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Single-cell RNA sequencing (scRNA-seq) reveals the transcriptome diversity in heterogeneous
cell populations as it allows researchers to study gene expression at single-cell resolution. The
latest advances in scRNA-seq technology havemade it possible to profile tens of thousands of
individual cells simultaneously. However, the technology also increases the number of missing
values, i. e, dropouts, from technical constraints, such as amplification failure during the reverse
transcription step. The resulting sparsity of scRNA-seq count data can be very high, with
greater than 90% of data entries being zeros, which becomes an obstacle for clustering cell
types. Current imputation methods are not robust in the case of high sparsity. In this study, we
develop a Neural Network-based Imputation for scRNA-seq count data, NISC. It uses
autoencoder, coupled with a weighted loss function and regularization, to correct the
dropouts in scRNA-seq count data. A systematic evaluation shows that NISC is an
effective imputation approach for handling sparse scRNA-seq count data, and its
performance surpasses existing imputation methods in cell type identification.
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1 INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is designed to profile gene expression at the single-cell level,
making it possible to study the heterogeneity among individual cells (Pierson and Yau, 2015). However,
one important characteristic of scRNA-seq data is a phenomenon called “dropout”, which causes
challenges in data analysis. These dropout events occur because of the low amounts of genetic
material in individual cells and inefficient mRNA capture, as well as the stochasticity of mRNA
expression (Lin et al., 2017). Specifically, a large number of dropouts is due to transcripts lost in the
RNA reverse transcription procedure during library preparation (Gordon et al., 2015). In other words,
many zero counts in the gene expression data are not “true” values. Consequently, the scRNA-seq datamay
be incredibly sparse due to the high dropout rate, e.g., more than 90% of the expression counts have values
of zero. Imputation has become an essential preprocessing step for downstream analysis of scRNA-seq data
(Tracy et al., 2019). Recent studies have shown that some imputation methods improve downstream
analysis and have already been implemented in scRNA-seq analysis pipelines (Zhang and Zhang, 2018).
Meanwhile, with the increasing size of scRNA-seq data sets, appropriate imputation methods
are necessary to compensate for these dropouts to reduce the impacts of missing values (Angerer
et al., 2017).
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Many methods have recently been developed for modeling and
processing scRNA-seq count data, including scVI (Lopez et al., 2018),
VASC (Wang and Gu, 2018), scSVA (Sun et al., 2019), scVAE
(Gronbech et al., 2020), and scAEspy (Tangherloni et al., 2021),
which used neural networks to reduce the noisy dimension to
increase the accuracy of downstream analysis. There also exists
quite a number of methods to impute the missing values in
scRNA-seq data, including scImpute, MAGIC (Van Dijk et al.,
2018), SAVER (Huang et al., 2018), DrImpute (Gong et al., 2018),
VIPER (Chen and Zhou, 2018), ALRA (Linderman et al., 2018),
EnImpute (Zhang et al., 2019) and scDoc (Ran et al., 2020). In
ScImpute, separated Gamma-Normal mixture models are
constructed for different cell subgroups to calculate the
probabilities of drop-out. It leverages information of cell similarity
in terms of genes with a lower dropout probability and then imputes
the values of genes with higher dropout probability. MAGIC is a
method that shares information across similar cells via data diffusion
to predict the true gene expression level. SAVER is a Bayesian-based
imputation method that imputes dropout values and generates a
substitution for each gene. DrImpute is a clustering-based method
that generates estimations using cluster priors and distance matrices.
ALRA is an adaptively-thresholded low-rank approximation method
that rescales the scRNA-seq expression matrix using randomized
singular value decomposition. VIPER is a statistical method that fits a
linear model for each cell by cell-cell interaction.

Basically, these methods impute dropouts by leveraging
information on similarities between cells/genes using the
correlation structure of the scRNA-seq data. For example,
current imputation approaches, including scImpute and
DrImpute, identify similar cells/genes based on clustering and
then impute the missing data by averaging the gene expression
values for each detected cluster. The accuracy of these imputation
methods highly relies on clustering analysis. EnImpute combines
the imputation results obtained from eight different imputation
methods and calculates the expected values. scDoc imputes
dropout events by leveraging information for the same gene
from highly similar cells. However, current methods may fail
to capture the nonlinearity and the count structure of the scRNA-
seq data. Moreover, it becomes more challenging for the
traditional imputation methods to handle datasets with
increasing size (Eraslan et al., 2019).

Recently, some deep learning-based imputation methods have
been developed for efficiently handling the higher dimensional
scRNA-seq data, such as DCA (Eraslan et al., 2019), DeepImpute
(Arisdakessian et al., 2019), AutoImpute (Talwar et al., 2018),
LATE (Badsha et al., 2020), scIGAN (Xu et al., 2020), and scGNN
(Wang et al., 2021). DCA is a neural network-based denoising
method for scRNA-seq count data. This method assumes that the
scRNA-seq count data follow a negative binomial distribution
and then are denoised by maximizing a likelihood function.
DeepImpute is a deep learning-based method that splits the
genes into several subsets of neural networks. However, these
imputation methods lack accuracy and power in handling highly
sparse data. AutoImpute uses autoencoder with one hidden layer
to impute missing values in scRNA-seq data by minimizing the
Euclidean cost function. LATE uses autoencoder to train on
nonzero data by minimizing the loss function, therefore

imputing the missing values based on information of
dependence between genes and cells. scIGAN uses generative
adversarial networks for scRNA-seq imputation. scGNN uses a
graph neural network for scRNA-seq analysis.

In this study, we develop a novel imputation method, Neural
Network-based Imputation for scRNA-seq data (NISC) to
improve cell type clustering. It is based on neural networks
with a novel weighted loss function, coupled with
regularizations. Through a series of simulation studies and real
data analysis, NISC is compared with the other imputation
methods, including AutoImpute, DCA, DeepImpute, LATE,
SAVER, MAGIC, ScImpute, DrImpute, EnImpute, ALRA,
VIPER, scDoc, scIGAN, and scGNN. The results show that
NISC outperforms the existing imputation methods as it can
recover the gene expression more correctly and distinguish the
cell types more precisely, particularly for scRNA-seq data with
high sparsity/noise.

2 METHODS

2.1 Neural Network Architecture
It is evident that the process of imputing the dropouts for
scRNA-seq data is similar to the process of outlining a noisy
image, so autoencoder is utilized to impute the sparse scRNA-
seq data (Shao et al., 2013). Autoencoder is an unsupervised
learning technique that has been used in image denoising
(Vincent et al., 2010). The autoencoder technique allows
nonlinear data vectors to be stacked, making the technique
more powerful and able to learn complicated relations
between layers (Mao et al., 2016). An autoencoder model
consists of an encoder and a decoder. An encoder stage
compresses the input data into a low-dimensional code,
and then a similar decoder stage reconstructs the output
data from the code (Hinton and Salakhutdinov, 2006).
Figure 1 shows the neural network architecture of NISC.
The number of neurons for the hidden layer in the middle
is usually much smaller than the number of neurons for the
input/output layers to reduce the redundant information in
data. In our method NISC, the number of neurons in the
neural network architecture is set to be proportional to the
number of genes.

2.2 Loss Function and Regularizations
It has been found that the main reason for dropouts in scRNA-seq
data is due to failure of the reverse transcription of mRNA
(Bengtsson et al., 2005; Reiter et al., 2011). Reverse
transcription is an enzyme reaction; therefore, the Michaelis-
Menten function can be used to model the relationship between
dropout probability and gene expression for full-transcripts
scRNA-seq data (Andrews and Hemberg, 2019). The
following equation shows the dropout probability Pij for the
gene i in cell j using Michaelis-Menten kinetics (MMK)
(Brennecke et al., 2013),

Pij � 1 − Sij
KM + Sij

(1)
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where Sij is the observed gene expression level of gene i in cell j,
and KM is theMichaelis constant (Johnson and Goody, 2011). We
use this probability to describe the dropout event, which will then
be involved in the calculating the network’s denoised output.

We propose a novel loss function with the mean square error
weighted by the dropout probability estimated through
Michaelis-Menten kinetics.

Loss � ∑
m

i�1
∑
n

j�1
(1 − Pij) · (log(ŷij) − log(yij))

2 + α · ����β����2 (2)

The loss function will be minimized through the autoencoder
learning process. Note: the function “log” is the natural logarithm.
The intuition behind this is that the estimated dropout
probability Pij affects the loss function adversely. In this
manner, the imputed gene expression ŷij will be close to the
observed gene expression yij when the estimated dropout
probability Pij is low. When we train an autoencoder network,
a challenging problem is how to avoid overfitting. Overfitting
refers to a neural networkmodel that fits the training data too well
to predict the pattern of new data. Overfitting is caused by noise
in the training data, and the neural network includes this noise
during the learning process. To avoid overfitting, we need to
reduce the complexity of the network; therefore, we applied L2
regularization (ridge regression) and dropout regularization to
reduce the complexity of the autoencoder network (note: this is
different from the term “dropout” event in scRNA-seq data). It is
the first time that these two regularization techniques have been
combined with an autoencoder network for imputation of
scRNA-seq data. We define the regularization term ‖β‖2 as the
L2 norm of the weight matrix, that is, the sum of all squared
weight values of the matrix (i.e., the first term in the above loss
function). α is defined as the value of the regularization rate,
which determines how powerful the effect of the regularization
term will be. The regularization term ‖β‖2 is weighted by the
scalar α and the regularization term will be excluded if α is zero. If
α is too large, the neural network model will be less sensitive

therefore increase the risk of underfitting. Conversely, if α is too
small, the complexity of the model will be increased, so the risk of
overfitting will be high. An appropriate value of α can be
determined through cross-validation suggested by Ng
et al.(2004).

In addition to L2 regularization, dropout regularization is also
used in NISC as it is a strategy to turn off neurons of the neural
network with certain probability during training, which then
further reduces the model’s complexity (Srivastava et al., 2014).
Furthermore, to mitigate the effect of reaching the local
optimization peak by the neural network, the Adaptive
Moment estimation algorithm is used to perform stochastic
optimization (Eweda and Macchi, 1984).

2.3 Performance Evaluation
The proposed method is compared with the existing imputation
methods through a series of simulated datasets and three real
datasets. First, we visualize cell type sub-populations using 2-
dimensional PCA (principal component analysis) plots or t-SNE
(t-distributed stochastic neighbor embedding) plots (Kin et al.,
2002; Kobak and Berens, 2019) depending on the data property
(Anowar et al., 2021). UMAP (uniform manifold approximation)
plots are also drawn (Becht et al., 2019). The commonly used
unsupervised clustering algorithms, k-means (Na et al., 2010) and
hierarchical clustering algorithms (Murtagh and Contreras,
2017), and Leiden algorithm(Traag et al., 2019), are used to
group the cells on the reduced dimension of visualization
results, which can then be used for calculating the
performance measurements of each imputation method.

Four evaluation metrics are calculated to evaluate the accuracy
of the cell type clusters in the visualization plots, including
Adjusted Mutual Information (AMI) (Romano et al., 2014),
Adjusted Rand Index (ARI) (Steinley, 2004), Fowlkes-Mallows
Index (FMI) (Nemec and Brinkhurst, 1988), and Silhouette Score
(SS) (Rousseeuw, 1987). Since we know the truth for the
simulated data, the RMSE (Root Mean Square Error) is also

FIGURE 1 | Neural network architecture of NISC. This network is mainly composed of three hidden layers (i.e., dots with three different colors, purple, red, and
green). The first hidden layer has neurons equal to twice the number of genes of the input data. It is followed by the second hidden layer in the middle with neurons equal
to around half the number of genes of the input data. The third layer has neurons equal to the number of neurons of the first layer. This neural network is trained using an
optimization process with a loss function to calculate the model error.
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calculated between the imputed values and the truth to assess the
performance of imputation methods (Blondel et al., 2008;
Skinnider et al., 2019). Additionally, the heatmap of gene
expression in the simulated studies is also drawn to
demonstrate the direct comparison of the methods in detail.

3 RESULTS

3.1 NISC Enhances Cell Type Visualization
in Simulated scRNA-Seq Data
To evaluate the performance of our imputation method, we
compare it with existing methods on simulated scRNA-seq
count data, which are generated by the widely used simulator,

Splatter (Zappia et al., 2017). Both raw count data with dropouts/
noise and its corresponding true data are available through
simulations. The raw count data is the input data of the
learning framework, and the ground truth data can be used to
assess the performance of imputation. The count data are
represented as an expression matrix, where each row is a gene,
and each column is a cell. We consider three scenarios:

(1) Two cell types for 800 genes and 1,000 cells.
(2) Four cell types for 800 genes and 1,000 cells
(3) Four cell types for 2,000 genes and 10,000 cells

For each scenario, two sparsity levels are examined,
i.e., approximately 80 vs 90%. In the Splatter simulation

FIGURE 2 | NISC significantly improves the performance of t-SNE in visualizing simulated scRNA-seq count data. Plots of the first two components are calculated
from the simulated ground truth data, raw data, and imputed data using various imputationmethods. The dataset contains 800 genes and 1,000 cells in 4 cell types, with
90% sparsity. Cells are colored by cell types as indicated.
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setting, the differential rate of 0.2 is used, indicating that 20% of
the total genes are marker genes. As substantial noise is added to
input data to mask cell type identities through simulation, our
purpose is to predict the imputed values for the dropouts
accurately and therefore identify cell types.

Our deep learning framework in NISC consists of three hidden
layers with 1600, 400, and 1600 neurons, respectively, for the
simulation data of 800 genes. For the case of 2,000 genes, the
number of neurons for three hidden layers are 4,000, 1,000, and
4,000, respectively. A widely used active function, rectified linear
unit (Xing et al., 2016), is employed to train each cell to capture
the nonlinearity of the data. The number of neurons for the
encoder/decoder layers is twice the number of genes, while the
number of neurons for the hidden layer in the middle of the
architecture is half of the number of genes. We compare NISC to
other existing imputation methods in simulation data for various
scenarios. The figures below are for the scenario (2). Some
representative results for scenario 1) and 3) are included in
the Supplementary File.

Figure 2 shows the t-SNE plots derived from the ground truth
of cells, the raw input data, and the imputed data by NISC and
other existing methods. The ground truth contains 4 cell types
while the types are mixed in the raw data. This is due to the high
sparsity (i.e., high noise, 90% data are zeros) in the raw input,
which distorts the topology of the ground truth. NISC can
accurately recover the dropouts, and the cells are clearly
located in four groups/clusters, followed by scDoc and
DeepImpute. However, it is challenging for other imputation
approaches to distinguish the 4 cell types.

Four evaluation metrics, including AMI, ARI, FMI, and SS are
calculated on the visualization result for the simulated data in
Figure 2. To consider the data uncertainty (even with the same

FIGURE 3 | Boxplots of four evaluation measures, including Adjusted Mutual Information (AMI), Adjusted Rand Index (ARI), Fowlkes-Mallows Index (FMI), and
Silhouette Score (SS), are calculated for comparing NISC and other imputation methods. Each dataset contains 800 genes and 1,000 cells in 4 cell types, with 90%
sparsity, and is replicated 10 times. Detailed information about these measurements can be found in the supplementary materials.

FIGURE 4 | RMSE (root mean square error) boxplots for the raw input
and imputed data by each method. The RMSE is calculated between the
ground truth and either the raw or imputed values. The raw dataset contains
800 genes and 1,000 cells in 4 cell types, with 90% sparsity, and is
replicated 10 times. Detailed information about the RMSE can be found in the
supplementary materials.
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parameter settings) in the simulation, we generated ten replicates
of datasets under each setting. Figure 3 shows boxplots for four
evaluation measures based on K-means clustering result of the
t-SNE visualization. The boxplots of Leiden method are shown in
Supplementary Figure S2. Higher values in measures indicate
higher accuracy in cluster results. It is obvious that the
performance of NISC surpasses all the existing imputation
methods in clustering accuracy in this simulation study.

High accuracy in cell type visualization does not necessarily
mean the imputed values are close to the true values. We
calculated RMSE (root mean square error, the detailed
definition can be found in the supplementary materials)
between the ground truth value and the corresponding
imputed value by each method. Figure 4 shows boxplots of
RMSE for 10 replicates of simulations. Compared with other
imputation methods, the accuracy of NISC is highest, followed by
DeepImpute, which is a neural network-based imputation
method as well. Note: three imputation methods, DCA,
AutoImpute and scGNN, are excluded from the RMSE plot as

only highly variable genes are selected in these methods to
perform imputation.

A direct comparison in gene expression values among the
ground truth, raw data, and imputed data can be found in the
heatmap plot (Figure 5). It shows that NISC imputed values are
closest to the ground truth and therefore this method shows great
capability in correcting the dropout values, which confirms the
promising result in data visualization in Figure 2. Again, three
imputation methods DCA, AutoImpute, and scGNN, are
excluded from the heatmap plot as only highly variable genes
are selected in these methods to perform imputation.

A consistent conclusion can be obtained from UMAP plot
(Supplementary Figure S3) for this dataset. We also examine the
impact of a different sparsity level (80%) on the imputation for
the simulated data with 4 cell types and 2 cell types, respectively.
When the sparsity of the simulated data with 4 cell types is about
80%, the cell populations can be revealed clearly in several
imputation methods (Supplementary Figure S4), and NISC is
one of them. Then, we observe that the performance of all

FIGURE 5 | Heatmaps of ground truth, raw simulated data, and imputed data by various methods. The simulated raw dataset contains 800 genes and 1,000 cells
in 4 cell types, with 90% sparsity. Each row in the heatmap represents a gene, while each column represents a cell. The color bar shows themagnitude of the logarithm of
gene expression values.
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methods significantly decreases when dropout noise increases
(Supplementary Figure S4 vs Figure 2). A consistent conclusion
can be obtained for the 2 cell types. Supplementary Figure S5
shows an example of the t-SNE plot of 1,000 cells (in 2 cell types)
and 800 genes with 80% sparsity. The cells are clearly separated
into two groups/clusters by NISC, DeepImpute, DrImpute,
EnImpute and scDoc, followed by scImpute, SAVER, and
scIGAN.

For the case of 4 cell types with 10,000 cells, we only compared
the deep-learning-based methods (Supplementary Figure S6).
We noticed that the performances of three methods, NISC, DCA,
and DeepImpute, are improved when the number of cells
increases from 1,000 (Figure 2) to 10,000 (Supplementary
Figure S6). The t-SNE plot in Supplementary Figure S6 still
shows that NISC surpasses other deep-learning-based methods,
followed by DCA and DeepImpute.

Computational time: Among the deep-learning-based
methods, LATE is the fastest, and scIGAN is the slowest.
Specifically, the order of the computational time for seven
deep learning-based methods is: LATE < DeepImpute < DCA
< NISC < AutoImpute < scGNN < scIGAN. We used High
Performance Computer systems with 2894 MHz CPU, 5 cores,

and 36 GB memory on each core. For a simulation dataset with
2,000 genes and 10,000 cells, it took about 10 min for LATE, 12 h
scIGAN, and 50 min for NISC.

3.2 NISC Improves Visualization Clarity and
Clustering Accuracy in Real scRNA-Seq
Data
3.2.1 Mouse Lung scRNA-Seq Data
We apply NISC and the compared methods on mouse lung
scRNA-seq data (GSE52583) with 201 cells (Treutlein et al.,
2014). Figure 6 shows PCA plots for NISC and other
imputation methods. The denoised data by imputation of
scGNN, AutoImpute, ALRA, SAVER, scImpute, DrImpute,
scDoc and EnImpute show E14.5 and E16.5 are not separated
well, although cell type AT2 and E18.5 can be identified. In
addition, with imputation of MAGIC, E16.5 is successfully
identified, but E18.5, E14.5, and AT2 are mixed. By DCA, the
4 cell types (E14.5, E16.5, E18.5, and AT2) are grouped into two
clusters, with two types in each. For DeepImpute, scIGAN and
VIPER, the 4 cell types are mixed together. It seems that NISC can
assign the 4 cell types into four clusters more accurately.

FIGURE 6 | NISC recovers the cell types (E14.5, E16.5, E18.5, and AT2) in mouse lung data. PCA plots of the raw data and imputed data by various imputation
methods. The sparsity of the data is 72.6%. Cells are colored by cell types, which are reported in the original publication.
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The evaluation matrices on the clustering for this dataset are
also calculated (Figure 7). Though NISC result does not provide
the tightest clusters (from Silhouette score), among all the
imputation methods, it scores the highest consistently across
three measures of clustering accuracy, which confirms the
separation pattern in the visualization in Figure 6.

3.2.2 Mouse Embryonic Data
We also apply NISC and the compared methods on scRNA-seq
data of 92 mouse embryonic cells and 22,936 genes (GSE29087).
The sparsity of the data is 83.04%. The cell types of this data set
are reported in the original publication (Islam et al., 2011). We
visualize the clustering result with t-SNE plots (Supplementary
Figure S7), illustrating that, through NISC imputation, the 2 cell
types, 48 mouse embryonic stem cells (ES) and 44 mouse
embryonic fibroblasts (MEF), are separated, followed by
DrImpute, DCA and scGNN. Through imputation of scIGAN,
AutoImpute, LATE, ALRA, SAVER, MAGIC, EnImpute,
SAVER, VIPER, and scDoc, the 2 cell types in this data are
not separated well. With imputation of scGNN, DCA, and
DrImpute, the 2 cell types are only somewhat separated. With
scImpute, the cells are isolated into many tighter subclusters. In
other words, some cells which should belong to the same cell type
are scattered. The accuracy of clustering is assessed by four
evaluation measures. Though NISC result does not provide the
tightest clusters (from Silhouette score), among all the methods
compared here, NISC is superior to others in terms of cluster
accuracy ARI, AMI, and FMI. It improves the cluster results on
original raw data.

3.2.3 Human Lung Adenocarcinoma Data
The above real scRNA-seq datasets do not have ground truth,
since usually it is challenging to obtain the ground truth for

real scRNA-seq data. Alternatively, it will be convincing to
evaluate the performance of the imputation approaches if we
use a real scRNA-seq dataset with low sparsity and distinct cell
types and set it to be the ground truth data for evaluations. For
this purpose, we apply the imputation methods on lung
adenocarcinoma data (GSE69405) that profiles the gene
expression of single cancer cells with TPM (normalization
by transcripts per million) measurements (Soneson and
Robinson, 2018). These cancer cells are originally from
lung adenocarcinoma patient-derived xenograft (PDX)
tumors, including four types, H358 human lung cancer
cells (H358), cancer cells in PDX from primary tumors
(LC-PT-45), an additional batch of PDX cells (LC-Pt-45-
Re), and PDX cells for another lung cancer case (LC-MBT-
15). This data set contains 176 cells, and the sparsity of the
data is relatively low (46%). The cell types in this data can be
clearly identified in the original data without imputation
(Figure 8A). Therefore, we set the original data to be the
ground truth. Following the method in (Arisdakessian et al.,
2019) to generate noisy data, similarly, we mask the low-noise
data by randomly changing some non-zeros to zeros so that
the sparsity of the data is increased to 80% and the synthesized
dataset here is termed as raw data.

T-SNE plots (Figure 8A) of the synthesized data show that
NISC successfully recovers the cell types of the original data
through imputing the sparse raw data. However, other
imputation methods result in either one big cluster (i.e., all
cells are mixed together) or several tight clusters, but each
with two or more different cell types. A consistent conclusion
can be obtained in evaluation plots (Figure 8B). Though the cells
are not separately into tight clusters in NISC data, this method
results in the highest cluster accuracy, considering the actual cell
type status.

FIGURE 7 | Evaluation of clustering accuracy on the mouse lung data. Four measurements, AMI, ARI, FMI, and SS, are calculated for the imputed and raw data.
The definitions of the measurements can be found in the supplementary materials.
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FIGURE 8 | NISC recovers the cell types in lung adenocarcinoma data (GSE69405) (A) plots of t-SNE components 1 and 2 derived from raw data, imputed data
using NISC and other imputation methods. With additional zeros the sparsity of the data is 80%. Cells are colored by cell types, which are reported in the original
publication (B) Bar plots of evaluation of cluster accuracy on the raw and imputed data. Four measurements, AMI, ARI, FMI, and SS, are calculated for the imputed and
raw data. The definitions of the measurements can be found in the supplementary.
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4 DISCUSSION

NISC is a data-driven method and does not require any prior
knowledge. Real data and simulated data show that NISC can
impute the dropouts in the scRNA-seq data, improving the
accuracy of cell type clustering. Four performance measures
were calculated to evaluate the clustering accuracy for the
imputed data by various imputation methods. RMSE, which
measures the distance between true (if available) and imputed
values, was also calculated. Generally, compared with other
existing estimation methods, NISC has a lower RMSE and a
higher score in the evaluation measures of clustering accuracy.

NISC is an unsupervised neural network-based imputation
method with autoencoder techniques implemented. Compared
with other neural network-based methods, we investigated how
different loss functions affect the imputation results. We
developed a novel loss function weighted by Michaelis-Menten
kinetics (MMK) and investigated its difference and standard
mean square error (MSE) loss. Fig. S1 shows that the MMK
loss can achieve more effective imputation under the sparse
simulation setting, while by regular MSE the loss function is
less effective. In addition, we add L2 regularization and dropout
regularization to the model (Cortes et al., 2012) to avoid
overfitting when denoising the input data. This is the first
time the two regularizations are implemented simultaneously
in the autoencoder model to impute scRNA-seq data.

An effective neural network for imputation requires sufficient
neurons in the network. Due to many genes in scRNA-seq
studies, GPUs are recommended for NISC to speed up the
training process of the autoencoder network. NISC imputation
is not suitable for some types of data which lose Michaelis-
Menten kinetics, such as 10x Genomics data (Andrews and
Hemberg, 2019), and some normalized data, for example,
RPKM (Reads per kilo base per million mapped reads) or
FPKM (Fragments Per Kilobase Million) (Lytal et al., 2020).

However, TPM normalization is applicable as it maintains the
data structure of the original gene expressions (Li and Li, 2018).
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