly used tools for performing an NGS functional filter, along with examples.

S.No Software Description Ref

1 Phylo PPhylogenetic p-values The patterns of conservation (positive scores)/acceleration (negative scores) for various
annotation classes and clades of interest are investigated using a neutral evolution
model

Pollard et al. (2010)

2 SIFT Sorting Intolerant from Tolerant Based on the sequence homology, Predicts whether an AA change would affect protein
function and maybe alter the phenotype. A variation with a score of less than 0.05 is
considered deleterious

Ng and Henikoff,
(2003)

3 PolyPhen-2 Polymorphism
Phenotyping v2

Using a naive Bayes classifier, predicts the functional impact of an AA substitution based on
its individual properties Two tools are included. HumDiv (intended for use in complicated
phenotypes) and HumVar (designed for Mendelian disease diagnosis). Higher scores (>0.85)
predicts more confidently, damaging variants

Adzhubei et al.
(2010)

4 CADDCombined Annotation Dependent
Depletion

Scores all human SNV and Indel using a combination of genomic annotations. According to
functional categories, effect sizes, and genetic architectures, it prioritizes functional,
deleterious, and disease-causing variations. Pathogenic variants should be identified using a
cut-off score of 10 or above

Kircher et al. (2014)

5 MutationTaster Evaluates evolutionary conservation, splice-site alterations, protein loss, and changes that
could affect mRNA levels. Polymorphisms and disease-causing variants are both classed as
polymorphism

Schwarz et al.
(2010)

6 nsSNPAnalyzer Extracts structural and evolutionary information from a query nsSNP and predicts its
phenotypic effect using a machine learning method (Random Forest). The variant is divided
into two categories: neutral and disease

Bao et al. (2005)

7 TopoSNP Topographic mapping of SNP SNPs are analysed based on their geometric position and conservation information,
resulting in an interactive visualisation of disease and non-disease linked with
each SNP.

Stitziel et al. (2004)

8 ANNOVAR * Annotate Variation Annotates variants based on a variety of criteria, including whether SNPs or CNVs affect
protein function (gene-based), locating variants in specified genomic regions outside of
protein-coding regions (region-based), and locating known variants in public and licensed
databases (filter-based)

Yang and Wang,
(2015)

9 VEP *Variant Effect Predictor Determines the impact of numerous variants (SNPs, insertions, deletions, CNVs, or structural
variants) on genes, transcripts, and protein sequences, as well as regulatory domains, on
genes, transcripts, and protein sequences

McLaren et al.
(2010)

10 snpEff * SNV are annotated and classified based on their effects on annotated genes, such as
synonymous/nsSNP, start or stop codon gains or losses, genomic positions, and so on
Considered a structurally based annotation tool

Cingolani et al.
(2012)

11 SeattleSeq Provides dbSNP rs IDs, gene names and accession numbers, variant functions, protein
locations and AA changes, conservation scores, HapMap frequencies, PolyPhen
predictions, and clinical association for SNVs and tiny indels

Ng et al. (2009)

The bold values are the names of software/tools.
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computing a lethal score (also known as burden score) for each
gene using data from population variation databases (Eilbeck
et al., 2017).

Phevor, which uses data from other relevant ontologies, such
as gene ontology (GO), to advocate novel gene–disease
connections, can also be employed for the identification of
novel genes (Singleton et al., 2014). The fundamental purpose
of these tools is to provide a small number of variants that can be
validated using molecular techniques (Pereira et al., 2019a;
Pereira et al., 2019b). VarSeq/VSClinical (Golden Helix),
Ingenuity Variant Analysis (Qiagen), Alamut® software
(interactive biosoftware), and VarElect have all recently been
developed commercial softwares for the elucidation and
prioritisation of variants in a clinical context, to be used by
clinicians, geneticists, and researchers (Stelzer et al., 2016). Apart
from the tools that aid in variant analysis and elucidation,
clinicians now have access to medical genetics firms like
Invitae (https://www.invitae.com/en/) and CENTOGENE
(https://www.centogene.com/) that provide a precise medical
diagnosis.

5) Third generation sequencing technologies has the
capability of sequencing single molecules with average read
lengths of >10,000bp -100,000bp or even more. The advent of
this technology has eliminated the requirement of amplification
of DNA (PCR) and it provides real time results (Pereira et al.,
2020). The third-generation sequencing services are provided by
Pacific Biosciences (PacBio) that utilizes the single molecule real
time (SMRT) platform and fluorescent nucleotide detection
methodology. Oxford Nanopore Technologies (Minion) which
utilizes the nanopore methodology where an ionic current passes
through the flow cell and nucleotides bases are determined by the
changes they produce in the current respectively when pass
through the nanopores. (Xiao and Zhou, 2020).

The bioinformatic tools required to analyze the data obtained
from the third-generation sequencing technologies needs to be
more specific and error prone. Some tools are depicted in Table 2.

Limitations: Although Third generation sequencing
technology is fast and provide real time result however still
NGS are preferred as the error rate is less in NGS as
compared to third generation sequencing which is ~15%. Due
to this high error rate, the technology can miss the detection of
SNPs/point mutations and not best suited for mutational
analyses. The methodology requires improvement. Moreover,
there is need to develop more bioinformatic tools and
algorithms for the downstream data analyses that is again a
challenge for researchers for the time being (Ozsolak, 2012).

TRANSCRIPTOMICS

cDNA sequencing or RNA-seq when compared to other methods
allows for more accurate mapping of reads and quantification at
the transcript level. Differential expression analysis and
identification of isoforms due to mRNA splicing, NGS of
Small non-coding RNA as well as the discovery and
characterisation of novel transcripts, are examples of high
throughput applications (Marioni et al., 2008; Wang, 2009;
Montgomery et al., 2010).

Small non-coding RNA NGS: A significant increase has been
seen in the research community related to biomarkers which aids
in the prediction, early detection and prevention of the disease.
The biomarkers research helps the scientific and clinical
community significantly in improving the clinical outcomes
(Lopez et al., 2015). Non-coding RNAs (ncRNAs) have
become the biomarker hotspot of the research interest in the
field of disease identification and treatment. MicroRNAs
(miRNAs) are the type of ncRNAs which are mostly explored
for their potential biomarker role (Lopez et al., 2015). Till date
ncRNA studies have been performed mainly by qRT-PCR, in situ
hybridization, or microarray techniques. NGS has opened a new
way to analyze/detect the RNAmolecules present in the biological
samples. NGS tenders several methodological advantages over

TABLE 2 | Demonstrates various software used in third generation sequencing.

S.No Software Description Ref

1 MinHash Alignment Process
(MHAP)

Detects long read overlaps Berlin et al. (2015)

2 Minimap/miniasm De novo assembler for long reads Li, (2016)
3 DALIGN finds overlaps and local alignments in very noisy long read DNA sequencing data

sets
Li, (2016)

4 Graphmap detects single-nucleotide variant calling on the human genome; have increased sensitivity of 15%;
provides precise detection of structural variants from length 100bp - 4 kbp

Sović. (2016)

5 BLASR Maps long reads influenced by insertion and deletion errors Chaisson and Tesler, (2012)
6 Nanocorrect Error correction in long reads Loman et al. (2015)
7 PBJelly For gap closing in genome assembly English et al. (2012)
8 HGAP De novo assembly Chin et al. (2013)
9 PoreSeq Variant calling Szalay and Golovchenko,

(2015)
10 Nanocorr Error correction/de novo assembly/de novo mutation or SNPs detection Goodwin et al. (2015)
11 Nanocall Variant calling David et al. (2017)
12 DeepNano Base caller Boža et al. (2017)
13 Nanopolish Enhances the base quality Loman et al. (2015)
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other technologies like increased throughput, decreased RNA
input, good consistency and quality of data, higher detection
depth, analysis of all RNA populations, and discovery of novel
molecules (Liu et al., 2021). A typical RNA-sequencing
experiment consists of the following steps:

Thus all the above possibilities have allowed us to learn
more about the genome’s organisation, the molecular
constituents of cells and tissues, and the complexities of
regulatory systems (Zhou et al., 2010; Sims et al., 2014).
Many investigations, both fundamental and applied, have
focused on mRNA splicing. Between the transcriptional
and translational level, splicing occurs in every eukaryotic
cell. Pre-mRNA transcripts may be variably spliced depending
on location of tissue and/or stage of development, allowing
multiple transcripts to be generated and hence distinct
proteins to be made from the same gene (Burge et al.,
1999; Nilsen, 2003). The divergence of splice site sequences
from the prototypes has been linked to the generation of
alternative transcripts. Furthermore, in most introns of higher
eukaryotes, these extremely degraded motifs may be observed.
Pseudo-exons are intronic sequences of standard exon size
that outnumber real exons and are flanked by sequences that
fit the exon’s 5′ and 3′ splicing signal requirements, but are
never recognized as proper exons by the spliceosome. To
distinguish true exons and splice sites from pseudo exons,
splicing machinery must rely on auxiliary sequence features
such as intronic and exonic cis-elements (Jacob and Gallinaro,
1989).

Exonic Splicing Enhancers (ESEs) are the most researched
and well explored among them. They’re nucleotide sequences
of short length that are primarily targeted by Serine/Argine-
rich (SR) proteins, which then help to define exons
(Blencowe, 2000). Exonic Splicing Silencers (ESSs), on the
other hand, assist the spliceosome in neglecting pseudo exons
and decoy splice sites. They serve as binding sites for exon
exclusion-promoting proteins (mostly hnRNP proteins) (Zhu
et al., 2001). Several bioinformatics approaches have been
created and are now accessible to examine or predict splice
signals (Zhang et al., 2005). One of the most essential
bioinformatics tools is HSF (Human Splice Finder). For
administration of data, designing of algorithm and online
interface, HSF was built with the 4D package (4D S.A.). The
HSF database was created with all human genes containing
introns and exons. It was created using an Ensembl dataset
that included about 22 000 genes and 46 000 transcripts from
Homo sapiens. Because matrices and methods were
specifically built for the human genome, the HSF database
exclusively contains human genes (Flicek et al., 2008). HSF
also has data taken from the Ensembl Variation Database
(EVD), which can be used to investigate the impact of SNPs
on splicing. A Perl script was written utilizing the Ensembl
Perl API to allow HSF to access the EVD directly and get SNPs
in human genes. Because matrices and methods were
specifically built for the human genome, the HSF database
exclusively contains human genes (Flicek et al., 2008).

On the other hand, Exonic splicing enhancers (ESEs) can be
disrupted by nonsense, missense, and even translationally

silent mutations, causing the splicing machinery to skip the
mutant exon with significant consequences on gene structure.
The frequency of mutations, whose major consequence is
unusual splicing has been significantly underestimated
because the effects of mutations are most often predicted
purely based on information of genomic sequence (Cartegni
et al., 2002). ESEs are found in both alternative and
constitutive exons, where they serve as binding sites for Ser/
Arg-rich proteins (SR proteins), a family of conserved splicing
factors involved in a variety of splicing stages (Graveley, 2000).
Through their RNA-binding domain, SR proteins promote
exon definition by attracting spliceosomal components via
protein–protein interactions facilitated by their RS domain
and/or antagonizing the function of surrounding splicing
silencers. Multiple categories of ESE consensus motifs have
been described, and different SR proteins have varying
substrate specificities (Graveley, 2000; Cartegni et al., 2002;
Fairbrother et al., 2002). Using weight matrices for four
different human SR proteins, ESE finder searches query
sequences for potential ESEs. The matrices are based on
frequency values produced from the alignment of winning
sequences obtained through functional SELEX studies,
corrected for the background nucleotide frequency of the
initial SELEX library, which was created using chemical
synthesis (Liu et al., 1998; Liu et al., 2000). The query
sequences can be entered directly into the input box or
submitted as a text file. Multiple sequences can be processed
at the same time if they are preceded by a FASTA-format
description line (starting with ‘>’). Despite the fact that
ESEfinder is a tool for RNA analysis, it only accepts normal
DNA nomenclature (A, C, G, and T, not U). Any character
other than the letters A, C, G, and T, as well as spaces and
paragraph breaks, will be ignored by the programme. Although
both upper and lower case are acceptable, the output lines will
be written in upper case. The user can choose from one to four
matrices to be used at the same time. The result for each matrix
is a series of 1 ntd incremented scores. Only the ‘hits’ or ‘high
score motifs’ are displayed in the initial output window,
Figure 3 which include the position of the first nucleotide,
the motif match sequence, and the calculated score. When a
score exceeds the threshold value set in the input page, it is
deemed a high score.

By choosing the ‘custom’ button and entering the required
value into the box, any score can be used as the cutoff
threshold. As a result, ESEfinder may be used to identify
potential ESEs, and the prime application is the accurate
interpretation of the impact of disease-associated variants.
It has been previously demonstrated that ESEs predicted by
this matrix-based method cluster in places where natural
enhancers have been empirically localized and are more
common in exons than in introns (Cartegni et al., 2003).

CircRNAs: In contrast to messenger RNAs, circular RNAs
(circRNAs) are physiologically active nucleic acid molecules
that occur in closed loop RNA forms and do not have
polyadenylated tails. CircRNAs are classified as non-coding
RNA (ncRNA), yet some circRNAs have the ability to code
for proteins. CircRNAs were originally discovered and identified
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FIGURE 3 | Output window with complete list of scores. High scores are represented as color-coded bars. The height of each bar indicates the score value (motif
score), and its width and placement on the x-axis represent the length of the motif (6–8 nt) and its position along the sequence.

TABLE 3 | Showing the various bioinformatic software tools used in circRNAs analysis.

Tool name TT Installation Type ATMR PL CV Platform Ref

CIRCexplorer De novo;
annotation

pip, Conda, Docker STAR, BWA Python v2.3.8 Unix/Linux (Zhang et al., 2014a)

CircPro De novo;
annotation

MID BWA (CIRI2) Perl — Unix/Linux Meng et al. (2017)

MapSplice De novo;
annotation

Conda Bowtie Python v2.2.1 Unix/Linux Wang et al. (2010b)

circRNA_finder De novo MID STAR Perl, AWK v1.2 Unix/Linux (Westholm et al., 2014; Jia et al., 2019)
CircRNAFisher De novo MID Bowtie2 Perl v0.1 Unix/Linux Westholm et al. (2014)
miARma De novo Docker, Virtual box

image
BWA (CIRI) Perl,

Python, R
v1.7.5 Unix/Linux,

Windows
Andrés-León et al. (2016)

CIRI De novo MID BWA Perl v2.0.6 Unix/Linux (Gao et al., 2015; Gao et al., 2018;
Zheng et al., 2019)

ACFS De novo MID BWA BLAT Perl v2.0 Unix/Linux You and Conrad, (2016)
CircDBG Annotation CR k-mer (no need

aligner)
C++ - Unix/Linux Li and Wu, (2020)

Header Abbreviations: TT, tools type; IT, installation type; CV, current version; Ref, reference; ATMR, aligner or tools or method required; PL, programming language.
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in plant viroids in the 1970s, and then in the cytoplasm of
eukaryotic cells in the 1980s. Due to the prevalence of linear
RNAs, early development in this field was likely modest, and
circRNAs were thought to be a consequence of RNA splicing.
Recent advancements in next-generation sequencing and
related bioinformatics technologies, on the other hand, have
speed up research in humans, mice, nematodes, plants, and
archaea have all been found to have these compounds (Chen

et al., 2021). Various tools employed for the analysis of
circRNAs are summarized in Table 3, below.

PROTEOMICS

Understanding the molecular processes that mediate cellular
physiology requires the identification, quantification, and

FIGURE 4 | The diverse and dynamic methods of proteome regulation give the human genome a higher level of complexity. There are roughly 20,300 genes in the
human genome. The molecular basis of the cellular phenotype (that is, the tissue cell types) is determined by the specific expression of a subset of the genome (11,000
genes). The sophisticated methods of protein regulation, such as splicing variations PTMs, post-translational modifications; PPIs, protein–protein interactions, and
subcellular localization, acquire a considerably higher order of complexity. This results in tissue- and organelle-specific protein networks that respond to
perturbations differently throughout time (for example, ageing or drug treatment).
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characterization of a cell’s whole protein content (Schmidt et al.,
2014; Jensen et al., 2006). A rapid advancement in proteomics has
steered the researchers to organize the study of protein structure,
function, relationships, and dynamics in space and time. The
groundbreaking revelation that DNA contains all of the genetic
instruction required to build an organism gave rise to molecular
biology’s central dogma, which characterized a one-way flow of
information from DNA to RNA to Proteins. This belief has been
debunked by recent discoveries. Epigenetic markings, alternative
splicing, non-coding RNAs (including microRNAs),
protein–protein interaction (PPI) networks, and post-
translational modifications (PTMs) are only a few examples of
how genotype and phenotype are not solely determined by
information on the genome (Nagaraj et al., 2011; Beck et al.,
2011; Baker, 2012). Proteomics is the global study of proteins,
which are the key functional entities in the cell. This analysis is
arguably the most important level of information required to
understand how cells work. When compared to data collection at
the genomic and transcriptomic levels, the proteomic data
acquisition has proven difficult. Global protein analysis is a
difficult analytical task, in part because amino acids, the
building blocks of proteins, have such a wide range of
physicochemical properties. Furthermore, in comparison to the
genome, the proteome is enriched by alternative splicing and a
wide range of protein modifications and degradation, and the
complexity is heightened by the interconnectivity of proteins into
complexes and signaling networks that are highly divergent in
time and space Figure 4 (Cox and Mann, 2011). A decade ago,
sequencing and identifying a single protein was a big problem;
however, today’s high-throughput technology allows for the
identification and quantification of essentially all expressed
proteins in a single experiment. Similarly, 10 years ago, MS-
based phosphoproteomics could only identify a few hundred
phosphosites, whereas currently more than 30,000 phosphosites
can be quantitatively monitored. This current method is referred
to as “next-generation proteomics” to reflect its ability to
characterize practically the whole proteome as a result of
advancement in technology. Proteomics technologies,
particularly MS-based Protein identification has advanced
tremendously in recent years as a result of cumulative
technological breakthroughs in instrumentation, sample
preparation and computational analysis (Ficarro et al., 2002;
Lemeer and Heck, 2009; Lundby et al., 2012).

Proteomics using mass spectrometry (MS) generates a large
quantity of information about the expression, post-translational
modifications (PTMs), and interactions among thousands of
proteins. The obtained data must be supplied to the scientific
community in a format that is both suitable and curated, as well as
retrievable and interpretable. Proteomics data will be made freely
available to the public, ensuring that quality standards are
maintained in the area. The long-term storage of unprocessed
raw data is a first level of distribution for proteomics data.
Understanding the proteome’s complex and dynamic
interactions necessitates the creation of physical interaction
charts.

Proteins frequently interact with one another in stable or
transient multi-protein complexes of varying composition,

with the human interactome containing an estimated 130,000
binary interactions, the majority of which have yet to be mapped.
Proteins can also interact with other molecules like RNA, DNA
and metabolites. These complexes play crucial roles in regulatory
processes, signalling cascades, cellular functions, and their
inability to interact can result in their function being lost
(Altelaar et al., 2012; Ma and Johnson, 2012). Tranche is one
of the few public repositories that can manage this type of data at
the moment, and it is based on an encrypted peer-to-peer system
that stores data in numerous servers across the world. Raw data,
on the other hand, is in a closed format, whichmakes it difficult to
share. As a result, attempts are being undertaken to standardise
formats that preserve all necessary information (Smith et al.,
2011). The European Bioinformatics Institute’s PRIDE database
exhibits this determination, as it enables the for the storage of
both conventional MS data formats (XML) and associated
peptide and protein identifications. Furthermore, including
additional data (such as species, fragmentation procedures,
and proteases) allows for a global meta-analysis of proteomic
data sets (Perez-Riverol et al., 2019).

Moreover, Protein sequence alignment compares two or more
than two sequences and aids in the identification of homologous
regions, visualizing the relationship among sequences with
respect to evolution and structure. It plays a crucial role in
bioinformatics and helps in the query and construction of
databases, prediction of protein’s primary, secondary and
tertiary structure and biological function and many more.
Many platforms are developed to analyse the sequence
alignment. Some of them are PROSITE, Pfam, BLAST,
FASTA, Clustal omega, T-Coffee, MUSCA, ALIGN, DIALIGN,
ProbCons, HMMER3 phmmer and many more (Pruess and
Apweiler, 2003; Sievers et al., 2011; Singh et al., 2016a).

Protein structure prediction can be done using the ProtParam
tool from ExPasy (Expert Protein analysis system) (Gasteiger
et al., 2005). It helps in the primary structure prediction of protein
and aids in the computation of physicochemical properties of a
given protein. The parameters that can be computed include
molecular weight, amino acid and atomic composition, isoelectric
point, estimated half-life, grand average of hydropathicity
(GRAVY) and more. To predict the secondary structure, many
tools have been developed till now including Chow-Fasman
algorithim—a statistical approach which is based on
calculation of statistical propensities of each residuum to form
an α-helix or β-strand, GOR, Jpred, etc. Similarly, for tertiary
protein structure prediction, PHYRE2 (Protein Homology/
analogY Recognition Engine) (Kelley et al., 2015) and
I-TASSER are available (Yang et al., 2015).

Apart from above mentioned software suits, there are other
tools which are helpful in addressing protein analysis. Some of
them are mentioned in Table 4.

To study the post-translational modifications, tools like
GlycoMod (Cooper et al., 2001), NetPhos (Trost and Kusalik,
2011), NetPicoRNA (Smits et al., 2013), FindMod (Gasteiger
et al., 2003), ScanProsite (De Castro et al., 2006) and others are
available online. For protein interaction analyses STRING can be
used (Szklarczyk et al., 2021). To visualize the 3-D structure of
proteins, tools like Pymol and Jmol can be used. Pymol is also
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TABLE 4 | Demonstrates the Protein sequence analysis tool.

S.No Software Description Ref

1 Expasy A molecular server dedicated to protein and nucleic acid sequence analysis Gasteiger et al. (2003)
2 Frame plot Protein coding region prediction in Bacterial DNA Ishikawa and Hotta,

(1999)
3 MPEx Membrane Protein Explorer (MPEx) is a tool that uses hydropathy plots based on thermodynamic

principles to explore the topology and other properties of membrane proteins
Snider et al. (2009)

4 Predict Protein Predict Protein is an online service that analyses protein sequences and predicts their structure and
function. Predict Protein offers numerous sequence alignments, PROSITE sequence motifs, low-
complexity regions (SEG), nuclear localization signals, regions lacking regular structure (NORS), and
secondary structure predictions after users submit protein sequences or alignments

Bernhofer et al. (2021)

5 ProDom Pro Dom is a database of protein domain families built by grouping homologous regions. The
recursive PSI-BLAST searches [ALTS2] are used in the ProDom construction technique MKDOM2.
Non-fragmentary protein sequences from the SWISS-PROT and TrEMBL databases were used as
the starting point

Bru et al. (2005)

6 Prot Scale Prot Scale lets you compute and visualise the profile generated by any amino acid scale on a given
protein. Each type of amino acid is assigned a number value on an amino acid scale

Gasteiger et al. (2005)

7 Sequence Manipulation
Suite (SMS)

The Sequence Manipulation Suite is a set of JavaScript tools for generating, formatting, and
analysing short DNA and protein sequences in BioSyn’s Gizmo Tools

Stothard, (2000)

8 Worldwide Protein Data Bank
(wwPDB)

The wwPDB hosts a single Protein Data Bank Archive of macromolecular structural data that is freely
and openly accessible to the entire world

Berman et al. (2007)

FIGURE 5 | Typical workflow for identifying, validating, and stratifying protein-based biomarker signatures. Proteomics based onmass spectrometry (MS) is utilized
for in-depth quantitative characterization of a disease model’s proteome and its appropriate control mechanisms. Following the application of strict statistics, a list of
candidate proteins that can be used as a phenotypic signature is defined. Thesemarkers are verified in large patient cohorts using more specificmethodologies, such as
MS-based (for example, selective reaction monitoring (SRM)) or antibody-based approaches. To confirm that the biomarker has a direct mechanistic involvement in
the disease, the biological connections between the signature proteins and the disease phenotype should be biochemically confirmed.
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used to visualize the protein-ligand docking, binding site
prediction, protein interactions and others (DeLano, 2002;
Herráez, 2006).

The identification of protein biomarkers with prognostic or
diagnostic significance is one of the most difficult applications of
proteomics right now Figure 5.

As previously mentioned, recent technical advancements have
resulted in the development of comprehensive pipelines that
incorporate the discovery and validation phases, allowing
plasma biomarkers to be identified for many diseases (Addona
et al., 2011; Whiteaker et al., 2011). Despite the introduction of
some successful biomarkers for clinical application, many (if not
most) claimed biomarkers have weak reliability or lack rigorous
confirmation, leading to scepticism among clinicians. The lack of
proper controls in the discovery phase, the use of appropriate
statistical tools for biomarker definition, and the need for
independent validation steps in large patient cohorts to certify
the legitimacy of the biomarker unambiguously are the primary
flaws in many biomarker studies; such flaws lead to claimed
biomarkers that are rarely directly related to disease biology
(Poste, 2011).

Metabolomics: Beacon for the 21st Century
After genomics, transcriptomics and proteomics, metabolomics is the
innovative & newest of the “omics” sciences, combining high-
throughput analytical techniques with bioinformatics. It is
concerned with the quantitative and qualitative evaluation of
metabolites, which are key metabolic intermediates and end
products (Zhang et al., 2014b). The purpose of this scientific
method is not only to figure out what pathological processes or
disturbances are at the root of a specific disease entity, but also to
anticipate how those conditions will respond to treatment
interventions. Metabolomic analysis help discriminate between
normal and abnormal pathways, which aids in disease diagnosis
and prognosis prediction (Zhang et al., 2015). The potential of the
metabolome to reflect environmental effects and to provide a
snapshot of the individual’s pathophysiological status at a certain
point in time is a noteworthy benefit of the metabolome over the
genome (Shah et al., 2015; Zhang et al., 2015). The prime concern of
the researchers/clinicians is the better understanding of the disrupted
biochemical and pathological processes, as well as to inform the
creation of more effective therapeutic medicines for the treatment of
those illness states in humans. Metabolomic tools have the benefits of
being quick, inexpensive, and sensitive. Metabolomics can be studied
using a variety of techniques, including mass spectrometry (MS),
nuclear magnetic resonance (NMR) spectroscopy, and Fourier-
transform infrared (FTIR) spectroscopy. Metabolomic
fingerprinting, metabolic profiling, metabolic footprinting, target
analysis, and flux analysis are examples of such methods that all
play important roles in understanding toxicological mechanisms and
disease processes in live organisms (Tripathi et al., 2013; Zhang et al.,
2013; Zhang et al., 2014b).Metabolomics is also critical in discovering
new drugs, biomarkers for early disease diagnosis, such as
rheumatoid or osteoarthritis (Carlson et al., 2018; Takahashi et al.,
2019; Dudka et al., 2021), osteoporosis, cardiovascular disease, and
Alzheimer’s disease (AD), cancer prognosis, diagnosis, and treatment
(Pushkarev et al., 2009; McCarthy, 2010; Thompson and Steinmann,

2010; Kircher et al., 2011; Quail et al., 2012; Zheng et al., 2016; Zheng
et al., 2017; Merker et al., 2018; Pereira et al., 2020), inborn errors of
metabolism (IEM) and a variety of other applications (Carlson et al.,
2018).

Pharmacogenomics/Pharmacogenetics:
in-Silico Approach
Pharmacogenomics is described as the study of genes and how
medications alter an individual’s reaction. Pharmacogenomics is
an emerging new discipline of science that combines
pharmacology (the branch of science that studies drugs) with
genomics (the branch of science that studies genes) to generate
effective doses and safe pharmaceuticals tailored to an individual
patient’s genetic makeup. One of the most important programs in
which researchers are building and learning about genetic
relationships and their impact on the body’s reaction to drugs is
theHumanGenomeProject. Differences in geneticmakeup influence
pharmaceutical effectiveness, making it possible to anticipate
medication effectiveness for an individual and investigate the
presence of adverse drug reactions in the future (Caldwell et al., 2007).

Because of the wide range of individual responses to drug
therapy, predicting the degree of effectiveness of a medication for
a certain patient is difficult. Along with these clinical aspects,
pharmacological factors such as variations in metabolism, drug
distribution, and drug directed proteins play a significant role
(Wattanachai et al., 2017). Table 5 describes various softwares
employed in addressing Pharmacogenomics.

Epigenomics—complex diseases: An enigma
Understanding the causes and mechanisms of complex non-
Mendelian diseases remains a major issue and point of
concern, despite substantial effort. Despite the fact that
various molecular genetic linkage and association studies
have been carried out in order to explain the heritable
tendency to complicated disorders, the results are
sometimes inconclusive and even contentious. Similarly,
determining the environmental factors that cause a disorder
is difficult (Singh Nanda et al., 2016). The emphasis is switched
to epigenetic misregulation as a primary etiopathogenic
element, which presents a novel interpretation of the
paradigm of “genes plus environment”.

Various non-Mendelian irregularities of complex diseases,
such as the presence of clinically indistinguishable sporadic
and familial cases, sexual dimorphism, relatively late age of
onset and peaks of susceptibility to some diseases, discordance
of monozygotic twins, and major fluctuations on the course of
disease severity, are consistent with epigenetic mechanisms. It is
also been claimed that stochastic epigenetic processes in the cell
may account for a significant percentage of phenotypic diversity
formerly attributed to environmental factors. It is proposed that
using epigenetic strategies in conjunction with traditional genetic
strategies can greatly speed up the finding of etiopathogenic
processes in complicated disorders (Lacal and Ventura, 2018).
Epigenetic microarray technologies and in silico approaches will
considerably enhance epigenetic investigations in complicated
disorders as shown in Table 6.
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TABLE 5 | Demonstrates various in silico approaches used in Pharmacogenomics.

S.No Software name Software Description Ref

1 Pharmacogenomics Knowledge
(PharmGKB)

It’s a comprehensive resource that compiles information on the impact of genetic variation on
drug response, such as dosing guidelines, drug labels, gene-drug connections, and the
genotype-phenotype link

Thorn et al. (2013)

2 The Drug Gene Interaction Database DGIdb is a database and web interface for identifying drug-gene interactions, both known
and unknown

Freshour et al.
(2020)

3 Side Effect Resource (SIDER 2) It covers data on marketed drugs and any adverse medication reactions that have been
reported. Public documents and package inserts were used to gather the data. Side effect
frequency, drug and side effect categories, and connections to additional information, such
as drug–target relationships, are all included in the available data

Kuhn et al. (2016)

4 Drug Bank Drug Bank Online is a comprehensive, free-to-use online database of drug and drug target
information

Wishart et al.
(2018)

5 Search Tool for Interaction of Chemicals
(STITCH)

It uses data from the scientific literature and new research findings to describe chemical
interactions with genes and proteins, as well as diseases and chemicals, and diseases and
genes/proteins on humans

Kuhn et al. (2008)

6 Genomics of Drug Sensitivity in Cancer The database contains data on the link between tumour cell genomes and anti-cancer drug
sensitivity The sensitivity patterns of human cancer cell lines to a wide range of anti-cancer
treatments were compared to genomic and expression data in order to find genetic factors
that are predictive of sensitivity

Yang et al. (2013)

The bold values are the names of software/tools.

TABLE 6 | Showing various in silico approaches in Epigenomics.

S.No Software name Software Description Ref

1 DMRichR R package and executable for analysing and visualizing differentially methylated regions (DMRs) using CpG count
matrices statistically (Bismarck genome-wide cytosine reports) It primarily employs the dmrseq and bsseq algorithms
for upstream pre-processing, downstream analysis, and data display

Laufer et al. (2020)

2 CpG_Me A whole genome bisulfite sequencing (WGBS) process for DNA methylation alignment and quality control that starts
with raw reads (FastQ) and ends with a CpG count matrix (Bismark genome-wide cytosine reports)

Laufer et al. (2022)

3 Rn Beads A Bioconductor (R) package for comprehensive analysis of DNA methylation data from Illumina Infinium arrays (450 K
and EPIC) and BS-seq. MeDIP-seq and MBD-seq are also supported after some external processing

Müller et al., (2019)

4 MEDIPS A Bioconductor (R) package for MeDIP (methylated DNA immunoprecipitation) and sequencing research (MeDIP-seq) Lienhard et al. (2014)
5 Minifi ABioconductor (R) package for your Illumina Infinium arrays (450 K and EPIC) that enables complete analysis and takes

cellular heterogeneity into account
Aryee et al. (2014)

6 DMRcate A Bioconductor (R) package for the identification of DMR from the human genome using WGBS and Illumina Infinium
array (450 K and EPIC) data

Peters et al. (2015)

7 FEM Integrative analysis of DNA methylation and gene expression data Gentleman et al. (2004)
8 coMET Visualization of Epigenome-Wide Association Study (EWAS) from a genomic region Martin, (2014)

The bold values are the names of software/tools.

TABLE 7 | Showing various enrichment tools.

S.No Software name Software Description Ref

1 singular enrichment
analysis (SEA)

The enrichment P-value for each term from the pre-selected interesting gene list is calculated Huang et al. (2009)

Then, in a basic linear text style, the enriched terms are listed. The most traditional algorithm is this
one The majority of enrichment analysis tools still rely on it

2 Gene set enrichment analysis
(GSEA)

The enrichment analysis takes into account all genes (without pre-selection) and their related
experimental values. The following are the distinguishing characteristics of this strategy: I Unlike
Classes I and II, there is no requirement to pre-select interesting genes; (ii) Experimental values are
integrated into P-value computation

Subramanian et al.
(2005)

3 Modular enrichment
analysis (MEA)

This approach carries on the spirit of the SEA. The term–term/gene–gene associations, on the
other hand, are taken into account when calculating the enrichment P-value The benefit of this
technique is that the term–term/gene–gene interaction may contain biological meaning that isn’t
shared by a single term or gene This type of network/modular analysis is more in line with the
structure of biological data

Tabas-Madrid et al.
(2012)

The bold values are the names of software/tools.
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Pathway/Enrichment Analysis framework: omics Data
Comprehensive DNA, RNA, and protein quantification in
biological materials is prevalent. The generated data is rapidly
accumulating, and its analysis aids researchers in discovering new
biological functions, genotype–phenotype correlations, and
disease causes (Lander, 2011; Stephens et al., 2015). Many
researchers, however, find that analysing and interpreting
these data is a huge issue. Long lists of genes often emerge
from analyses, requiring an impractically enormous amount of
manual literature research to analyze.

Scientists can use pathway enrichment analysis to acquire
mechanistic insight into gene lists generated by genome-scale
(omics) investigations. This approach finds biological pathways
that are more enriched in a gene list than is expected by chance
(Nguyen et al., 2019). Innovative pathway enrichment analysis
methodologies and provide a step-by-step guidance for
interpreting gene lists generated by RNA-seq and genome-
sequencing research. The approaches can be employed in
various sets: defining a gene list using omics data, determining
statistically enriched pathways, and visualizing and interpreting
the results. This technique can be used in expressed genes and
cancer genes that have been altered; however, the idea can be
extended to a wide range of omics data (Paczkowska et al., 2020).
Although there are various enrichment tools. Few of them are
summarized in Table 7.

Single-Cell Genomics “Cancer Research/Pan-Cancer
Biomarkers”
Single-cell sequencing refers to the sequencing of a single-cell
genome or transcriptome in order to gather genomic,
transcriptomic, or other multi-omics information that can be
used to show cell population distinctions and cell evolutionary
linkages as in plethora of cancers. Traditional sequencing
methods can only obtain an average of many cells, making it
impossible to study a small number of cells and resulting in the
loss of cellular heterogeneity data (Wen and Tang, 2018).

Single-cell methods have the advantages of detecting
variability among individual cells [1, differentiating a small
number of cells, and outlining cell maps when compared to
classical sequencing technology (Pennisi, 2012).

Multimodal analysis with integration (Multimodal analysis), or
the ability to assess various data types simultaneously from the same
cell, is a new and exciting future for single-cell genomics. Weighted
closest neighbor (WNN) analysis, an unsupervised technique for
learning the information content of each modality in each cell and
defining cellular state based on a weighted combination of both
modalities, is introduced in Seurat v4. Infact, Multimodal analysis, or
the simultaneous measurement of many modalities, is an intriguing
new Frontier in single-cell genomics that needs novel computational
methods to describe biological states based on numerous data
sources. Recent research have demonstrated WNN to create a

TABLE 8 | Different omics levels of gene-function relationship.

S.No Level of
Analysis

Description Method of Analysis

1 Genome Complete set of genes of an organism or its organelles WGS, WES, DNA microarray
2 Transcriptome Complete set of messenger RNA molecules present in a cell, tissue of

organ
RNA-Sequencing Expression microarray Expression microarray
Spatially resolved transcriptomics

3 Proteome Complete set of protein molecules present in a cell, tissue or organ Peptide/protein microarrays (RPPA) Mass spectrometry Imaging
mass cytometry

4 Metabolome Complete set of metabolites (low-molecular-weight intermediates) in a
cell, tissue or organ

Nuclear magnetic resonance spectrometry Mass spectrometry
Infrared spectroscopy

5 Methylome Complete set of methylation sites within a genome Bisulfite-Sequencing, ChIP-Seq
6 Microbiome Complete set of genes of all microbes (bacteria, fungi, protozoa and

viruses) in a cell, tissue or organ
DNA-Sequencing 16 S rRNA-Sequencing

7 Lipidome Complete set of all biomolecules defined as lipids Mass Spectrometry

WGS, Whole-genome Sequencing; WES, Whole-exome sequencing; ChIP, chromatin immunoprecipitation.

TABLE 9 | Demonstrates various single cell sequencing technologies.

S.No Tool name Description Ref

1 SCI-seq Construction of single-cell libraries and detection of cell copy number variation Vitak et al. (2017)
2 LIANTI Finding the copy number variation and disease-related mutation Brierley et al. (2002)
3 scCOOL-seq Uncovering of chromatin status/nucleosome localization, DNA methylation, copy number variation

and ploidy
Guo et al. (2017)

4 Microwell-seq Enhances the detection abundance of single cell sequencing technology Han et al. (2018)
5 SPLit-seq Single cell transcriptome sequencing Rosenberg et al.

(2018)
6 Single-Nucleus RNA-Seq +

DroNc-Seq
A variety of cells can be accurately analyzed. It may be used in the Human Cell Atlas Project in the
future

Habib et al. (2017)
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multimodal reference of human PBMC using a CITE-seq dataset
with matched transcriptome and 228 surface protein measurements.
WNN can be used to analyse multimodal data from several
technologies, such as CITE-seq, ASAP-seq, 10X Genomics ATAC
+ RNA, and SHARE-seq (Ensslin, 2008) (Tables 8, 9).

Deep Learning in Genomics
Although genomics generates large amounts of data, most
bioinformatics algorithms use machine learning and, more
recently, deep learning to discover patterns, make predictions, and
model disease progression or treatment. Deep learning (DL) advances
have sparked a surge of interest in biomedical informatics, spawning
new bioinformatics and computational biology research areas. In
deep learning models, it is anticipated to deliver higher accuracies in
specific genomics tasks than current state-of-the-art methods. Given
the growing trend of using deep learning architectures in genomics
research. Deep learning will accelerate improvements in genomics.
Deep learning is a sort of AI technique that is used to process vast and
complicated genomic datasets in particular fields, such as clinical
genomics (Koumakis, 2020). Various deep learning architectures
have been designed till date, among them includes Artificial
Neural Networks (ANN), Convolutional Neural Network (CNN)
& Recurrent Neural Networks (RNN).

Artificial Neural Networks (ANN): The neurons and
networks that make up human brains served as inspiration for
Artificial Neural Networks (ANN). The ANN is made up of a set
of fully linked nodes (neurons) that simulate the stimulus
transmission of brain synapses across the neural network,
whether they fire or not. These DL architectures can be used
for feature selection, classification, dimensionality reduction, or
as a submodule of a more complex design like convolutional
neural networks (Zurada, 1992).

The Convolutional Neural Network (CNN) is a deep
neural network architecture that is most typically used to
analyse visual images. It was intended as a completely
automated image analysis network for classifying
handcrafted characters. CNNs are fully connected networks
based on the multilayer perceptrons approach, in which each
node/neuron in one layer is (fully) connected to all nodes in
the following layer (LeCun et al., 1998).

Recurrent neural networks (RNN): The functioning of
recurrent neural networks (RNN) is similar to that of normal

feedforward neural networks (FNN), in which nodes form a
directed graph along a temporal sequence. RNNs can now
demonstrate temporal dynamic behavior while also integrating
internal memory. Recurrent networks can remember information
from previously studied states thanks to their short-term
memory, making them ideal for sequential signal processing
and prediction models. The ability of RNNs to relate
information from a previous activity to the current task is one
of their strengths (Williams and Zipser, 1989a). Table 10 enlists
various tools of deep learning (AI) in genomics.

Conclusion and Future Perspectives
The introduction of massively parallel sequencing has changed
genetics and genomics research forever because of its widespread
adoption and numerous applications, massively parallel
sequencing is projected to play a vital role in the medical
industry in the next years. It is worth noting that NGS as a
research tool faces major challenges in terms of manufacturing,
data management and downstream analysis.

➢ Thus, in the past decade, rapid advancements in high-
throughput intervention, backed by lower costs, have opened
up new pathways for interrogating a biological system at several
regulatory levels, while also providing us with an unprecedented
picture. Integrating more genomic/proteome/transcriptome/
metabolome/epigenome data with relevant information
obtained at other levels, such as genomes, transcriptomes,
epigenomics and metabolomics is still a difficulty.
➢ Nonetheless, new sequencing technologies addressing genomic,
proteome, transcriptome,metabolome, and epigenome data clearly
have tremendous research potential; their capabilities in the hands
of researchers will surely speed our understanding of genomic,
medical science and allied domains.
➢ Advances in data creation and analysis skills, as well as the
interpretation of outcomes, have pointed to a bright future.
However, rapid advancement in all fields of science has
resulted in the introduction of novel analytical
methodologies. While we continue to learn more about
how the body functions, we should shift our focus from
molecular to systemic and analytic techniques, which has
the potential to revolutionize our understanding of how
complex biological systems are regulated.

TABLE 10 | Shows list of deep learning techniques in genomics.

S.No Tools Prediction Ref

1 DeepTarget target prediction Lee, (2016)
2 DeepMirGene miRNA Target Park, (2016)
3 Deep Net Case control pre-processing step for clustering. Prediction of transcriptomic machinery (Gupta et al., 20152015; Dombi et al., 2017)
4 D-GEX Gene expression interference Chen et al. (2016)
5 Deep Chrome Classify Gene Expression Singh et al. (2016b)
6 DeepFIGV Predictive Quantative epigenetic variation Hoffman et al. (2019)
7 Deepathology Predict tissue-of-origin, normal or disease state and cancer type Azarkhalili et al. (2019)
8 DeepCpG predicts missing methylation states and detects sequence motifs Angermueller et al. (2017)
9 DanQ predicting the function of DNA directly from sequence alone Quang and Xie, (2016)
10 FBGAN optimize the synthetic gene sequences Gupta and Zou, (2019)

The bold values are the names of software/tools.
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➢ Data integration, on the other hand, is not the end.
Although, the bioinformatics challenges posed by NGS are
significant, a variety of software tools and algorithms have
been created to aid data management, short-read
alignment, and sequence variant identification. The high
throughput of NGS necessitates the use of automated
pipelines, which aid in the transition from novel
sequencing technology
➢ Thus the scenario emphasizes the necessity for scientists who
are experts in a variety of fields, as well as the effectiveness of
multidisciplinary research groups, in which the complementarity
of varied abilities will allow for significant scientific advancements
& contributions. Addressing system-wide biological concerns
necessitates the use of integrated biology techniques. Routine

integration, on the other hand, will necessitate the maturation
and alignment of various post-genome technologies, as well as
cross-communication across various scientific communities. The
effective integration of all of these technologies will eventually
lead to next-generation systems biology, which will provide
valuable biological insights and adoption to high-throughput
research and publication.
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