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Objective: Liquid-liquid phase separation (LLPS) is a functional unit formed by
specific molecules. It lacks a membrane and has been reported to play a crucial
role in tumor drug resistance and growth by regulating gene expression and
drug distribution. However, whether LLPS could be used to predict cancer
prognosis was not clear. This study aimed to construct a prognostic model for
breast cancer based on LLPS-correlated genes (LCGs).

Methods: LCGs were identified using the PhaSepDB, gene expression profile
and clinical characteristics of breast cancer were obtained from TCGA and
cBioportal. The PanCancer Atlas (TCGA) cohort was used as the training cohort
to construct the prognostic model, while the Nature 2012 and Nat Commun
2016 (TCGA) cohort and GEO data were used as test cohort to perform external
verification. Data analysis was performed with R4.2.0 and SPSS20.0.

Results: We identified 140 prognosis-related LCGs (pLCGs) (p< 0.01) in all
cohorts, 240 pLCGs (p< 0.01) in the luminal cohort, and 28 pLCGs (p< 0.05) in
the triple-negative breast cancer (TNBC) cohort. Twelve genes in all cohorts
(training cohort: 5/10-year ROC values were 0.76 and 0.77; verification cohort:
5/10-year ROC values were 0.61 and 0.58), eight genes in the luminal cohort
(training cohort: 5/10-year ROC values were 0.79 and 0.75; verification cohort:
5/10-year ROC values were 0.62 and 0.62), and four genes in the TNBC cohort
(training cohort: 5/10-year ROC values were 0.73 and 0.79; verification cohort:
5/10-year ROC values were 0.55 and 0.54) were screened out to construct the
prognostic prediction model. The 17-gene risk-score was constructed in all
cohorts (1/3/5-year ROC values were 0.88, 0.83, and 0.81), and the 11-gene
risk-score was constructed in the luminal cohort (1/3/5-year ROC values were
0.67, 0.85 and 0.84), and the six-gene risk-score was constructed in the TNBC
cohort (1/3/5-year ROC value were 0.87, 0.88 and 0.81). Finally, the risk-score

Abbreviations: K-M curve, Kaplan Meier curve; FGA, fraction of genomic alteration; LCGs, LLPS-
correlated genes; LLPS, liquid-liquid phase separation; pLCGs, prognosis-related LCGs; TCGA, The
Cancer Genome Atlas; TNBC, triple negative breast cancer; TMB, tumor mutation burden.
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and clinical factors were applied to construct nomograms in all cohorts (1/3/5-
year ROC values were 0.89, 0.79 and 0.75, C-index = 0.784), in the luminal
cohort (1/3/5-year ROC values were 0.84, 0.83 and 0.85, C-index = 0.803), and
in the TNBC cohort (1/3/5-year ROC values were 0.95, 0.84 and 0.77, C-index =

Discussion: This study explored the roles of LCGs in the prediction of breast

liquid-liquid phase separation, multi-gene risk-score, prediction model, breast cancer,

Yu-Qing et al.
0.847).
cancer prognosis.
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TCGA
Introduction

During the past decades, medical science has made obvious
progress in the treatment of breast cancer, especially for HER2-
positive breast cancer based on the development of HER2-
targeted drugs, such as trastuzumab. However, because of the
lack of useful gene targets, paclitaxel-centered combination
chemotherapy was still the first-line treatment strategy for
patients with HER2-negative breast carcinoma, including
(TNBC), the
resistance of which made for a worse prognosis (Foulkes
et al., 2010; Pandya-Jones et al., 2020).

Recently, it has been reported that RNA and proteins can

luminal and triple-negative breast cancer

interact with each other to form a droplet-like unit by multivalent
weak interactions based on intrinsically disordered regions
(IDR), folded proteins, DNA/RNA molecular scaffolds, and
other structures, which was called a liquid-liquid phase
separation (LLPS) (Alberti et al., 2019; Li et al., 2021a). Many
biological processes, including transcription, chromatin
organization, X chromosome inactivation (XCI), DNA damage
response (DDR), autophagy, and even tumor growth and
metastasis, have been proven to involve LLPS to achieve their
specific functions (Du and Chen, 2018; Hahn, 2018; Ries et al.,
2019). For example, the YAP protein formed a liquid aggregate in
the nucleus, which induced the transcription of its target genes
and promoted the growth of MBA-MD-231 breast cancer cells in
vivo and in vitro (Li et al., 2021a).

LLPSs appear at different phases and spaces in cells to
perform specific functions. The components involved in the
formation of LLPS can be quite different. Recent studies have
shown that long noncoding RNAs (IncRNAs) can regulate
cellular functions by interacting with target proteins to form
dynamic LLPS (Pandya-Jones et al., 2020). For example, the
IncRNA Xist formed condensates in the inactive X(Xi) group by
binding to multiple proteins, such as PTBP1, MATR3, TDP-43,
and CELF1, with self-aggregation and heterotypic protein-
protein interactions, which provided a new way for gene
2020).  LncRNA
NEAT1 exhibited phase-separated condensate properties, and

was able to bind to NONO/SFPQ with the formation of LLPS

silencing (Pandya-Jones et al.,
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in vitro. In addition, IncRNAs interacted with oncogenes to form
LLPS, which were involved in regulating tumor development
(Yamazaki et al, 2018). For example, the IncRNA
SNHG9 promoted LATSI] to experience LLPS, which further
promoted the YAP signaling pathway-induced growth of breast
cancer cells (Li et al., 2021a).

In previous research, immunological genes, autophagy-
related genes, and some other genes were reported to be
useful in tumor prognosis prediction (Shen et al, 2020; Li
et al,, 2021b; Jiang et al, 2021; Jiang et al, 2022), but few
studies focused on the roles of LLPS-related genes (LCGs) in
tumor prognosis prediction. For example, prognosis prediction
models were based on previously constructed LCGs for ovarian
cancer, lung squamous cell carcinoma, and glioma (Qiu et al.,
2021; Zheng et al., 2022); the risk model based on LCGs identified
a good/bad prognosis cluster. However, an LCG-based risk
model has not been reported for breast cancer and its
subtypes; so, in this study we constructed a nomogram based
on LCGs.

Methods and materials
Data collection and collation

Gene expression profiles of the training cohort were collected
from The Cancer Genome Atlas (TCGA, https://portal.gdc.
cancer.gov), and the data of the verification cohort was
collected from cBioportal (METRABRIC, Nature 2012 & Nat
Commun 2016; http://www.cbioportal.org) and GEO58812. The
clinical characteristics of TCGA were obtained from cBioportal
(http://www.cbioportal.org). LLPS-related genes were selected
from PhaSepDB, an online database that records all LLPS-
related genes (http://db.phasep.pro). A total of 1077 records
(673 in the luminal cohort, 171 in the TNBC cohort,
0 excluded) were selected from the training cohort, and
1904 records were selected (1140 in the luminal cohort,
199 in the TNBC cohort, and 604 were excluded) from the
verification cohort (Figure 1). Clinical factors included “Age
(<45, 45 ~ 64, >64)”, “clinical stage (I-II, III-IV)”, “T stage
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FIGURE 1

Nomogram, ROC curve
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Technology roadmap of study. (1) Gene expression profiles were collected from TCGA: https://portal.gdc.cancer.gov. (2) Clinical characteristics
were collected from cBioportal http://www.cbioportal.org. (3) The genomic list of LLPS-related genes was collected from PhaSepDB: http://db.

phasep.pro. (4) Data analysis was performed in R4.0.1 and SPSS 20.0.

(T1-2, T3-4)”, “N stage (NO, N1-3), M stage, recurrence status,
and radiation therapy”, genomic factors included “Tumor
mutation burden (TMB)” and “risk-score (multi-gene risk-
score)”.

Identification of prognostic signature
LCGs and construction of an LCG-based
risk-score

The gene expression profile was collected from TCGA,
and the LCGs were exported from PhaSepDB. Next,
3839 genes were identified by taking the intersection
between the data from TCGA and PhaSepDB. Univariate
Cox regression (limma package in R, p< 0.01 in all breast and
luminal cohorts, p< 0.05 in the TNBC cohort, fold
changes >1.5) was performed to identify prognosis-related
LCGs. Least absolute shrinkage and selection operator
(LASSO) Cox regression (glmnet package in R) was
performed to narrow the array of candidate genes.
Multivariate Cox regression was performed in R to select
genes for constructing nomograms or multi-gene risk-scores,
in which an LLPS-related risk-score was constructed
according to the formula:
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Riskscore = Exp (genel)

x Coe f (genel) + Exp (gene2) x Coef (gene2) + . ..

The “Exp” mean expression value of a gene in multivariate
Cox regression. “Coef’ mean coefficient of the corresponding
gene. Cohorts were divided into “High-risk group” and “Low-risk
group” by risk-score.

Enrichment analysis

A total of 340 differentially-expressed LCGs were identified
by KEGG and GO (“clusterProfiler, org.Hs.eg.db, and enrichplot”
packages in R) analysis.

Identification of clinical factors and
construction of prognosis prediction
model

Clinical factors (clinical stage, N stage, T stage, age) and
genomic factors (risk-score, TMB) were subjected to univariate
Cox regression and multivariate Cox regression analysis in SPSS
20.0. Nomograms, calibration analysis, and Kaplan Meier (K-M)
curves were constructed in R (“survival, rms, regplot, and
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Genes Cutoff HR [95%Cl]
A PELO 5.303 1.600[1.144-2.239]
PCMT1  28.759  1.785[1.270-2.509]
DLG3  10.882 1.626[1.148-2.304]
PLA2G1B 0.106  0.697[0.500-0.973]
PAKé 0.054 1.613[1.155-2.253]
LIMCH1 6.459  1.573[1.113-2.223]
PSME1T 109.811 0.721[0.512-1.014]
DAXX 25116  0.725[0.515-1.022]
TMEM31 0.182 1.712[1.228-2.386]
BRD4 9.094  0.670[0.479-0.939]
RABGAP1 8.805 1.419[1.010-1.995]
AK7 0.284  0.647[0.464-0.903]
B Genes  Cutoff HR [95%Cl]
ACBDS5 10.560 2.132[1.344-3.382]
LIMCH1 6.473  1.874[1.177-2.985]
MXI1 9.469  1.876[1.187-2.964]
MPHOSPH10 10171 1.747[1.107-2.755]
ROR2 4.328  1.613[1.024-2.543]
FLT3 0.881 0.551[0.352-0.862]
RBM15B 13.584  0.607[0.389-0.948]
RPS27  636.587 0.619[0.395-0.968]
Genes Cutoff HR [95%Cl]
c AGPAT4 1.650  3.515[1.381-8.943]
CRKL 18.875  0.351[0.134-0.919]
PRRG1 2.300  3.084[1.124-8.456]
PYCR3 0.351  4.075[1.453-11.43]
FIGURE 2
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Multivariate Cox regression analysis of LLPS-related genes. (A) In all cohort, PELO, PCMT1, DLG3, PLA2G1B, PAK6, LIMCH1, PSME1, DAXX,
TMEM31, BRD4, RABGAP1, and AK7 were identified to determine the risk-score. (B) In the luminal cohort, ACBD5, LIMCH1, MXI1, MPHOSPH10,
ROR2, FLT3, RBM15B, and ROS27 were identified to determine the risk-score. (C) In the TNBC cohort, AGPAT4, CRKL, PRRG1, and PYCR3 were

identified to calculate the risk-score.

survminer” packages), and the C-index was calculated in R

(“survcomp”).

Statistics analysis

PhaSepDB, and those genes were subjected to univariate Cox
regression analysis. The samples of breast cancer from TCGA
were divided into all cohorts, the luminal cohort, and the TNBC
cohort, in which 140 prognosis-related LCGs (pLCGs) were
identified in all cohort (p < 0.05, Figure 1), 240 pLCGs were
identified in the luminal cohort (p < 0.05, Figure 1), and

All data analyses were performed using R4.0.1 and SPSS
20.0 and some data analyses were performed with online tools
(http://www.sangerbox.com/tool). All core R codes related to this
study were uploaded on ZENODO (https://zenodo.org) [DIO:
10.5281/zen0do0.6497469; link: https://doi.org/10.5281/zenodo.
6497469].

Results

Identification of prognosis-related LCGs in subtypes of
breast cancer

As shown in Figure 1, 3839 LCGs were identified by
searching the intersection between the data from TCGA and

Frontiers in Genetics

28 pLCGs were identified in the TNBC cohort (p < 0.05,
Figure 1).

Construction of LGCs-based prognosis
prediction model

The above candidate genes were subjected to LASSO
analysis, and 17 genes in all cohorts were selected for
multivariate Cox regression analysis-11 genes from the
luminal cohort and 6 genes from the TNBC cohort
(Figure 1 and Supplementary Figure S1). The samples were
divided into high-expression and low-expression groups by
median expression of the selected genes. Then, by multivariate

frontiersin.org
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FIGURE 3

Nomogram in subtypes of breast cancer. (A) Nomogram of all
cohort, amongst which ‘1" mean low expression, and 2" mean high
expression. (B) Nomogram of the luminal cohort, amongst which
‘1" mean low expression, and ‘2" mean high expression. (C)
Nomogram of TNBC cohort, amongst which 1" mean low
expression, and ‘2" mean high expression.

Cox regression analysis, we identified PELO (1.600
[1.44-2.239], p = 0.006); PCMT1 (1.785[1.270-2.509], p =
0.001); DLG3 (1.626[1.148-2.304], p = 0.006); PLA2G1B
(0.697[0.500-0.973], p = 0.034); PAK6 (1.613[1.155-2.253],
p =0.005); LIMCH1 (1.573[1.113-2.223], p = 0.010); PSME1
(0.721[0.512-1.014], p = 0.060); DAXX (0.725[0.515-1.022],
p =0.066); TMEM31 (1.712[1.228-2.386], p = 0.002); BRD4
(0.670[0.479-0.939], p = 0.020); RABGAP1 (1.419
[1.010-1.995], p = 0.044); and AK7 (0.647[0.464-0.903],
p = 0.010) as factors for constructing prognosis prediction
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model in all cohorts (Figure 2A). We also identified 11 genes:
ACBD5 (2.132[1.344-3.382], p = 0.001); LIMCH1 (1.874
[1.177-2.985], p = 0.008); MXI1 (1.876[1.187-2.964], p =
0.007); MPHOSPHI10 (1.747[1.107-2.755], p = 0.016);
ROR2 (1.613[1.024-2.543], p = 0.039); FLT3 (0.551
[0.352-0.862], p = 0.009); RBM15B (0.607[0.389-0.948],
p = 0.028); and RPS27 (0.619[0.395-0.968], p = 0.036) as
factors for constructing a prognosis prediction model in the
luminal cohort (Figure 2B). We also identified the six genes:
AGPAT4 (3.515[1.381-8.943], p = 0.006); CRKL (0.351
[0.134-0.919], p = 0.024); PRRG1 (3.084[1.124-8.456], p =
0.018); and PYCR3 (4.075[1.453-11.430], p = 0.003) as factors
for constructing a prognosis prediction model in the TNBC
cohort (Figure 2C).

As shown in Figure 3, an LCG-based nomogram was
constructed for the training cohort (all cohort, luminal
and TNBC cohort), ‘1’
expression and 2’ mean high expression. Samples were

cohort, in which mean low
divided into low-risk and high-risk groups by predicted risk-
score calculated by multivariate Cox regression analysis. As
shown in Figure 4, the low-risk group had a better prognosis
than the high-risk group in all cohorts (Figure 4A, p < 0.0001),
the luminal cohort (Figure 4E, p < 0.0001), and the TNBC
cohort (Figure 41, p = 0.002). The ROC value of the nomograms
in all cohorts was 0.76 (5-year survival) and 0.77 (10-year
survival) (Figure 4B); in the luminal cohort it was 0.79 (5-
year survival) and 0.75 (10-year survival) (Figure 4F); and in all
cohorts it was 0.73 (5-year survival) and 0.79 (10-year survival)
(Figure 4J). In addition, calibration analysis was performed to
assess the predictive ability of the nomogram (Figures
4C,D,G,H,K,L).

To further verify the prediction ability of the above
nomogram (prognosis prediction model), data from
METABRIC (Nature 2012 & Nat Commun 2016) was used
to construct the verification cohort (Figure 1). We used the
above-identified genes to construct the prediction model in
all cohorts, the luminal cohort, and the TNBC cohort. As
shown in Figure 5, the high-risk group had a worse prognosis
than the low-risk group in all cohorts (Figure 5A, p< 0.0001)
and the luminal cohort (Figure 5E, p< 0.0001), while there
was no difference in the TNBC cohort (Figure 51, p = 0.41). In
addition, the ROC values of the nomogram in the verification
cohort were not good: 0.61 (5 years) and 0.58 (10 years) in all
cohorts (Figure 5B), 0.62 (5 years, 10 years) in the luminal
cohort (Figure 5F), and 0.56 (5 years) and 0.54 (10 years) in
the TNBC cohort (Figure 5]). Calibration analysis was also
performed (Figures 5C,D,G,H,K,L).

Enrichment analysis

A total of 340 differentially-expressed LCGs were subjected
to KEGG and GO analysis to identify molecular signaling
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FIGURE 4

Inner verification of monogram. K-M curve showed low-risk with better prognosis in all cohorts (A), the luminal cohort (E), and the TNBC cohort

(). The AUC values of nomograms in all cohorts (B) were 0.76 (5-year survival) and 0.77 (10-year survival), in the luminal cohort (F) were 0.79 (5-year
survival) and 0.75 (10-year survival), and in all cohort (J) were 0.73 (5-year survival) and 0.79 (10-year survival). Calibration analysis was performed to
assess the prediction accuracy of nomograms in all cohorta (C,D), luminal cohort (G,H), and TNBC cohort (K,L).

pathways. As the GO analysis showed, LCGs were involved in
RNA binding, protein targeting to ER, and translational
initiation, etc. (Figure 6A). KEGG analysis showed that
LCGs were involved in the NOD-like receptor signaling
pathway, focal adhesion, tight junctions, and spliceosomes,
etc. (Figure 6B).

Prognosis prediction model based on
LCGs risk-score

To further explore the effects of LCGs on the prediction of
prognosis, multi-gene risk-scores were calculated. As shown in
Figure 7, 17 pLCGs were used to obtain multi-gene risk-scores
in all cohorts, all of which had different expressions between
tumor and non-tumor tissues (Figure 7A); 11 pLCGs were used
to determine risk-scores in the luminal cohort, all of which had
different expressions between tumor and non-tumor tissues
(Figure 7D); 6 pLCGs were used to calculate risk-scores in the
TNBC cohort, and AGPAT4, CRKL, NDP, PRRGI, and PYCR3
all had different expression between tumor and non-tumor
tissues (Figure 7G). The K-M curve showed that the group with
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the lowest risk-score had the best prognosis (Fig. B, E, and H).
We determined the prognostic prediction ability of risk-scores
in breast cancer and its subtypes, and found that the ROC value
of the risk-score based on 17 LCGs was 0.88 (1 year), 0.83
(3 years), and 0.81 (5 years) in all cohorts (Figure 7C); the ROC
value of the risk-score based on 11 LCGs was 0.67 (1 year), 0.85
(3 years), and 0.84 (5 years) in the luminal cohort (Figure 7F);
the ROC value of the risk-score based on 6 LCGs was 0.87
(1 year), 0.88 (3years), and 0.81 (5 years) in the TNBC cohort
(Figure 71).

LCG-based risk-score in the regulation of
genomic instability and tumor immunity

To explore the roles of LCGs in the regulation of genomic
the
(FGA),
microsatellite instability (MSI), gene mutation (mutation)
and tumor mutation burden (TMB). As shown in Figure 8,
the group with higher LCG-based risk-scores also had a
higher level of FGA and MSI, while it was accompanied by

instability and tumor immunity, we calculated

differences in fraction of genomic alteration
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FIGURE 5

External verification of predicted models. K-M curve showed low-risk with better prognosis in all cohorts (A) and the luminal cohort (E), but not
in the TNBC cohort (I). The AUC values of nomogram in all cohorts (B) were 0.61 (5-year survival) and 0.58 (10-year survival), in the luminal cohort (F)
were 0.62 (5-year survival, 10-year survival), and in the TNBC cohort (J) were 0.55 (5-year survival) and 0.54 (10-year survival). Calibration analysis
was performed to assess the prediction accuracy of nomograms in all cohorts (C,D), the luminal cohort (G,H), and the TNBC cohort (K,L).

a lower level of mutation and TMB. In immunity analysis,
we found that the group with the higher LCG-based risk-
score was accompanied by a lower immunity score
independent of the StromalScore, ImmuneScore, and
EstimateScore (Figure 8B). In addition, we explored the
differences in immune cell infiltration. As shown in
Figure 8C, a higher LCG-based risk-score group was
accompanied by a lower infiltration of memory B cells,
plasma cells, CD8" T cells, resting memory CD4" T cells,
yO T cells, and resting NK cells, while it was accompanied by
a higher infiltration of MO macrophages and M2 macrophages

(Figure 8C).

Prognosis prediction model based on
LCG-based risk-score and clinical factors

For further development of the prognosis prediction
model, we put clinical data into the construction of
nomograms. Table 1 showed the clinical characteristics
and genomic features of breast cancer (TCGA), and we
excluded ‘recurrence, M stage, radiation” whose proportion

Frontiers in Genetics

07

of subgroups was <10%. We identified ‘age, clinical stage, N
stage, and risk-score’ as factors for constructing nomograms
by univariate Cox regression and multivariate Cox regression
in all cohorts (Table 2); we identified ‘age, clinical stage, and
risk-score’ as factors for constructing nomograms in the
luminal cohort and the TNBC cohort (Table 2). As shown
in Figure 9, the total points provided a point-to-point
survival prediction, such that a score of 44.9 corresponded
to a 5-year death probability of 73.8%, a 3-year death
probability of 49.2%, and a 1-year death probability of
8.42% in all cohort breast samples (Figure 9A). The same
methods for prognosis prediction were used in the luminal
and TNBC cohorts (Figures 9C,E). We divided the sample
nomograms into a low-risk group and a high-risk group and
the results showed that the low-risk group displayed a better
prognosis than the high-risk group (Figures 9B,D,F,
p <0.0001).

Inner verification was performed to assess the predictive
ability of the above nomograms. ROC curves showed that the
AUC values were 0.89 (1-year survival), 0.79 (3 years), and 0.75
(5 years) in all cohorts (Figure 10A); the AUC values were 0.84
(1-year survival), 0.83 (3 years), and 0.85 (5 years) in the luminal
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cohort (Figure 10E); and the AUC values were 0.95 (1-year
survival), 0.84 (3 years), and 0.77 (5 years) in the TNBC
cohort (Figure 10I). Calibration analysis was shown in
Figure 10, which implied that nomograms were accurate in
their prediction of breast cancer prognosis and its subtypes.
The C-index was also calculated to assess the predictive
ability of the nomograms, and Table 3 shows that the
C-index was 0.784 [0.741-0.827] for nomograms in all
cohorts, 0.803 [0.756-0.850] for nomograms in the luminal
cohort, and 0.847 [0.759-0.934] for nomograms in the TNBC
cohort.

Frontiers in Genetics

According to the National Cancer Report 2019, breast
cancer has become the most common type of tumor in
women, with more than 300,000 new breast cancers and
more than 66,000 deaths every year (Siegel et al., 2020).
Amongst them, HER2-negative breast cancer has to rely on
paclitaxel-based combination chemotherapy because of the
lack of effective molecular targeted therapy strategies.
However, continuous low-sensitivity chemotherapy can
resistance, reduce chemotherapy’s

easily cause drug
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FIGURE 7

LLPS-related multi-gene risk-score. Risk-score-mortality relationship and selected LLPS-related gene expression differences are shown for
all cohort (A), luminal cohort (D), and TNBC cohort (G). The K-M curve showed that low-risk had better prognosis in all cohorts (B), the luminal
cohort (E), and in the TNBC cohort (H). The AUC values of risk-score in all cohorts (C) were 0.88 (1 year), 0.83 (3 years), and 0.81 (5 years), in the
luminal cohort (F) were 0.67 (1 year), 0.85 (3 years), and 0.84 (5 years), and in the TNBC cohort (I) were 0.87 (1 year), 0.88 (3 years), and 0.81

(5 years).

clinical benefits, and increase the risk of recurrence and
metastasis (Foulkes et al., 2010). Therefore, the development
of sensitive chemotherapy is pivotal to the current clinical
treatment of breast cancer, but is still a very difficult problem
in scientific research.

In eukaryotic cells, there are many structures lacking
membranes such as nucleoli, premature cell leukemia
nuclei (PML NB), P bodies in C. elegans, etc., and they
perform key functions in metabolic processes (Boeynaems
et al, 2018). Previous studies have pointed out that
membrane-free structures are formed from LLPS, which is
also named membrane-free condensate

or Dbiological

condensate. Recently, it was reported that LLPS was
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involved in neurological diseases and tumor processes. For
example, tau species that formed LLPS under cellular
conditions could serve as intermediates for tau aggregate
formation (Wegmann et al., 2018); cAMP-dependent protein
kinase (type I regulatory subunit) produced LLPS as part of
their functional role in cAMP signaling to form biomolecular
condensates enriched in cAMP and PKA activity, which was
critical for effective cAMP compartmentation and played roles
in atypical liver cancer (Zhang et al., 2020); YAP protein
formed a liquid aggregate in the nucleus and promoted the
growth of breast cancer cells by inducing the transcription of
oncogenes (Li et al., 2021a). In addition, some studies were
reported to apply LCGs to construct multi-gene risk-scores to
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FIGURE 8

Genomic instability and tumor immunity analysis. (A) Differences in fraction of genomic alteration (FGA), microsatellite instability (MSI), gene
mutation (mutation) and tumor mutation burden (TMB) in high risk-score and low risk-score groups. (B) Immune score in high risk-score and low
risk-score groups. (C) Differences in immune cell infiltration in high risk-score and low risk-score groups.

assess the effects of LLPS in the prediction of tumor
prognosis in ovarian epithelial cancer and lung cancer
(Qiu et al., 2021; Zhuge et al., 2021). These two studies
showed that LCGs were useful in distinguishing subgroups
in which one group had a better prognosis, while the other
had a worse prognosis. However, the visual prognosis
prediction tool used was not given. So, we intended to
use LCGs
prognosis prediction tools.

and clinical factors to construct visual

In this study, we identified differentially expressed pLCGs
in breast cancer, and then selected pLCGs as factors to
construct the prognosis prediction tool. Twelve genes were
identified and samples were divided into low-expression and
high-expression groups by the expression of those 12 genes in
all cohorts. Although the 12-gene-based nomogram showed
medium accuracy in the prediction of prognosis (AUC>0.7,
Figure 4A), its performance in inner verification was not good
enough (0.7 > AUC>0.5, Figure 5B) to apply it in the
prediction of breast cancer prognosis. It was worse in the
prediction of 1-year survival and 3-year survival in breast
cancer (all cohorts) (data not shown). Meanwhile, we
observed that the results in the luminal and TNBC cohorts
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were too weak to be useful. However, to our surprise, the
LCG-based risk-score exactly divided breast cancer samples
into better prognosis groups and worse prognosis in all
cohorts, the luminal cohort, and the TNBC cohorts
(Figures 7B,E,H). Afterwards, we applied LCG-based risk-
scoring to construct a nomogram. Although the ROC curve
displayed medium strength in the prediction of prognosis
(AUC value > 0.8, Figures 7C,F,I; C-index>0.7, data not
shown), calibration analysis showed that the results were
not good enough (data not shown). So, we combined risk-
score and clinical factors to construct a better nomogram for
the prediction of prognosis in breast cancer. Inner verification
showed that the LLPS-related-gene-based and clinical-factor-
based nomograms gave good results for prediction of breast
cancer prognosis, especially in the TNBC cohort, for which
the AUC value (Figure 10I) of 1-year survival prediction was
0.95, 3-year survival prediction was 0.84, 5-year survival
prediction was 0.77, C-index was 0.847 (Table 3), and the
calibration analysis results were good (Figures 10J-L).
Unfortunately, we did not find any available data that
contained both gene expression profiles and clinical
characteristics together to perform external verification.
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TABLE 1 | Clinical and genomic characteristics of subtypes of breast cancers. (1) Data from TCGA, from which the total sample was 1077 records, the
luminal cohort was 693 records, the TNBC cohort was 171 records, and the other cohort was 213 records. (2) The asterisk * means that factors

whose proportion of subtypes was <10% were selected for further analysis.

Item All samples (n = 1077)

Clinical characteristics

Luminal (n = 693)

TNBC (n = 171) Others (n = 213)

Number (%)

Age (years)* 1 (<45) 158 (14.7)
2 (45~64) 584 (54.2)
3 (>64) 335 (31.1)

Recurrence 1 (Yes) 100 (9.3)
2 (No) 778 (72.2)
3 (Na) 199 (18.5)

M stage 1 (No) 896 (83.2)
2 (Yes) 21 (1.9)
3 (Na) 160 (14.9)

N stage® 1 (No) 510 (47.4)
2 (NI-3) 547 (50.8)
3 (Na) 20 (1.9)

T stage” 1(T1-2) 899 (83.5)
2 (T3-4) 174 (16.2)
3 (Na) 4 (0.4)

Clinical stage” 1 (I~1I) 793 (73.6)
2 (III~1V) 266 (24.7)
3 (Na) 18 (1.7)

Radiation 1 (yes) 977 (90.7)
2 (No) 0 (0.0)
3 (Na) 100 (9.3)

Genomic characteristics

TMB* 2.746 + 9.317

98 (14.1) 32 (18.7) 28 (13.1)
360 (51.9) 97 (56.7) 127 (59.6)
235 (33.9) 42 (24.6) 58 (27.2)
58 (10.4) 16 (9.4) 26 (12.2)
501 (72.3) 125 (73.1) 152 (71.4)
134 (19.3) 30 (17.5) 35 (16.4)
575 (83.0) 149 (87.1) 172 (80.8)
12 (1.7) 3 (1.8) 6 (2.8)
106 (15.3) 19 (11.1) 35 (16.4)
314 (45.3) 107 (62.6) 89 (41.8)
365 (52.7) 64 (37.4) 118 (55.4)
14 (2.0) 0 (0.0) 6 (2.8)
584 (84.3) 149 (87.1) 166 (77.9)
106 (15.3) 21 (12.3) 47 (22.1)
3 (0.4) 1 (0.6) 0 (0.0)
505 (72.9) 145 (84.8) 143 (67.1)
176 (25.4) 23 (13.5) 67 (31.5)
12 (1.7) 3 (1.8) 3 (1.4)
634 (91.5) 154 (90.1) 189 (88.7)
0 (0.0) 0 (0.0) 0 (0.0)
59 (8.5) 17 (9.9) 24 (11.3)
Median + Sd.
2.546 + 9.729 3.350 + 4.815 2.924 £ 10.723

TMB: tumor mutation burden
“Factors are selected into further analysis whose proportion of subgroups > 10%.

However, we still performed independent verification by GEO
data. As shown in Supplementary Figure S2, the LCG-based
risk-score results were not good enough. The ROC value of 1/
3/5/7-year overall survival were 0.30, 0.58, 0.64 and 0.61
(Supplementary Figure S2A), while the ROC value of 1/3/
5/7-year metastasis-free survival were 0.30, 0.58, 0.64 and
0.61 (Supplementary Figure S2B). Furthermore, the LCG-
based risk-score and clinical factor (age) were applied
simultaneously to construct a nomogram, and the results
showed that the ROC values for 1/3/5/7-year overall
survival were 0.90, 0.7, 0.77 and 0.75 (Supplementary
§2C), while the ROC value for 1/3/5/7-year
metastasis-free survival were 0.94, 0.74, 0.76 and 0.74

Figure

(Supplementary Figure S2D).

In general, this study demonstrated that the prediction ability
of nomograms based only on LLPS-related genes was not good
enough to be applied in breast cancer therapy. However, the
prognosis prediction tools, based on LCG-based risk-scores and
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clinical factors, had medium accuracy, which means that LCGs
are useful for constructing a prognosis prediction model when
combined with clinical factors. Next, we will collect our gene
expression profiles and clinical data to make an external
verification to further assess the prognosis prediction tools in
the TNBC cohort.

The limitations of this work are obvious: 1. This work
did not detect the real expression levels of those genes used
to calculate risk-scores in fresh frozen breast cancer tissues by
of
selected genes could result in large fluctuations in the

RNA-sequence assay. The low expression those
assessment of prognosis; 2. Because of limitations in
the collection of clinical data (breast cancer has good
prognosis, so it is not easy to make a follow-up over 5 years
or more in a limited time) this study did not perform external
verification. 3. This study did not make a comparison between
our prognostic model and another multi-gene-based model in

the prediction of breast cancer prognosis.
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TABLE 2 | Identifying clinical factors in the nomogram. (1) Age, clinical stage, N stage, and risk-score were selected in all cohorts; (2) Age, clinical

stage, and risk-score were selected in the luminal cohort; (3) Age, clinical stage, and risk-score were selected in the TNBC cohort.

Item

All Age*

TMB

Clinical stage*

T stage

N stage*

RiskScore*

TNBC Age*

TMB

Clinical stage*

T stage

N stage

RiskScore*

Luminal Age*

TMB

Clinical stage*

T stage

N stage

RiskScore*

<45
45~64
>64

<45
45~64
>64

I~11
II~1v
T1~2
T3~4
NO
N1~3

<45
45~64
>64

HR

1.078

2.354

0.967

2.789

1.871

2.215
1.051

0.831

1.930

0.830

6.284

2.429

4.123
1.038

0.886

2.276

1.006

2.289

1.643

1.881
1.104

95% Cl

0.650-1.788
1.406-3.943
0.898-1.042
1.982-3.923

1.278-2.741

1.543-3.181
1.039-1.063

0.273-2.529

0.590-6.320

0.597-1.153

2.555-15.454

0.802-7.356

1.596-10.649
1.025-1.051

0.445-1.765

1.159-4.470

0.959-1.055

1.467-3.571

0.995-2.714

1.183-2.991
1.081-1.128

Univariate cox Analysis

p value

0.771
0.001
0.380
<0.001

0.001

<0.001
<0.001

0.745
0.277
0.267
<0.001

0.116

0.003
<0.001

0.732
0.017
0.804
<0.001

0.053

0.008
<0.001

HR

1.359
2.884

2.275

1.679
1.051

3.460

6.664

4.340

1.040

1.054

2.639

2.340

1.096

95% Cl

0.813-2.269
1.702-4.886

1.489-3.476

1.067-2.643
1.039-1.063

0.657-18.226

1.272-34.922

1.397-13.486

1.021-1.059
0.520-2.135

1.308-5.232

1.471-3.720

1.071-1.121

Multivariate cox Analysis

p value

0.242
<0.001

<0.001

0.025
<0.001

0.143

0.025

0.011

<0.001
0.885

0.007

<0.001

<0.001

TABLE 3 | C-index of nomograms. The C-index value of nomograms was 0.784 [0.741-0.827] in all cohorts, 0.803 [0.756—0.850] in the luminal
cohort, and 0.847 [0.759-0.934] in the TNBC cohort.

Item

All cohort
Luminal cohort

TNBC cohort
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C index

0.784
0.803
0.847
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Lower value

0.741
0.756
0.759

Upper value

0.827
0.850
0.934
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FIGURE 9
Nomograms in subtypes of breast cancer. Nomograms of all cohorts (A), luminal cohort (C), and TNBC cohort (E). The K-M curve showed that a
low-risk-score had better prognosis in all cohorts (B), luminal cohort (D), and TNBC cohort (F).
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FIGURE 10

Inner verification of nomograms. The AUC values of nomograms in all cohorts (A) were 0.89 (1 year), 0.79 (3 years), and 0.75 (5 years), in the
luminal cohort (E) were 0.84 (1 year), 0.83 (3 years), and 0.85 (5 years), and in the TNBC cohort (1) were 0.95 (1 year), 0.84 (3 years), and 0.77 (5 years).
Calibration analysis was performed to assess the prediction accuracy of nomograms in all cohorts (B—D), the luminal cohort (F-H), and the TNBC
cohort (J-L).
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