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Objective: Liquid-liquid phase separation (LLPS) is a functional unit formed by

specific molecules. It lacks a membrane and has been reported to play a crucial

role in tumor drug resistance and growth by regulating gene expression and

drug distribution. However, whether LLPS could be used to predict cancer

prognosis was not clear. This study aimed to construct a prognostic model for

breast cancer based on LLPS-correlated genes (LCGs).

Methods: LCGs were identified using the PhaSepDB, gene expression profile

and clinical characteristics of breast cancer were obtained from TCGA and

cBioportal. The PanCancer Atlas (TCGA) cohort was used as the training cohort

to construct the prognostic model, while the Nature 2012 and Nat Commun

2016 (TCGA) cohort and GEO data were used as test cohort to perform external

verification. Data analysis was performed with R4.2.0 and SPSS20.0.

Results: We identified 140 prognosis-related LCGs (pLCGs) (p< 0.01) in all

cohorts, 240 pLCGs (p< 0.01) in the luminal cohort, and 28 pLCGs (p< 0.05) in

the triple-negative breast cancer (TNBC) cohort. Twelve genes in all cohorts

(training cohort: 5/10-year ROC values were 0.76 and 0.77; verification cohort:

5/10-year ROC values were 0.61 and 0.58), eight genes in the luminal cohort

(training cohort: 5/10-year ROC values were 0.79 and 0.75; verification cohort:

5/10-year ROC values were 0.62 and 0.62), and four genes in the TNBC cohort

(training cohort: 5/10-year ROC values were 0.73 and 0.79; verification cohort:

5/10-year ROC values were 0.55 and 0.54) were screened out to construct the

prognostic prediction model. The 17-gene risk-score was constructed in all

cohorts (1/3/5-year ROC values were 0.88, 0.83, and 0.81), and the 11-gene

risk-score was constructed in the luminal cohort (1/3/5-year ROC values were

0.67, 0.85 and 0.84), and the six-gene risk-score was constructed in the TNBC

cohort (1/3/5-year ROC value were 0.87, 0.88 and 0.81). Finally, the risk-score
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and clinical factors were applied to construct nomograms in all cohorts (1/3/5-

year ROC values were 0.89, 0.79 and 0.75, C-index = 0.784), in the luminal

cohort (1/3/5-year ROC values were 0.84, 0.83 and 0.85, C-index = 0.803), and

in the TNBC cohort (1/3/5-year ROC values were 0.95, 0.84 and 0.77, C-index =

0.847).

Discussion: This study explored the roles of LCGs in the prediction of breast

cancer prognosis.

KEYWORDS

liquid-liquid phase separation, multi-gene risk-score, predictionmodel, breast cancer,
TCGA

Introduction

During the past decades, medical science has made obvious

progress in the treatment of breast cancer, especially for HER2-

positive breast cancer based on the development of HER2-

targeted drugs, such as trastuzumab. However, because of the

lack of useful gene targets, paclitaxel-centered combination

chemotherapy was still the first-line treatment strategy for

patients with HER2-negative breast carcinoma, including

luminal and triple-negative breast cancer (TNBC), the

resistance of which made for a worse prognosis (Foulkes

et al., 2010; Pandya-Jones et al., 2020).

Recently, it has been reported that RNA and proteins can

interact with each other to form a droplet-like unit bymultivalent

weak interactions based on intrinsically disordered regions

(IDR), folded proteins, DNA/RNA molecular scaffolds, and

other structures, which was called a liquid-liquid phase

separation (LLPS) (Alberti et al., 2019; Li et al., 2021a). Many

biological processes, including transcription, chromatin

organization, X chromosome inactivation (XCI), DNA damage

response (DDR), autophagy, and even tumor growth and

metastasis, have been proven to involve LLPS to achieve their

specific functions (Du and Chen, 2018; Hahn, 2018; Ries et al.,

2019). For example, the YAP protein formed a liquid aggregate in

the nucleus, which induced the transcription of its target genes

and promoted the growth of MBA-MD-231 breast cancer cells in

vivo and in vitro (Li et al., 2021a).

LLPSs appear at different phases and spaces in cells to

perform specific functions. The components involved in the

formation of LLPS can be quite different. Recent studies have

shown that long noncoding RNAs (lncRNAs) can regulate

cellular functions by interacting with target proteins to form

dynamic LLPS (Pandya-Jones et al., 2020). For example, the

lncRNA Xist formed condensates in the inactive X(Xi) group by

binding to multiple proteins, such as PTBP1, MATR3, TDP-43,

and CELF1, with self-aggregation and heterotypic protein-

protein interactions, which provided a new way for gene

silencing (Pandya-Jones et al., 2020). LncRNA

NEAT1 exhibited phase-separated condensate properties, and

was able to bind to NONO/SFPQ with the formation of LLPS

in vitro. In addition, lncRNAs interacted with oncogenes to form

LLPS, which were involved in regulating tumor development

(Yamazaki et al., 2018). For example, the lncRNA

SNHG9 promoted LATS1 to experience LLPS, which further

promoted the YAP signaling pathway-induced growth of breast

cancer cells (Li et al., 2021a).

In previous research, immunological genes, autophagy-

related genes, and some other genes were reported to be

useful in tumor prognosis prediction (Shen et al., 2020; Li

et al., 2021b; Jiang et al., 2021; Jiang et al., 2022), but few

studies focused on the roles of LLPS-related genes (LCGs) in

tumor prognosis prediction. For example, prognosis prediction

models were based on previously constructed LCGs for ovarian

cancer, lung squamous cell carcinoma, and glioma (Qiu et al.,

2021; Zheng et al., 2022); the risk model based on LCGs identified

a good/bad prognosis cluster. However, an LCG-based risk

model has not been reported for breast cancer and its

subtypes; so, in this study we constructed a nomogram based

on LCGs.

Methods and materials

Data collection and collation

Gene expression profiles of the training cohort were collected

from The Cancer Genome Atlas (TCGA, https://portal.gdc.

cancer.gov), and the data of the verification cohort was

collected from cBioportal (METRABRIC, Nature 2012 & Nat

Commun 2016; http://www.cbioportal.org) and GEO58812. The

clinical characteristics of TCGA were obtained from cBioportal

(http://www.cbioportal.org). LLPS-related genes were selected

from PhaSepDB, an online database that records all LLPS-

related genes (http://db.phasep.pro). A total of 1077 records

(673 in the luminal cohort, 171 in the TNBC cohort,

0 excluded) were selected from the training cohort, and

1904 records were selected (1140 in the luminal cohort,

199 in the TNBC cohort, and 604 were excluded) from the

verification cohort (Figure 1). Clinical factors included “Age

(<45, 45 ~ 64, >64)”, “clinical stage (I-II, III-IV)”, “T stage
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(T1-2, T3-4)”, “N stage (N0, N1-3), M stage, recurrence status,

and radiation therapy”, genomic factors included “Tumor

mutation burden (TMB)” and “risk-score (multi-gene risk-

score)”.

Identification of prognostic signature
LCGs and construction of an LCG-based
risk-score

The gene expression profile was collected from TCGA,

and the LCGs were exported from PhaSepDB. Next,

3839 genes were identified by taking the intersection

between the data from TCGA and PhaSepDB. Univariate

Cox regression (limma package in R, p< 0.01 in all breast and

luminal cohorts, p< 0.05 in the TNBC cohort, fold

changes >1.5) was performed to identify prognosis-related

LCGs. Least absolute shrinkage and selection operator

(LASSO) Cox regression (glmnet package in R) was

performed to narrow the array of candidate genes.

Multivariate Cox regression was performed in R to select

genes for constructing nomograms or multi-gene risk-scores,

in which an LLPS-related risk-score was constructed

according to the formula:

Riskscore � Exp (gene1)
× Coef(gene1) + Exp (gene2) × Coef(gene2) + . . .

The “Exp” mean expression value of a gene in multivariate

Cox regression. “Coef” mean coefficient of the corresponding

gene. Cohorts were divided into “High-risk group” and “Low-risk

group” by risk-score.

Enrichment analysis

A total of 340 differentially-expressed LCGs were identified

by KEGG and GO (“clusterProfiler, org.Hs.eg.db, and enrichplot”

packages in R) analysis.

Identification of clinical factors and
construction of prognosis prediction
model

Clinical factors (clinical stage, N stage, T stage, age) and

genomic factors (risk-score, TMB) were subjected to univariate

Cox regression and multivariate Cox regression analysis in SPSS

20.0. Nomograms, calibration analysis, and Kaplan Meier (K-M)

curves were constructed in R (“survival, rms, regplot, and

FIGURE 1
Technology roadmap of study. (1) Gene expression profiles were collected fromTCGA: https://portal.gdc.cancer.gov. (2) Clinical characteristics
were collected from cBioportal http://www.cbioportal.org. (3) The genomic list of LLPS-related genes was collected from PhaSepDB: http://db.
phasep.pro. (4) Data analysis was performed in R4.0.1 and SPSS 20.0.
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survminer” packages), and the C-index was calculated in R

(“survcomp”).

Statistics analysis

All data analyses were performed using R4.0.1 and SPSS

20.0 and some data analyses were performed with online tools

(http://www.sangerbox.com/tool). All core R codes related to this

study were uploaded on ZENODO (https://zenodo.org) [DIO:

10.5281/zenodo.6497469; link: https://doi.org/10.5281/zenodo.

6497469].

Results

Identification of prognosis-related LCGs in subtypes of

breast cancer

As shown in Figure 1, 3839 LCGs were identified by

searching the intersection between the data from TCGA and

PhaSepDB, and those genes were subjected to univariate Cox

regression analysis. The samples of breast cancer from TCGA

were divided into all cohorts, the luminal cohort, and the TNBC

cohort, in which 140 prognosis-related LCGs (pLCGs) were

identified in all cohort (p < 0.05, Figure 1), 240 pLCGs were

identified in the luminal cohort (p < 0.05, Figure 1), and

28 pLCGs were identified in the TNBC cohort (p < 0.05,

Figure 1).

Construction of LGCs-based prognosis
prediction model

The above candidate genes were subjected to LASSO

analysis, and 17 genes in all cohorts were selected for

multivariate Cox regression analysis-11 genes from the

luminal cohort and 6 genes from the TNBC cohort

(Figure 1 and Supplementary Figure S1). The samples were

divided into high-expression and low-expression groups by

median expression of the selected genes. Then, by multivariate

FIGURE 2
Multivariate Cox regression analysis of LLPS-related genes. (A) In all cohort, PELO, PCMT1, DLG3, PLA2G1B, PAK6, LIMCH1, PSME1, DAXX,
TMEM31, BRD4, RABGAP1, and AK7 were identified to determine the risk-score. (B) In the luminal cohort, ACBD5, LIMCH1, MXI1, MPHOSPH10,
ROR2, FLT3, RBM15B, and ROS27 were identified to determine the risk-score. (C) In the TNBC cohort, AGPAT4, CRKL, PRRG1, and PYCR3 were
identified to calculate the risk-score.
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Cox regression analysis, we identified PELO (1.600

[1.44–2.239], p = 0.006); PCMT1 (1.785[1.270–2.509], p =

0.001); DLG3 (1.626[1.148–2.304], p = 0.006); PLA2G1B

(0.697[0.500–0.973], p = 0.034); PAK6 (1.613[1.155–2.253],

p = 0.005); LIMCH1 (1.573[1.113–2.223], p = 0.010); PSME1

(0.721[0.512–1.014], p = 0.060); DAXX (0.725[0.515–1.022],

p = 0.066); TMEM31 (1.712[1.228–2.386], p = 0.002); BRD4

(0.670[0.479–0.939], p = 0.020); RABGAP1 (1.419

[1.010–1.995], p = 0.044); and AK7 (0.647[0.464–0.903],

p = 0.010) as factors for constructing prognosis prediction

model in all cohorts (Figure 2A). We also identified 11 genes:

ACBD5 (2.132[1.344–3.382], p = 0.001); LIMCH1 (1.874

[1.177–2.985], p = 0.008); MXI1 (1.876[1.187–2.964], p =

0.007); MPHOSPH10 (1.747[1.107–2.755], p = 0.016);

ROR2 (1.613[1.024–2.543], p = 0.039); FLT3 (0.551

[0.352–0.862], p = 0.009); RBM15B (0.607[0.389–0.948],

p = 0.028); and RPS27 (0.619[0.395–0.968], p = 0.036) as

factors for constructing a prognosis prediction model in the

luminal cohort (Figure 2B). We also identified the six genes:

AGPAT4 (3.515[1.381–8.943], p = 0.006); CRKL (0.351

[0.134–0.919], p = 0.024); PRRG1 (3.084[1.124–8.456], p =

0.018); and PYCR3 (4.075[1.453–11.430], p = 0.003) as factors

for constructing a prognosis prediction model in the TNBC

cohort (Figure 2C).

As shown in Figure 3, an LCG-based nomogram was

constructed for the training cohort (all cohort, luminal

cohort, and TNBC cohort), in which ‘1’ mean low

expression and ‘2’ mean high expression. Samples were

divided into low-risk and high-risk groups by predicted risk-

score calculated by multivariate Cox regression analysis. As

shown in Figure 4, the low-risk group had a better prognosis

than the high-risk group in all cohorts (Figure 4A, p < 0.0001),

the luminal cohort (Figure 4E, p < 0.0001), and the TNBC

cohort (Figure 4I, p = 0.002). The ROC value of the nomograms

in all cohorts was 0.76 (5-year survival) and 0.77 (10-year

survival) (Figure 4B); in the luminal cohort it was 0.79 (5-

year survival) and 0.75 (10-year survival) (Figure 4F); and in all

cohorts it was 0.73 (5-year survival) and 0.79 (10-year survival)

(Figure 4J). In addition, calibration analysis was performed to

assess the predictive ability of the nomogram (Figures

4C,D,G,H,K,L).

To further verify the prediction ability of the above

nomogram (prognosis prediction model), data from

METABRIC (Nature 2012 & Nat Commun 2016) was used

to construct the verification cohort (Figure 1). We used the

above-identified genes to construct the prediction model in

all cohorts, the luminal cohort, and the TNBC cohort. As

shown in Figure 5, the high-risk group had a worse prognosis

than the low-risk group in all cohorts (Figure 5A, p< 0.0001)

and the luminal cohort (Figure 5E, p< 0.0001), while there

was no difference in the TNBC cohort (Figure 5I, p = 0.41). In

addition, the ROC values of the nomogram in the verification

cohort were not good: 0.61 (5 years) and 0.58 (10 years) in all

cohorts (Figure 5B), 0.62 (5 years, 10 years) in the luminal

cohort (Figure 5F), and 0.56 (5 years) and 0.54 (10 years) in

the TNBC cohort (Figure 5J). Calibration analysis was also

performed (Figures 5C,D,G,H,K,L).

Enrichment analysis

A total of 340 differentially-expressed LCGs were subjected

to KEGG and GO analysis to identify molecular signaling

FIGURE 3
Nomogram in subtypes of breast cancer. (A)Nomogramof all
cohort, amongst which ‘1’mean low expression, and ‘2’mean high
expression. (B) Nomogram of the luminal cohort, amongst which
‘1’ mean low expression, and ‘2’ mean high expression. (C)
Nomogram of TNBC cohort, amongst which ‘1’ mean low
expression, and ‘2’ mean high expression.
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pathways. As the GO analysis showed, LCGs were involved in

RNA binding, protein targeting to ER, and translational

initiation, etc. (Figure 6A). KEGG analysis showed that

LCGs were involved in the NOD-like receptor signaling

pathway, focal adhesion, tight junctions, and spliceosomes,

etc. (Figure 6B).

Prognosis prediction model based on
LCGs risk-score

To further explore the effects of LCGs on the prediction of

prognosis, multi-gene risk-scores were calculated. As shown in

Figure 7, 17 pLCGs were used to obtain multi-gene risk-scores

in all cohorts, all of which had different expressions between

tumor and non-tumor tissues (Figure 7A); 11 pLCGs were used

to determine risk-scores in the luminal cohort, all of which had

different expressions between tumor and non-tumor tissues

(Figure 7D); 6 pLCGs were used to calculate risk-scores in the

TNBC cohort, and AGPAT4, CRKL, NDP, PRRG1, and PYCR3

all had different expression between tumor and non-tumor

tissues (Figure 7G). The K-M curve showed that the group with

the lowest risk-score had the best prognosis (Fig. B, E, and H).

We determined the prognostic prediction ability of risk-scores

in breast cancer and its subtypes, and found that the ROC value

of the risk-score based on 17 LCGs was 0.88 (1 year), 0.83

(3 years), and 0.81 (5 years) in all cohorts (Figure 7C); the ROC

value of the risk-score based on 11 LCGs was 0.67 (1 year), 0.85

(3 years), and 0.84 (5 years) in the luminal cohort (Figure 7F);

the ROC value of the risk-score based on 6 LCGs was 0.87

(1 year), 0.88 (3years), and 0.81 (5 years) in the TNBC cohort

(Figure 7I).

LCG-based risk-score in the regulation of
genomic instability and tumor immunity

To explore the roles of LCGs in the regulation of genomic

instability and tumor immunity, we calculated the

differences in fraction of genomic alteration (FGA),

microsatellite instability (MSI), gene mutation (mutation)

and tumor mutation burden (TMB). As shown in Figure 8,

the group with higher LCG-based risk-scores also had a

higher level of FGA and MSI, while it was accompanied by

FIGURE 4
Inner verification ofmonogram. K-M curve showed low-risk with better prognosis in all cohorts (A), the luminal cohort (E), and the TNBC cohort
(I). The AUC values of nomograms in all cohorts (B)were 0.76 (5-year survival) and 0.77 (10-year survival), in the luminal cohort (F)were 0.79 (5-year
survival) and 0.75 (10-year survival), and in all cohort (J)were 0.73 (5-year survival) and 0.79 (10-year survival). Calibration analysis was performed to
assess the prediction accuracy of nomograms in all cohorta (C,D), luminal cohort (G,H), and TNBC cohort (K,L).
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a lower level of mutation and TMB. In immunity analysis,

we found that the group with the higher LCG-based risk-

score was accompanied by a lower immunity score

independent of the StromalScore, ImmuneScore, and

EstimateScore (Figure 8B). In addition, we explored the

differences in immune cell infiltration. As shown in

Figure 8C, a higher LCG-based risk-score group was

accompanied by a lower infiltration of memory B cells,

plasma cells, CD8+ T cells, resting memory CD4+ T cells,

γδ T cells, and resting NK cells, while it was accompanied by

a higher infiltration of M0 macrophages and M2 macrophages

(Figure 8C).

Prognosis prediction model based on
LCG-based risk-score and clinical factors

For further development of the prognosis prediction

model, we put clinical data into the construction of

nomograms. Table 1 showed the clinical characteristics

and genomic features of breast cancer (TCGA), and we

excluded ‘recurrence, M stage, radiation’ whose proportion

of subgroups was <10%. We identified ‘age, clinical stage, N

stage, and risk-score’ as factors for constructing nomograms

by univariate Cox regression and multivariate Cox regression

in all cohorts (Table 2); we identified ‘age, clinical stage, and

risk-score’ as factors for constructing nomograms in the

luminal cohort and the TNBC cohort (Table 2). As shown

in Figure 9, the total points provided a point-to-point

survival prediction, such that a score of 44.9 corresponded

to a 5-year death probability of 73.8%, a 3-year death

probability of 49.2%, and a 1-year death probability of

8.42% in all cohort breast samples (Figure 9A). The same

methods for prognosis prediction were used in the luminal

and TNBC cohorts (Figures 9C,E). We divided the sample

nomograms into a low-risk group and a high-risk group and

the results showed that the low-risk group displayed a better

prognosis than the high-risk group (Figures 9B,D,F,

p <0.0001).
Inner verification was performed to assess the predictive

ability of the above nomograms. ROC curves showed that the

AUC values were 0.89 (1-year survival), 0.79 (3 years), and 0.75

(5 years) in all cohorts (Figure 10A); the AUC values were 0.84

(1-year survival), 0.83 (3 years), and 0.85 (5 years) in the luminal

FIGURE 5
External verification of predicted models. K-M curve showed low-risk with better prognosis in all cohorts (A) and the luminal cohort (E), but not
in the TNBC cohort (I). The AUC values of nomogram in all cohorts (B)were 0.61 (5-year survival) and 0.58 (10-year survival), in the luminal cohort (F)
were 0.62 (5-year survival, 10-year survival), and in the TNBC cohort (J) were 0.55 (5-year survival) and 0.54 (10-year survival). Calibration analysis
was performed to assess the prediction accuracy of nomograms in all cohorts (C,D), the luminal cohort (G,H), and the TNBC cohort (K,L).
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cohort (Figure 10E); and the AUC values were 0.95 (1-year

survival), 0.84 (3 years), and 0.77 (5 years) in the TNBC

cohort (Figure 10I). Calibration analysis was shown in

Figure 10, which implied that nomograms were accurate in

their prediction of breast cancer prognosis and its subtypes.

The C-index was also calculated to assess the predictive

ability of the nomograms, and Table 3 shows that the

C-index was 0.784 [0.741–0.827] for nomograms in all

cohorts, 0.803 [0.756–0.850] for nomograms in the luminal

cohort, and 0.847 [0.759–0.934] for nomograms in the TNBC

cohort.

Discussion

According to the National Cancer Report 2019, breast

cancer has become the most common type of tumor in

women, with more than 300,000 new breast cancers and

more than 66,000 deaths every year (Siegel et al., 2020).

Amongst them, HER2-negative breast cancer has to rely on

paclitaxel-based combination chemotherapy because of the

lack of effective molecular targeted therapy strategies.

However, continuous low-sensitivity chemotherapy can

easily cause drug resistance, reduce chemotherapy’s

FIGURE 6
Enrichment analysis. (A) GO analysis of LLPS-related genes; (B) KEGG analysis of LLPS-related genes.
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clinical benefits, and increase the risk of recurrence and

metastasis (Foulkes et al., 2010). Therefore, the development

of sensitive chemotherapy is pivotal to the current clinical

treatment of breast cancer, but is still a very difficult problem

in scientific research.

In eukaryotic cells, there are many structures lacking

membranes such as nucleoli, premature cell leukemia

nuclei (PML NB), P bodies in C. elegans, etc., and they

perform key functions in metabolic processes (Boeynaems

et al., 2018). Previous studies have pointed out that

membrane-free structures are formed from LLPS, which is

also named membrane-free condensate or biological

condensate. Recently, it was reported that LLPS was

involved in neurological diseases and tumor processes. For

example, tau species that formed LLPS under cellular

conditions could serve as intermediates for tau aggregate

formation (Wegmann et al., 2018); cAMP-dependent protein

kinase (type I regulatory subunit) produced LLPS as part of

their functional role in cAMP signaling to form biomolecular

condensates enriched in cAMP and PKA activity, which was

critical for effective cAMP compartmentation and played roles

in atypical liver cancer (Zhang et al., 2020); YAP protein

formed a liquid aggregate in the nucleus and promoted the

growth of breast cancer cells by inducing the transcription of

oncogenes (Li et al., 2021a). In addition, some studies were

reported to apply LCGs to construct multi-gene risk-scores to

FIGURE 7
LLPS-relatedmulti-gene risk-score. Risk-score-mortality relationship and selected LLPS-related gene expression differences are shown for
all cohort (A), luminal cohort (D), and TNBC cohort (G). The K-M curve showed that low-risk had better prognosis in all cohorts (B), the luminal
cohort (E), and in the TNBC cohort (H). The AUC values of risk-score in all cohorts (C) were 0.88 (1 year), 0.83 (3 years), and 0.81 (5 years), in the
luminal cohort (F)were 0.67 (1 year), 0.85 (3 years), and 0.84 (5 years), and in the TNBC cohort (I) were 0.87 (1 year), 0.88 (3 years), and 0.81
(5 years).
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assess the effects of LLPS in the prediction of tumor

prognosis in ovarian epithelial cancer and lung cancer

(Qiu et al., 2021; Zhuge et al., 2021). These two studies

showed that LCGs were useful in distinguishing subgroups

in which one group had a better prognosis, while the other

had a worse prognosis. However, the visual prognosis

prediction tool used was not given. So, we intended to

use LCGs and clinical factors to construct visual

prognosis prediction tools.

In this study, we identified differentially expressed pLCGs

in breast cancer, and then selected pLCGs as factors to

construct the prognosis prediction tool. Twelve genes were

identified and samples were divided into low-expression and

high-expression groups by the expression of those 12 genes in

all cohorts. Although the 12-gene-based nomogram showed

medium accuracy in the prediction of prognosis (AUC>0.7,
Figure 4A), its performance in inner verification was not good

enough (0.7 > AUC>0.5, Figure 5B) to apply it in the

prediction of breast cancer prognosis. It was worse in the

prediction of 1-year survival and 3-year survival in breast

cancer (all cohorts) (data not shown). Meanwhile, we

observed that the results in the luminal and TNBC cohorts

were too weak to be useful. However, to our surprise, the

LCG-based risk-score exactly divided breast cancer samples

into better prognosis groups and worse prognosis in all

cohorts, the luminal cohort, and the TNBC cohorts

(Figures 7B,E,H). Afterwards, we applied LCG-based risk-

scoring to construct a nomogram. Although the ROC curve

displayed medium strength in the prediction of prognosis

(AUC value > 0.8, Figures 7C,F,I; C-index>0.7, data not

shown), calibration analysis showed that the results were

not good enough (data not shown). So, we combined risk-

score and clinical factors to construct a better nomogram for

the prediction of prognosis in breast cancer. Inner verification

showed that the LLPS-related-gene-based and clinical-factor-

based nomograms gave good results for prediction of breast

cancer prognosis, especially in the TNBC cohort, for which

the AUC value (Figure 10I) of 1-year survival prediction was

0.95, 3-year survival prediction was 0.84, 5-year survival

prediction was 0.77, C-index was 0.847 (Table 3), and the

calibration analysis results were good (Figures 10J–L).

Unfortunately, we did not find any available data that

contained both gene expression profiles and clinical

characteristics together to perform external verification.

FIGURE 8
Genomic instability and tumor immunity analysis. (A) Differences in fraction of genomic alteration (FGA), microsatellite instability (MSI), gene
mutation (mutation) and tumor mutation burden (TMB) in high risk-score and low risk-score groups. (B) Immune score in high risk-score and low
risk-score groups. (C) Differences in immune cell infiltration in high risk-score and low risk-score groups.
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However, we still performed independent verification by GEO

data. As shown in Supplementary Figure S2, the LCG-based

risk-score results were not good enough. The ROC value of 1/

3/5/7-year overall survival were 0.30, 0.58, 0.64 and 0.61

(Supplementary Figure S2A), while the ROC value of 1/3/

5/7-year metastasis-free survival were 0.30, 0.58, 0.64 and

0.61 (Supplementary Figure S2B). Furthermore, the LCG-

based risk-score and clinical factor (age) were applied

simultaneously to construct a nomogram, and the results

showed that the ROC values for 1/3/5/7-year overall

survival were 0.90, 0.7, 0.77 and 0.75 (Supplementary

Figure S2C), while the ROC value for 1/3/5/7-year

metastasis-free survival were 0.94, 0.74, 0.76 and 0.74

(Supplementary Figure S2D).

In general, this study demonstrated that the prediction ability

of nomograms based only on LLPS-related genes was not good

enough to be applied in breast cancer therapy. However, the

prognosis prediction tools, based on LCG-based risk-scores and

clinical factors, had medium accuracy, which means that LCGs

are useful for constructing a prognosis prediction model when

combined with clinical factors. Next, we will collect our gene

expression profiles and clinical data to make an external

verification to further assess the prognosis prediction tools in

the TNBC cohort.

The limitations of this work are obvious: 1. This work

did not detect the real expression levels of those genes used

to calculate risk-scores in fresh frozen breast cancer tissues by

RNA-sequence assay. The low expression of those

selected genes could result in large fluctuations in the

assessment of prognosis; 2. Because of limitations in

the collection of clinical data (breast cancer has good

prognosis, so it is not easy to make a follow-up over 5 years

or more in a limited time) this study did not perform external

verification. 3. This study did not make a comparison between

our prognostic model and another multi-gene-based model in

the prediction of breast cancer prognosis.

TABLE 1 | Clinical and genomic characteristics of subtypes of breast cancers. (1) Data from TCGA, from which the total sample was 1077 records, the
luminal cohort was 693 records, the TNBC cohort was 171 records, and the other cohort was 213 records. (2) The asterisk * means that factors
whose proportion of subtypes was <10% were selected for further analysis.

Item All samples (n = 1077) Luminal (n = 693) TNBC (n = 171) Others (n = 213)

Clinical characteristics Number (%)

Age (years)a 1 (<45) 158 (14.7) 98 (14.1) 32 (18.7) 28 (13.1)

2 (45~64) 584 (54.2) 360 (51.9) 97 (56.7) 127 (59.6)

3 (>64) 335 (31.1) 235 (33.9) 42 (24.6) 58 (27.2)

Recurrence 1 (Yes) 100 (9.3) 58 (10.4) 16 (9.4) 26 (12.2)

2 (No) 778 (72.2) 501 (72.3) 125 (73.1) 152 (71.4)

3 (Na) 199 (18.5) 134 (19.3) 30 (17.5) 35 (16.4)

M stage 1 (No) 896 (83.2) 575 (83.0) 149 (87.1) 172 (80.8)

2 (Yes) 21 (1.9) 12 (1.7) 3 (1.8) 6 (2.8)

3 (Na) 160 (14.9) 106 (15.3) 19 (11.1) 35 (16.4)

N stagea 1 (N0) 510 (47.4) 314 (45.3) 107 (62.6) 89 (41.8)

2 (N1-3) 547 (50.8) 365 (52.7) 64 (37.4) 118 (55.4)

3 (Na) 20 (1.9) 14 (2.0) 0 (0.0) 6 (2.8)

T stagea 1 (T1-2) 899 (83.5) 584 (84.3) 149 (87.1) 166 (77.9)

2 (T3-4) 174 (16.2) 106 (15.3) 21 (12.3) 47 (22.1)

3 (Na) 4 (0.4) 3 (0.4) 1 (0.6) 0 (0.0)

Clinical stagea 1 (I~II) 793 (73.6) 505 (72.9) 145 (84.8) 143 (67.1)

2 (III~IV) 266 (24.7) 176 (25.4) 23 (13.5) 67 (31.5)

3 (Na) 18 (1.7) 12 (1.7) 3 (1.8) 3 (1.4)

Radiation 1 (yes) 977 (90.7) 634 (91.5) 154 (90.1) 189 (88.7)

2 (No) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

3 (Na) 100 (9.3) 59 (8.5) 17 (9.9) 24 (11.3)

Genomic characteristics Median ± Sd.

TMBa 2.746 ± 9.317 2.546 ± 9.729 3.350 ± 4.815 2.924 ± 10.723

TMB: tumor mutation burden
aFactors are selected into further analysis whose proportion of subgroups ≥ 10%.
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TABLE 2 | Identifying clinical factors in the nomogram. (1) Age, clinical stage, N stage, and risk-score were selected in all cohorts; (2) Age, clinical
stage, and risk-score were selected in the luminal cohort; (3) Age, clinical stage, and risk-score were selected in the TNBC cohort.

Item Univariate cox Analysis Multivariate cox Analysis

HR 95% Cl p value HR 95% Cl p value

All Age* <45
45~64 1.078 0.650–1.788 0.771 1.359 0.813–2.269 0.242

>64 2.354 1.406–3.943 0.001 2.884 1.702–4.886 <0.001
TMB 0.967 0.898–1.042 0.380

Clinical stage* I~II –

III~IV 2.789 1.982–3.923 <0.001 2.275 1.489–3.476 <0.001
T stage T1~2

T3~4 1.871 1.278–2.741 0.001

N stage* N0

N1~3 2.215 1.543–3.181 <0.001 1.679 1.067–2.643 0.025

RiskScore* 1.051 1.039–1.063 <0.001 1.051 1.039–1.063 <0.001
TNBC Age* <45

45~64 0.831 0.273–2.529 0.745 3.460 0.657–18.226 0.143

>64 1.930 0.590–6.320 0.277 6.664 1.272–34.922 0.025

TMB 0.830 0.597–1.153 0.267

Clinical stage* I~II

III~IV 6.284 2.555–15.454 <0.001 4.340 1.397–13.486 0.011

T stage T1~2

T3~4 2.429 0.802–7.356 0.116

N stage N0

N1~3 4.123 1.596–10.649 0.003

RiskScore* 1.038 1.025–1.051 <0.001 1.040 1.021–1.059 <0.001
Luminal Age* <45

45~64 0.886 0.445–1.765 0.732 1.054 0.520–2.135 0.885

>64 2.276 1.159–4.470 0.017 2.639 1.308–5.232 0.007

TMB 1.006 0.959–1.055 0.804

Clinical stage* I~II

III~IV 2.289 1.467–3.571 <0.001 2.340 1.471–3.720 <0.001
T stage T1~2

T3~4 1.643 0.995–2.714 0.053

N stage N0

N1~3 1.881 1.183–2.991 0.008

RiskScore* 1.104 1.081–1.128 <0.001 1.096 1.071–1.121 <0.001

TABLE 3 | C-index of nomograms. The C-index value of nomograms was 0.784 [0.741–0.827] in all cohorts, 0.803 [0.756–0.850] in the luminal
cohort, and 0.847 [0.759–0.934] in the TNBC cohort.

Item C index Lower value Upper value

All cohort 0.784 0.741 0.827

Luminal cohort 0.803 0.756 0.850

TNBC cohort 0.847 0.759 0.934
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FIGURE 9
Nomograms in subtypes of breast cancer. Nomograms of all cohorts (A), luminal cohort (C), and TNBC cohort (E). The K-M curve showed that a
low-risk-score had better prognosis in all cohorts (B), luminal cohort (D), and TNBC cohort (F).

FIGURE 10
Inner verification of nomograms. The AUC values of nomograms in all cohorts (A) were 0.89 (1 year), 0.79 (3 years), and 0.75 (5 years), in the
luminal cohort (E)were 0.84 (1 year), 0.83 (3 years), and 0.85 (5 years), and in the TNBC cohort (I)were 0.95 (1 year), 0.84 (3 years), and 0.77 (5 years).
Calibration analysis was performed to assess the prediction accuracy of nomograms in all cohorts (B–D), the luminal cohort (F–H), and the TNBC
cohort (J–L).
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