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Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder that
canonically affects the ocular, skeletal, and cardiovascular system, in which aortic tear
and rupture is the leading cause of death for MFS patients. Genetically, MFS is primarily
associated with fibrillin-1 (FBN1) pathogenic variants. However, the disease-causing
variant in approximately 10% of patients cannot be identified, partly due to some
cryptic mutations that may be missed using routine exonic sequencing, such as non-
coding intronic variants that affects the RNA splicing process.We present a 32-year female
with typical MFS systemic presentation that reached to a clinical diagnosis according to the
revised Ghent nosology. We performed whole-exome sequencing (WES) but the report
failed to identify known causal variants when analyzing the exonic sequence. However,
further investigation on the exon/intron boundaries of the WES report revealed a candidate
intronic variant of the fibrillin 1 (FBN1) gene (c.248-3 C>G) that predicted to affect the RNA
splicing process. We conducted minigene splicing analyses and demonstrated that the
c.248-3 C>G variant abolished the canonical splicing site of intron 3, leading to activation
of two cryptic splicing sites and causing insertion (c.248-1_248-2insAG and c.248-1_248-
282ins). Our study not only characterizes an intronic variant to the mutational spectrum of
the FBN1 gene in MFS and its aberrant effect on splicing, but highlights the importance to
not neglect the exon/intron boundaries when reporting and assessing WES results. We
point out the need of conducting functional analysis to verify the pathogenicity of intronic
mutation, and the opportunity to re-consider the standard diagnostic approaches in cases
of clinically diagnosed MFS with normal or variant of unknown significance genetic results.
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1 INTRODUCTION

Marfan syndrome (MFS) is an autosomal dominant
connective tissue disorder with variable penetrance at an
estimated incidence of 2–3 in 10,000 individuals (Groth
et al., 2015). Typical pathological manifestations of MFS
involve the skin, skeleton, ocular system, and
cardiovascular systems, from which aortic dissection or
rupture resulting from progressive aorta dilation is the
leading cause of mortality. However, prophylactic aortic
surgery with comprehensive medical treatment has
substantially improved the survival of MFS patients
(Milewicz et al., 2021). Pathogenetic variants in the
fibrillin 1(FBN1) gene encoding fibrillin-1—an extracellular
matrix protein have been identified as the primary disease-
associated gene in MFS (Maslen et al., 1991). Up to a quarter
of FBN1 pathogenetic variants are de novo while a clear family
history is apparent in the majority of MFS probands (Chiu
et al., 2014). Currently, the clinical diagnosis of MFS is based
on a set of manifestations from the revised Ghent nosology,
including assessment of systemic features and measurements
of the thoracic aorta (Loeys et al., 2010). In situations of
clinical uncertainty or preclinical diagnosis, molecular
genetic testing is an integral part of the diagnostic and
differential diagnosis process, as well as genetic counseling
(Milewicz et al., 2021). Moreover, a definitive genetic
diagnosis facilitates the screening of potentially affected
relatives and future offspring. However, the genetic cause
in about 10% of patients with typical MFS phenotypes and
clinical diagnosis according to Ghent nosology cannot be
identified (Zeigler et al., 2021). This is partially due to cryptic
pathogenic variants outside the conventional exonic area of
FBN1 that has been previously described, such as rare
pathogenic variants in the middle of introns that lead to
splicing of intron sequences into FBN1 transcript or
haploinsufficiency, which is due to nonsense-mediated
decay of the mutant transcript (Guo et al., 2008; Torrado
et al., 2018; Wu et al., 2021).

In this study, we report a clinically diagnosed MFS female with
typical clinical MFS characteristics. Standard genetic testing was
performed to identify the causal variant for MFS but our clinical
report of the exonic sequence failed to confirm the disease-
associated mutation. Further investigation of the exon/intron
boundaries identified an intronic variant of the FBN1 gene
(c.248-3 C>G), and computer prediction and functional study
using minigene splicing assays verified the pathogenicity of this
cryptic mutation. Furthermore, we screened the proband’s family
members and identified two preclinical relativities with the same
pathogenic variant who are now under medical treatment with
follow-up.

2 MATERIALS AND METHODS

2.1 Patient Clinical Information
A 32-year-old female was admitted to our emergency
department for acute chest pain. She was 162 cm tall, but

had marfanoid systemic manifestations. The patient
mentioned that her grandmother, two of her uncles, her
mother, and one of her cousins passed away suddenly in their
twenties or thirties. In addition, one of her cousins
underwent cardiovascular surgery for acute aortic
dissection in his twenties. Therefore, MFS was suspected
in this patient.

2.2 Clinical Examination for Marfan
Syndrome
Based on first physical presentation of the patient, an
emergency computed tomography angiography (CTA),
transthoracic echocardiography (TTE), and
electrocardiogram (ECG) were performed for an MFS
diagnosis. Blood and urine specimens were collected and
tested. Clinical MFS characteristics were evaluated: the
cardiovascular system (e.g., aortic root dilatation, aneurysm,
and dissection, mitral valve prolapse), ocular system (e.g.,
ectopia lentis, myopia), skeletal system (e.g., arachnodactyly,
scoliosis, pectus excavatum, hindfoot deformity,
dolichocephaly, enophthalmos, malar hypoplasia,
retrognathia), and skin striae. The scoring of MFS systemic
features was calculated according to the revised Ghent
nosology (Loeys et al., 2010).

2.3 Genetic Analysis
As per manufacturer’s protocol, a QIAamp DNA Blood Mini Kit
(Qiagen GmbH, Hilden, Germany) was used to extract and purify
1 μg of DNA from 200 μl sampled blood. The DNA libraries were
constructed using a polymerase change reaction (PCR)-free
method. Next-generation sequencing was applied for mutation
screening. The platforms for whole-exome sequencing
(NanoWES Human Exome, Berry Genomics Corporation,
Beijing, China) were performed on a Illumina NovaSeq 6000
(Illumina, San Diego, USA). Single-nucleotide polymorphisms
(SNPs), insertions, or deletions (InDels), splicing (SPIDEX,
dbscSNV, spliceAI and NetGene2) were determined by
bioinformatics analysis. The pathogenicity of variants was
evaluated based on the American College of Medical Genetics
and Genomics (ACMG) standards and guidelines (Richards et al.,
2015). The sequencing reads were aligned to the human reference
genome (hg38/GRCh38).

2.4 Minigene Analysis
In vitro minigene splicing assay was performed for the splicing
variant as previously described (Xiong et al., 2021). Generally, the
wild-type (WT) and mutant-type (MT) forms of the minigene
regions, encompassing exons 3–5, intron 3, and partial intron 4 of
FBN1, were amplified from genomic DNA of the proband, using
the following primer pairs: 5′- AAGCTTGGTACCGAGCTC
GGATCCACCCAATGTCTGTGGATCACGTTATAAT-3′ and
5′- ATGAGACAAGAATTATGACTCACTTGCCCAAACCCC
C-3′, 5′-GAGTCATAATTCTTGTCTCATATGGTTACTCAA
GGCA-3′ and 5′-TTAAACGGGCCCTCTAGACTCGAGGTT
GTCCACAGTGAGTCCCTATGTATCC-3′. The amplified
products were cloned into a pMini-CopGFP vector (Beijing
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Hitrobio Biotechnology Co., Ltd.) double digested at the
restriction sites BamHI and XhoI using a ClonExpress II One
Step Cloning Kit (Vazyme, Nanjing, China). Sanger sequencing
was used to verify WT and MT minigene plasmids to be selected
for further transfection. As per protocol previously described
(Xiong et al., 2021), human embryonic kidney 293T (HEK293T)
cells were cultured and incubated for recombinant plasmid
transient transfection with Lipofectamine 2000 (Invitrogen,
Carlsbad, CA, United States). After 48 h, total RNA was
extracted from cells with TRIzol reagent (Cowin Biotech Co.,
Jiangsu, China). Reverse transcription-PCR (RT-PCR) was
performed with the primer pair: 5′-GGCTAACTAGAGAAC
CCACTGCTTA-3′ and 5′-GTTGTCCACAGTGAGTCCCTA
TGTA-3′. Agarose gel electrophoresis and Sanger sequencing
were used to analyze PCR fragments and to determine gene
isoforms, respectively. Thereafter, the Expasy-tranlate tool
(https://web.expasy.org/translate/) was used to translate the
nucleotide sequence to the protein sequence to analyze the
effect of mutation on translation.

3 RESULTS

3.1 Proband Clinical Presentation and
Management
Emergency CTA showed dilatation of the ascending aorta
(6.2 cm) and a Debakey I dissection which affected the

ascending aorta, aortic arch and branches, descending
aorta, abdominal aorta, celiac trunk, superior mesenteric
artery, and left renal artery (Figure 1A). TTE examination
demonstrated dilatation of the aortic root and severe
regurgitation of the aortic valve. According to the revised
Ghent criteria, the patient’s systemic score was 7/20 points
based on the presence of positive wrist and thumb signs,
pectus carinatum deformity, plain pes planus, and skin striae
(Figures 1B–E), which reached the threshold for an MFS
clinical diagnosis.

Emergency surgical repair was indicated for the acute
Debakey I dissection involved in the patient. During the
surgical procedure, extracorporeal circulation via
cardiopulmonary bypass was established and the patient
underwent the Bentall procedure, aortic arch replacement,
descending aortic endovascular stent-graft implantation.
The patient had an uneventful recovery, was prescribed a β-
adrenergic receptor blocker, and scheduled for regular
follow-up.

3.2 Proband FBN1 Genetic Analysis
Standard exonic sequence reporting for the suspicion of
MFS failed to identify a causal FBN1 pathogenic variant
for the proband. However, further investigation of the exon/
intron boundaries sites identified a candidate intronic
mutation (NM_000138.4: c.248-3C>G), which was
considered as a variant of unknown significance

FIGURE 1 |Clinical presentation of a 32-year-old female with MFS. (A)CT scan revealed an aortic root dilatation and Debakey I dissection, (B) positive thumb sign,
(C) positive wrist sign, (D) plain pes planus and (E) skin striae.
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(PM2+PP1+PP3+PP4) according to ACMG standards and
guidelines. The pathogenic variant (c.248-3C>G) in the
FBN1 gene was predicted to abrogate the intron 3

canonical acceptor splice site by using SPIDEX, dbscSNV,
spliceAI and NetGene2 and Beef Data & Genomics
Programme.

FIGURE 2 | Pedigree and sequence analysis of a family with a history of MFS. (A) Family pedigree, black arrow indicates the proband (III: 5), blank filling indicates not
affected, black filling indicates affected and genetically confirmed, gray filling indicates affected but not genetically tested. Lines through the shapes indicates deceased
members. (B) The variant c.248-3C>G of FBN1 was identified in the proband (III: 5), her sister (III: 6), and daughter (IV: 1).

TABLE 1 | Clinical features of the affected family members.

Pedigree
ID

Age
(year)

Treatment/Surgery/major complication/cause of
death

Clinical presentation

I:1 36 Sudden death (no autopsy) Marfanoid skeletal features
II:1 33 Sudden death (no autopsy) Marfanoid skeletal features
II:2 32 Sudden death (no autopsy) Marfanoid skeletal features
II:4 34 Sudden death (no autopsy) Marfanoid skeletal features
III:1 28 Sudden death (no autopsy) Marfanoid skeletal features
III:3 28 Debakey I dissection; Bentall surgery, aortic arch replacement,

descending aortic endovascular stent-graft implantation (Alive)
Severe aortic valve insufficiency, Wrist and thumb signs, Pectus
carinatum deformity, Plain pes planus, Skin striae, Myopia

III:5 32 Debakey I dissection; Bentall surgery, aortic arch replacement,
descending aortic endovascular stent-graft implantation (Alive)

Severe aortic valve insufficiency, Wrist and thumb signs, Pectus
carinatum deformity, Plain pes planus, Skin striae

III:6 31 β-adrenergic receptor blocker treatment (Alive) Mild aortic root dilation, Mild aortic valve insufficiency, Skin striae
IV:1 8 β-adrenergic receptor blocker treatment (Alive) Mild aortic root dilation, Wrist and thumb signs, Pectus carinatum

deformity, Skin striae, Mild scoliosis
IV:2 6 β-adrenergic receptor blocker treatment (Alive) Mild aortic root dilation, Wrist and thumb signs, Pectus carinatum

deformity, Skin striae, Mild scoliosis
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3.3 Family FBN1 Genetic Screening and
Clinical Assessments
The identified FBN1 pathogenic gene variant was confirmed in all
family members that were genetically tested by Sanger
sequencing, which included the proband (III:5), her sister (III:
6), and daughter (IV: 1) (Figure 2A). All 3 cases carried the same
variant c.248-3C>G FBN1 mutation (Figure 2B).

Clinical assessments of the related family members are shown in
Table 1. Five cases (I:1, II:1, II:2, II:4 and III:1) died around their
thirties (range: 28–36 years-old) without autopsy, but all members
had marfanoid skeletal features based on the family history.
Fortunately, III:3 (first cousin) and III:5 (proband) were both
treated by emergency cardiovascular surgery and survived.
Assessment of three other family members (III:6, IV:1 and IV:2)
revealed they also carried some MFS systemic features, including
long fingers, chest deformity, and a mildly dilated aortic root. β-
adrenergic receptor blocker was prescribed to these three individuals
to reduce the growth rate of aortic dilatation and were scheduled to
receive a TTE follow-up assessment every 6–12months.

3.4 The Pathogenic FBN1 c.248-3C>G Gene
Variant
Figure 3A illustrates the minigene trapping vetor construct and
electrophoresis of the RT-PCR products displayed a single band for
WT and two bands for MT (Figure 3B). Sanger sequencing revealed

a normal splicing isoform for WT (Figure 3C i), and aberrant
splicing for MT, resulting in the insertion of 2 nucleotides (lower
band) or of 282 nucleotides (upper band) in exon 4 (Figures 3Cii,iii).
Analysis of the minigene splicing assay suggested that the c.248-
3C>G substitution can abrogate the intron 3 canonical acceptor
splice site and lead to activating two cryptic sites in exon 4, which
predicted to cause insertion (c.248-1_248-2insAG and c.248-1_248-
282ins) (Figure 3D).

3.5 Bioinformatic Analysis
To explore whether the random 2 bp or 282 bp insertion were
associated with downstream FBN1 dysregulation, we analyzed
the coding potential of the three sequences. Two inserts were first
aligned back into the WT allele and deciphered abide by the
central dogma. However, translation of the nucleotide to protein
sequence revealed, not only did the 2 bp insertion induce a
coding-frame shift leading premature translational
termination, but also the 282 bp variant sequence incurred
several stop codons based on the open reading frame of the
WT which interrupted the translational process and resulted in
truncated proteins (Figure 4).

4 DISCUSSION

In this study, we report the identification of an intronic
pathogenic FBN1 c.248-3C>G gene variant found in family

FIGURE 3 | Minigene assay for FBN1 c.248-3C>G variant and schematic diagram of the splicing pattern. (A) Minigene trapping vetor construct; (B) Gel
electrophoresis of RT-PCR revealed a single band for wild-type and two bands for mutant-type; (C) minigene product sequencing demonstrated that the wild-type
minigene formed normal mRNA (i), but the c.248-3C>G substitution of FBN1 caused a splicing abnormality, which abrogate the intron 3 canonical splice site and lead to
activating two cryptic sites in exon 4, resulting in a 2 bp insertion (ii) and 282 bp insertion (iii); (D) the schematic diagram of splicing pattern of WT, MT-A and MT-B.
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with MFS, which includes the proband and 2 genetically tested
members. Based on the revised Gent nosology, systemic scoring
of all 3 members achieved a clinical MFS diagnosis. Initially,
standard clinical genetic reporting of the exonic sequence failed to
identify a disease-associated variant. However, further
investigation of the exon/intron boundaries identified a
candidate variant that was predicted to affect splicing.
Although the candidate was assessed as a variant of unknown
significance according to the ACGM standards and guidelines,
in vitro minigene splicing assay demonstrated that the intronic
mutation abrogates the canonical splice site of intron 3 and
activates two cryptic sites, resulting in 2 bp or 282 bp insertion
respectively on exon 4. These insertions were predicted to
interrupt the translational process, resulting in truncated
proteins. Our study not only adds a new intronic pathogenic
variant to the mutational spectrum of the FBN1 gene in MFS but
also highlights the importance of including exon/intron
boundaries for clinical genetic reporting and the need to
conduct functional analyses to verify the pathogenicity of
intronic mutations as previously described (Wu et al., 2021).

Marfan syndrome is a connective tissue disorder inherited in
an autosomal dominant manner with variable penetrance
(Pyeritz, 2016). Multiple organ systems are frequently affected
and without appropriate and timely treatment, patients have an
increased risk of mortality (Reed E. Pyeritz, 2019). The major
cause of death in MFS patients is cardiovascular complications,

particularly progressive dilatation of the proximal aorta, which
can lead to aortic dissection or fatal rupture (Vanem et al., 2018).
It wasn’t until 1991 that the mutation in FBN1 gene was identified
as the genetic locus responsible for MFS (Maslen et al., 1991).
Since then, great progress has been made on the understanding of
the pathogenesis, diagnosis, and treatment as well as follow-up
for MFS individuals. FBN1 is located on the long arm of
chromosome 15 and has 65 coding exons that encodes for
fibrillin-1. Fibrillin-1 is a protein macromolecule that
polymerizes into microfibrils which are fibers that provide
load bearing structural support in all connective tissues.
Almost 2000 pathogenetic variants in FBN1 predisposing to
MFS have been identified to date and are distributed
throughout the gene (Pinard et al., 2019).

Despite significant progress made in understanding the genetic
and molecular basis of MFS, it has been reported only 12% of FBN1
mutations causing Marfan syndrome appear more than once in
unrelated individuals, an observation that proposes the need for
expanded identification of cryptic mutations for a definitive MFS
diagnosis (Hiratzka et al., 2010). There are many different types of
mutations in the FBN1 gene, but nonsense and missense mutations
are more frequently observed in MFS patients. In approximately
10%–15% of all reported mutations, a majority are associated with
premature stop codons from small insertions, deletions, or
duplications. Another 10%–15% of these pathogenic variants are
composed of different variations of splicing errors, most of which

FIGURE 4 | Impact of the FBN1 c.248-3C>G variant on the reading frame resulting in premature stop codons and truncated proteins. (A)WT reading frame, MT-A
causing a premature stop codon at position 108, andMT-B causing a premature stop codon at position 91; (B)WT protein; (C)MT-A resulting in a truncated protein; (D)
MT-B resulting in a truncated protein.
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have been reported to affect canonical splice sites at the exon/intron
boundaries (Robinson et al., 2006). The cryptic pathogenetic rare
variants such as those located in the middle of introns that lead to the
splicing of intron sequences into the FBN1 transcript, and
haploinsufficiency due to small insertions, frameshift in
translation, deletions and stop codons, somatic mosaicism, as well
as nonsense-mediated decay of the mutated transcript, should be
investigated as standard protocols for genetic diagnostic testing will
not detect these mutations (Guo et al., 2008; Arnaud et al., 2021).
Furthermore, functional studies are necessary to confirm these
cryptic mutations. Although entire gene deletions are rare, larger
rearrangements have been reported in a minority of MFS patients,
including both deletions and insertions (Schrijver et al., 2002; Faivre
et al., 2007; Faivre et al., 2009; Hilhorst-Hofstee et al., 2011). Given the
increasingly large spectrum of mutations found in FBN1 and
remaining undiscovered etiologies, genetic screening of the FBN1
gene has been also suggested to include supplemental techniques for
detecting large/deletions and deep-intronic mutations using cDNA
analysis and whole-genome sequencing in addition to standard
testing for exonic mutations in cases of clinically diagnosed MFS
with normal or variant of unknown significance genetic results. (Yang
et al., 2018; Gillis et al., 2014). In the present study, analysis in the
exonic area failed to identify the disease-causing variant. While
further investigation on exon/intron boundaries identified a
potential intronic mutation in FBN1 causal for MFS, an in vitro
cell study confirmed that the intronic mutation affected the splicing
process. Translational analysis verified that both aberrant insertions
resulted from the intronic mutation will lead to translation failure
through stop codon incursion.

In the past decades, extensive progression has been made for the
diagnosis and treatment of MFS, including prophylactic surgery,
medical treatment, and regular follow up, which has greatly improved
the life-expectancy in patients with MFS. For adults with an enlarged
aorta or aneurysm, surgical repair is indicated when the diameter
reaches to 5.0 cm (Hiratzka et al., 2010; Erbel et al., 2014).Meanwhile,
pharmacological treatment has been worthwhile strategy to reduce
the enlargement of aortic dilatation, thus avoiding cardiac surgery
and its associated complications if the aorta is not significantly
enlarged. This includes medications affecting myocardial inotropy
and heart rate, or targeting signaling pathways that have been
implicated in the pathogeneses of MFS (Jennifer et al., 1994;
Hiratzka et al., 2010). The 2010 American Heart Association
(AHA)/American College of Cardiology (ACC) Thoracic Aortic
Disease guidelines recommends that patients with MFS and aortic
aneurysms take β-adrenergic receptor blocker therapy to reduce the
rate of aortic dilatation unless contraindicated (Hiratzka et al., 2010).
Angiotensin receptor blockers have also demonstrated to be
beneficial in reducing aortic dilatation in randomized controlled
trials (Hofmann Bowman et al., 2019).

The importance for a definitive genetic diagnosis cannot be
underestimated. For example, the definitive genetic diagnosis of
MFS facilitates the screening of family members who may have
inherited pathogenic variant but have not manifested obvious multi-
systemic abnormalities, and aids in genetic counseling for affected
parents preparing for pregnancy (Chen et al., 2021) and
comprehensive prenatal screening for pregnant women if de novo
MFS is suspected in utero, albeit rare (Wang et al., 2020).

Furthermore, genetic testing may also differentiate MFS from
other related disorders that share similar systemic abnormalities
arising from variants different from FBN1 (Halper, 2014). In our
experience, children and adolescents with preclinical manifestations
of MFS are frequently only seen by chance or discovered through
genetic screening of the family’s proband due to progressive MFS
symptoms that calls for clinical evaluation. Increasing our
understanding behind the different types of mutations involved
in MFS can lead to a timely definitive genetic diagnosis and
subsequent screening, evaluation, and if needed, pharmacological
therapy to reduce aortic dilatation or prophylactic surgery to avoid
aortic dissection or fatal rupture. In this study, the clinical diagnosis
of the proband and identification of a pathogenic variant, which was
also subsequently identified in 2 family members, are now treated
with β-adrenergic receptor blockers and scheduled for follow-up
appointments.

5 CONCLUSION

This study reports the identification of an intronic pathogenic FBN1
c.248-3C>G gene variant found in a family with MFS, which was
found to have an aberrant effect on splicing. Our findings highlight
the need to not neglect the exon/intron boundaries of whole exome
sequencing for clinical genetic reporting, and the need of conducting
functional analysis to verify the pathogenicity of intronic mutations.
Furthermore, this calls for the reconsideration of standard diagnostic
approaches in cases of clinically diagnosed MFS with normal or
variant of unknown significance genetic results. A definitive genetic
diagnosis is not only conducive to screening family members to find
patients with atypical clinical symptoms, especially children and
adolescents, but also to genetic counseling for parents preparing for
pregnancy and prenatal screening for pregnant women.
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