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Functional genomics studies have helped researchers annotate differentially expressed
gene lists, extract gene expression signatures, and identify biological pathways from
omics profiling experiments conducted on biological samples. The current geneset,
network, and pathway analysis (GNPA) web servers, e.g., DAVID, EnrichR,
WebGestaltR, or PAGER, do not allow automated integrative functional genomic
downstream analysis. In this study, we developed a new web-based interactive
application, “PAGER Web APP”, which supports online R scripting of integrative
GNPA. In a case study of melanoma drug resistance, we showed that the new
PAGER Web APP enabled us to discover highly relevant pathways and network
modules, leading to novel biological insights. We also compared PAGER Web
APP’s pathway analysis results retrieved among PAGER, EnrichR, and
WebGestaltR to show its advantages in integrative GNPA. The interactive online
web APP is publicly accessible from the link, https://aimed-lab.shinyapps.io/
PAGERwebapp/.

Keywords: PAGER, melanoma, functional genomics, geneset analysis, network visualization and analysis, PAGER
Web APP, GNPA

INTRODUCTION

Functional genomics analysis is widely performed to characterize genes and intergenic
regulatory regions in the genome that contribute to different biological processes (Yang
et al., 2020; Angeloni et al., 2021). Essentially, functional genomics provides a way to reveal
the molecules’ coordination in mechanisms due to a specific phenotype (Raamsdonk et al., 2001;
Rahaman et al., 2015). By tracking the molecular activities in the specific biological conditions,
we could identify those driver and passenger genes working in a model linking genotype to
phenotype. Numerous studies have shown that the molecules working in pathways could help in
disease diagnosis (Zhang and Chen, 2010; Drier et al., 2013; Livshits et al., 2015; Bock and Ortea,
2020; Pian et al., 2021), cancer subtyping (Zhang and Chen, 2013; Mallavarapu et al., 2020;
Lafferty et al., 2021), and personalized medicine (Chen et al., 2007; Hamburg and Collins, 2010;
Raghavan et al., 2017). Additionally, multi-omics analysis provides a complex map linking
transcriptomics, proteomics, and metabolomics (Subramanian et al., 2020; Andrieux and
Chakraborty, 2021). In multi-omics studies, the challenges for functional genomics are the
coverage of contents, the rendering of the complex network-based models, and the easy-to-use
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software with advanced features. Therefore integrative geneset,
network, and pathway analysis (GNPA) have emerged in the
past decade to lessen the burden of multi-omics data analysis
users (Wu et al., 2014). Pathway analysis, especially topology-
based approaches that exploit all the knowledge about how
genes and proteins interact in a pathway, have been developed
to discover the mechanical changes through pathway-level
scoring and pathway significance assessment (Draghici
et al., 2007; Mitrea et al., 2013; Nguyen et al., 2018). To
better understand the impact of perturbations or genetic
modifications in a system-level, System-level PAThway
Impact AnaLysis using map (SPATIAL), Signaling Pathway
Impact Analysis - Global Perturbation Factor (SPIA-GPF),
and SPATIAL-GPF have been introduced (Bokanizad et al.,
2016).

During the last decade, several GNPA web servers have been
developed (Subramanian et al., 2005; Khatri et al., 2012),
including DAVID (Jiao et al., 2012), EnrichR (Kuleshov
et al., 2016), WebGestalt (Liao et al., 2019), and pathways,
annotated gene lists and gene signatures electronic repository
(PAGER) (Yue et al., 2018). The highlights of those webservers
are interactive and comprehensive data coverage. The first
version of the DAVID tool was published in 2003 (Dennis
et al., 2003), and it is one of the earliest geneset enrichment
analysis webservers. The most updated version of DAVID
implements many advanced features such as gene ranking,
which gives a quick focus on the most likely important
candidate genes, gene with annotation in each single view,
and gene extension to make functional inferences (Jiao et al.,
2012). EnrichR was initially developed in 2013, and its merits
come from comprehensive data coverage and interactive
visualization panel (Chen et al., 2013). EnichR provides 190
libraries and adds Appyter to visualize EnrichR results in
different styles (Kuleshov et al., 2016). WebGestalt was
introduced in 2005 (Zhang et al., 2005), and it highlights
the visualization of gene ontology hierarchy structure and
pathway view of wikiPathway. WebGestaltR implemented
with R language in the recent updates (Liao et al., 2019).

PAGER was initially conceived in 2014 (Harini et al., 2008)
and subsequently developed in 2015 (Yue et al., 2015) with a
standardized concept called “PAGs” (Pathways, Annotated gene
lists, and Gene signatures) that integrates different levels of gene-
sets. PAGER highlights the measurement of biological relevance
using normalized Cohesion Coefficient (nCoCo) and advances
the network interpretation of functional genomics results in
several aspects. Additionally, PAGER introduced the
computational strategies in generating m-type (co-
membership) or r-type (regulatory) PAG-to-PAG
relationships. PAGER also provides gene prioritization in each
PAG. For the intra-PAG network construction, PAGER adopts
the protein-protein interactions from the HAPPI database (Chen
et al., 2017), a comprehensive and high-quality map of Human
annotated and predicted protein interactions, and gene
regulations validated in vitro experiment. Hence, PAGER
enables gene prioritization using the network topology in each
PAG (Yue et al., 2018). All four web servers support API
(Application Programming Interface) services.

In this study, we developed the PAGER Web APP, an
interactive online application to perform the gene set
enrichment analysis and network interpretation of the
functional genomics result. PAGER Web APP provides
preprocessed RNA-seq data from UALCAN-processed TCGA
data (Chandrashekar et al., 2017) and a melanoma drug resistant-
sensitive case study (Snyder et al., 2014) from cBioPortal (Gao
et al., 2013). We illustrated how the PAGER Web APP enhances
the potential to discover biological insights using network-based
computational strategy by comparing the enriched pathways
from the three leading web servers using their application
programming interfaces (APIs). We performed three
additional case studies, multiple sclerosis (MS), colonic
mucosa in Crohn’s disease (CD), and ulcerative colitis (UC)
study, to compare the three web server performances and
further validate the pathways using PubMed co-citations. We
intend for PAGERWeb APP to become a popular application for
researchers interested in integrative GNPA.

METHODS

Workflow and User Interface
We developed a four-step procedure in performing the functional
genomics analysis in PAGER Web APP for Human genomics
results (Figure 1). Firstly, users need to either load Demo data or
upload their data. In the Demo data, PAGERWeb APP provides a
melanoma dataset, a multiple sclerosis dataset, a Crohn’s disease
dataset, an ulcerative colitis dataset and 16 cancer types collected
from UALCAN TCGA data (Chandrashekar et al., 2017). If users
need to upload the data, we ask users to provide a tab-
delimited.txt format file, check the log2 fold change column
and p-value column, and click on the “proceed” button.
Secondly, PAGER Web APP will generate a volcano plot using
the gene’s log2 fold changes and colors the over-expressed
candidate genes red and under-expressed candidate genes blue
using the default threshold p-value ≤ 0.05 and absolute log2 fold
change ≥1. PAGER Web APP allows users to adjust the
log2foldchange and negative log2-based p-value to optimize
the candidate gene list. Users need to click on the proceed
button to the next step. Thirdly, PAGER Web APP will
perform the gene-set enrichment analysis with the pathway
type geneset sources (P-type PAGs) in default. Users can add
or remove the source name in the source multiple-choice field.
PAGER Web APP also allows users to change the minimum
number of overlapped genes, similarity score, and “-log2p-value”
cutoff. The similarity score is based on the combination of overlap
coefficient and Jaccard index using the methods described
previously (Huang et al., 2012). In the table of enriched
genesets results, users can use the column “PAGER link” to
navigate to the web-hosted PAGER entries of the given PAG,
including the metadata, gene members, and gene networks.
PAGER Web APP offers two additional leading gene set
enrichment analysis tools (EnrichR and WebGestaltR) using
the API service. We didn’t include DAVID due to the API
failure. Lastly, PAGER Web APP summarizes the similarity of
the terms and displays a Venn diagram of the overlapped terms.
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PAGER Web APP also provides the corresponding tables to
deliver similar terms with similarity scores by comparing the
three tools. All the tables and plots are downloadable.

Term to Term Distance-Based Similarity of
Terms Enriched From the Three Tools
The term similarity is generated based on a string metric using the
Stringdist library (https://cran.r-project.org/web/packages/
stringdist/index.html). We clean up the terms or names by
removing irrelevant content, such as species, identifier, etc.,
and making all the terms lower case. We also remove the
redundant terms enriched from different data sources, such as
“MAPK signaling pathway” may come from KEGG and
wikiPathway at the same time. Then we apply the string
similarity using optimal string alignment (OSA) distance
(Boytsov, 2011) to generate the similarity matrix between two
sets of terms, set A and set B.

Assume there are two terms regarded as two strings a and b,
the restricted distance is defined as da,b(i, j) in a recursive
calculation, the i is the prefix of string a, and the j is the
prefix of string b.

da,b(i, j) � min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if i � j � 0
da,b(i − 1, j) + 1 if i> 0(deletion)
da,b(i, j − 1) + 1 if j> 0(insertion)
da,b(i − 1, j − 1) if ai � bj(match)
da,b(i − 1, j − 1) + 1 if ai ≠ bj(substitution)
da,b(i − 2, j − 2) + 1 if i, j> 1 and ai � bj−1 and ai−1 � bj(transposition)

The string similarity is calculated by:

1 − da,b(i, j)
max(|a|, |b|)

where |a| represents the length of string a, and |b| represents the
length of string b.

After generating the similarity matrix between the two lists of
terms, we check each row (a term from the set A) and take the
highest score with the term as the most similar term. Therefore,
we generate a list of pairwise term-to-term similarities. Finally, we
use the default or customized similarity cutoff to filter low similar
term-to-term pairs.

Apply Louvain Clustering in m-Type
PAG-To-PAG Networks to Identify PAG
Communities
We apply the Louvain clustering function in the igraph library in
R (https://cran.r-project.org/web/packages/igraph/index.html) to
find the community structure in m-type PAG-to-PAG networks.
The Louvain clustering is based on the modularity in a scale
between -0.5 (non-modular clustering) to 1 (fully modular
clustering) described in the paper (Blondel et al., 2008).

Extract the Critical Concepts From
Pathways and Show Them in Word-Clouds
We create bag-of-words from the space-separated PAG names to
present the frequently appearing words in each PAG for any
enriched PAG set. We create word corpus, remove the potential
punctuation such as comma, colon, etc., make all the words lower
case, remove both irrelevant words and common words,
“pathway,” “signaling,” “human,” “homo,” “sapiens,” “has,”
“or,” and “and”. Finally, we apply wordcloud2 function in the
wordcloud2 library in R (https://cran.r-project.org/web/
packages/wordcloud2/index.html) for the visualization.

FIGURE 1 | The PAGER Web APP data analysis workflow. The workflow consists of four steps with visualization panels to help biologists quickly understand the
results.
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Implementing the Software
The PAGER Web Application user interface is designed using
bs4Dash (https://cran.r-project.org/web/packages/bs4Dash/
index.html) package in R. The application is supported by R
Shiny (https://shiny.rstudio.com/) framework. In addition to data
processing and statistical analysis, GNPA Analysis are
implemented using PAGER API, EnrichR API and
WebGestaltR API. Graphing libraries like Plotly (https://plotly.
com/r/), igraph in R (https://igraph.org/r/), ggplot2, wordcloud2,
and VennDiagram have been used.

Prepare the Melanoma Drug
Resistant-Sensitive Data From cBioPortal
We downloaded the melanoma dataset of 64 patient samples
from cBioPortal, and it was initially published in a paper in the
New England Journal of Medicine (Snyder et al., 2014). We
identified a cohort from the patients who are in the metastasis
stage (m1c) with Neuroblastoma RAS Viral Oncogene Homolog
(NRAS gene) or/and v-Raf murine sarcoma viral oncogene
homolog B (BRAF gene) mutations. Hence, we obtained three
drug response patients, two drug weakly response patients and
seven non-response patients. We applied the DEseq2 library in R
(https://bioconductor.org/packages/release/bioc/html/DESeq2.
html) to generate the differentially expressed genes that
compared drug-resistant patients to drug-sensitive patients.
The output file is stored in the PAGER Web APP as a demo.

Prepare the Multiple Sclerosis Data From
the EMBL-EBI Database
We loaded the differentially expressed gene table, “extdata/
E-GEOD-21942.topTable.RData”, preprocessed in the
ROntoTools library (Ansari et al., 2016). This dataset contains
a genome-wide array expression study in peripheral blood
mononuclear cells (PBMC) from 12 multiple sclerosis (MS)
patients and 15 controls (Kemppinen et al., 2011). We selected
differentially expressed genes using adjusted p-value ≤ 0.01 (2,864
genes) and saved their fold changes as input of ROntoTools. We
set the adjusted p-value ≤ 0.01 and the absolute logFC >0.5 to get
the 1,470 candidate genes as the input of PAGER, EnrichR and
WebGestaltR.

Prepare the Colonic Mucosa Data From the
EMBL-EBI Database
We downloaded the transcription profiling by array of RNA from
inflamed and non-inflamed colonic mucosa (E-MTAB-2967). In
Crohn’s disease, there are 15 inflamed colonic mucosa and 15
controls. In ulcerative colitis, there are 14 inflamed colonic
mucosa and 14 controls. We performed the normalization and
linear regression using the limma library in R (https://
bioconductor.org/packages/release/bioc/html/limma.html). We
set the cutoffs of adjusted p-value ≤ 0.05 and the absolute
logFC >0.5 to get the 518 candidate genes in Crohn’s disease
and the 528 candidate genes in the ulcerative colitis study.

Validation of Pathways Using the
Co-citations in PubMed Literature
To demonstrate the significance of the keywords in pathways
related to a disease, we applied a co-citation enrichment analysis
using the hypergeometric test and odds ratio. We applied the
NCBI e-utils application programming interface (API) that
implements semantic searches of PubMed abstracts to report
biomedical literature citations (Sayers, 2008). We implied that the
likelihood of observing articles co-mentioning disease names and
the keywords from pathways is statistically higher than random
using the PubMed score (Yue et al., 2019a). In this study, the
background citations using the word “disease” denoted as N, the
citations of the specific disease using the word “melanoma”
represented as K, the citations of the keywords from a
pathway denoted as n, and the joint citations of “melanoma”
and the keywords from a pathway represented as k. We
performed the co-citation enrichment analysis to generate
PubMed score using the formula:

PubMed score � −ln
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ∑min(n,K)

t�k

(K
t
)(N −K

n − t
)

(N
n
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We calculated the odds ratio based on the formula
k/(K−k)

(n−k)/(N−K−n+k). We also manually checked the contents and
subsequently confirmed them using the PubTator annotation
API (Wei et al., 2019; Wei et al., 2013), i.e., https://www.ncbi.nlm.
nih.gov/research/pubtator-api/publications/export/pubtator?
pmids=[PMID]. We took a sample list of PubMed IDs from each
retrieved entry. To remove biases and further confirm the
mentioned keywords, we applied the analysis described in the
previously developed tool called biomedical entity expansion
ranking and exploration (BEERE) (Yue et al., 2019b) to extract
those semantic relationships that co-mention “melanoma” and
the pathways’ keywords.

To evaluate how well the method can identify “correct”
pathways, we introduced a new hybrid validation technique. It
involves first defining the ground truth and subsequently
developing a statistical model to assess the significance of results
retrieved using a receiver operating characteristics (ROC) curve
and the area-under-the-curve (AUC) value. The hybrid technique
also includes performing a literature co-citation-based assessment.
We constructed the ground truth using ROntoTools, the best
performing method reported in the review paper (Nguyen et al.,
2019), in three steps. Firstly, we took the candidate genes from the
differential expression analysis using the adjusted p-value cutoff
0.05 and the absolute gene’s log fold-changes larger than or equal to
0.5. Secondly, we performed pathway enrichment analysis using
the ROntoTools. Thirdly, we defined the “true” data set as the
significantly enriched pathways with adjusted combined p-values ≤
0.05 (combined p-values were generated by the function
“comb.pv.func” (Kemppinen et al., 2011) in ROntoTools) and
the “false” data set as the retrieved pathways with adjusted
combined p-values > 0.05 but with at least one gene
overlapping with the input gene list.
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In the literature co-citation validation, we developed a t-test
based statistical model on evaluating how significant the p-value
ranked pathways can be supported by the PubMed scores.
Particularly, we ranked the PAGs based on adjusted p-values,
and compared the top n% PAGs’ PubMed scores to the bottom
(100-n)% PAGs’ PubMed scores for each method, where n ranges
from 10 to 90 with a step increment of 10. And then, we reported
their average p-values, respectively. The smaller p-values are, the
better performance the methods have.

RESULTS

Comparison of Data Coverage and Features
Among the Three Web Servers
Compared to EnrichR and WebGestalt, PAGER progresses the
network interpretation of functional genomics results. Although
there are 35 unique geneset libraries reported in most updated
PAGER, which are less than EnrichR, each of PAG in PAGER
contains metadata other than EnrichR andWebGestalt, including
PAG-type (pathways, annotated gene lists and gene signatures),
PAG descriptions, source link, publication reference, curator, and
nCoCo score (described in PAGER 2.0). In addition, PAGER
provides geneset intra-network views, including the protein-
protein interaction network and gene-gene regulation network
members in each geneset, while WebGestalt reports pathway
maps in wikiPathway source only. For the geneset’s inter-
network, WebGestalt inherits the Gene Ontology (GO)
hieratical structure from the GO consortium. We extent the
relationship concepts by introducing m-type (co-membership)
PAG-to-PAG relationships and r-type (regulatory) PAG-to-PAG
relationships described in PAGER. The m-type PAG-to-PAG
relationships represent co-memberships between two PAGs,
which reveals signaling cross-talk between PAGs that share
signaling components within signal transduction pathways in
response to external stimuli. The r-type PAG-to-PAG
relationships represent the PAG causal ordering inferred from
gene-to-gene regulations by adapting our method previously
described in PAGER (Yue et al., 2018). The PAGER Web APP
fulfills all the additional features in Table 1, such as term
searching and API service.

Melanoma Drug Resistant-Sensitive
Patients Enriched Pathway Case Study in
Demo
To better identify the cohorts in melanoma cancer to improve the
treatment, functional genomics has been applied to the next-
generation sequencing data for an in-depth understanding of the
molecular mechanisms in the drug resistance cases. We collected
the transcriptomes from the cBioPortal database in this study. In
the result, we found 164 P-type PAGs (pathways) to be
significantly enriched.

In the 164 P-type PAGs, they are two PAGs that are derived
from more than one data source, i.e., “PI3K-Akt signaling
pathway” and “Bladder cancer”, each of which is
simultaneously recorded in both “WikiPathway_2021” and
“KEGG_2021_HUMAN” data sources. Compared to the
results from EnrichR and WebGestaltR, PAGER had the
greatest number of enriched pathways, which is 164, EnrichR
has 98, and WebGestaltR has 52 (Figure 2A). PAGER also had
the greatest number of unique pathways, which is 101 (48%). We
found 33 (16%) overlapped pathways among the three tools. In
addition, 23 (11%) pathways were shared between PAGER and
EnrichR, 5 (2.4%) pathways were shared between PAGER and
WebGestaltR, and 6 (2.8%) pathways were shared between
EnrichR and WebgestaltR.

In the 164 P-type PAGs reported by PAGER, there were 4
major sources and 1 minor source (Figure 2B). 50 (30.5%) are
from wikiPathway, 46 (28%) are from Reactome, 37 (22.6%) are
from Protein Lounge, 28 (17.1%) are from KEGG, and 3 (1.83%)
are from Spike. We showed the top-30 enriched P-type PAGs
colored by the sources in the horizontal bar-plot in Figure 2C,
and the details of the enriched PAGs are in Supplementary
Table S1.

Critical Terms Extraction From the Louvain
Clustered PAGs in them-Type PAG-To-PAG
Networks
The 164 P-type PAGs form a densely connected m-type PAG-
to-PAG network (2,749 m-type PAG-to-PAG relationships)
with an average degree of 18. After the community detection
using Louvain clustering, we found 5 PAG clusters in the m-type

TABLE 1 | A comparison of data coverage and features among PAGER, EnrichR, and WebGestalt web servers.

Webserver PAGER EnrichR Webgestalt

Data coverage (Human) Unique library 35 89 22
Metadata Yes Partial Partial
Gene prioritization Yes No No

Geneset intra-network Interactions Yes No Partial
Regulations Yes No Partial

Geneset inter-network m-type (co-membership) Yes Partial Partial
r-type (regulatory) Yes No No

Additional feature Term searching Yes Yes No
API Yes Yes Yes
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PAG-to-PAG network (Figure 3). The extracted concepts reveal
the general pathway functions in the clusters. Cluster 1 consists
of 3 pathways with represented terms “FAM20C” protein

(Golgi-associated secretory pathway kinase), “IGF” protein
(insulin-like growth factor). Cluster 2 has 7 pathways related
to the Gi-activating and ligand-receptor bindings. Cluster 3 is

FIGURE 2 | The enriched pathway results for melanoma drug resistant-sensitive patients. (A) The consensus pathways among PAGER, EnrichR andWebGestaltR
results. (B) The composition of P-type PAGs enriched in PAGER. (C) The top-30 enriched P-type PAGs are ordered by FDR in PAGER.

FIGURE 3 | The m-type PAG-to-PAG network of enriched P-type PAGs in PAGER for melanoma drug resistant-sensitive patients. (A) The m-type PAG-to-PAG
network overview and (B) The extracted word clouds from the Louvain clusters in the network.
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formed by 43 pathways related to collagen formation and
binding events. Cluster 4 has 37 pathways related to
inflammasome responses in cancer or infection. Cluster 5
contains 66 pathways with the regulation of several

inflammatory and cytokine responses through the receptor
interactions. Hence, PAGER Web APP enables screening for
the critical terms and quickly identifying the specific molecular
mechanism communities in the m-type PAG-to-PAG network.

TABLE 2 | The 33 consensus pathways among PAGER, EnrichR, andWebGestaltR results with PubMed literature support. W vs. P represents the term similarities between
WebGestaltR and PAGER results. P vs. E represents the term similarities between PAGER and EnrichR results. W vs. E represents the term similarities between
WebGestaltR and EnrichR. k represents the citations of “melanoma” and the keywords from a pathway. OR represents the odds ratio. Score represents the
PubMed score. PMID represents one PubMed ID example from each entry. BEERE validation represents the semantic relationships retrieved. 1 stands for Yes, and 0
stands for No. All these abbreviations are applied to Table 3 and Table 4.

Term W
vs.
P
(%)

P vs.
E
(%)

W
vs.
E
(%)

Keywords k OR Score PMID BEERE
validation

Photodynamic therapy-induced ap-1 survival
signaling.

100 100 100 Photodynamic therapy 1,076 1.150 1.20E+01 31378787 1

mir-509-3p alteration of yap1/ecm axis 100 100 100 mir-509-3p 3 2.376 1.94E+00 33968718 1
Transcriptional misregulation in cancer 100 100 100 Transcriptional misregulation in

cancer
10 1.261 1.27E+00 32079144 1

Photodynamic therapy-induced nf-kb survival
signaling

100 100 100 Photodynamic, nf-kb 2 1.261 7.40E-01 16524427 1

Apoptosis-related network due to altered notch3 in
ovarian cancer

100 100 100 Notch3 ovarian cancer 2 1.154 6.49E-01 28165469 1

Senescence and autophagy in cancer 100 100 100 Senescence and autophagy in
cancer

35 0.722 1.97E-02 12789281 1

Focal adhesion: pi3k-akt-mtor-signaling pathway 96 96 100 pi3k-akt-mtor-signaling pathway 36 0.699 1.04E-02 31370278 0
Cytokine-cytokine receptor interaction 100 100 100 Cytokine-cytokine receptor 14 0.442 1.72E-04 34824546 1
il-18 signaling pathway 100 100 100 il-18 pathway 25 0.482 1.54E-05 31731729 1
Mirna targets in ecm and membrane receptors 100 100 100 mirna membrane receptors 2 0.104 1.22E-07 34680340 0
c-type lectin receptor signaling pathway 100 100 100 c-type lectin receptor signaling

pathway
28 0.360 4.03E-11 29497419 1

Nod-like receptor signaling pathway 100 100 100 Nod-like receptor signaling
pathway

50 0.394 5.13E-15 34747716 0

il-17 signaling pathway 100 100 100 il-17 pathway 20 0.215 2.80E-20 30079767 1
Protein digestion and absorption 100 100 100 Protein digestion and absorption 5 0.062 4.10E-29 30900145 0
Assembly of collagen fibrils and other multimeric
structures

100 100 100 Collagen assembly 13 0.126 2.30E-29 29216889 1

Bladder cancer 100 100 100 Bladder cancer 1815 0.708 6.34E-53 35059301 1
Class a/1 (rhodopsin-like receptors) 100 100 100 Adenosine a1 receptor 10 0.056 8.79E-63 8463264 1
Legionellosis 100 100 100 Legionellosis 1 0.006 7.10E-77 17870669 0
Prostaglandin synthesis and regulation 100 100 100 Prostaglandin synthesis and

regulation
75 0.162 5.42E-

110
3149408 1

Response to elevated platelet cytosolic ca2+ 100 100 100 Platelet, calcium 44 0.105 1.95E-
120

32562975 1

Hepatitis c and hepatocellular carcinoma 100 100 100 Hepatitis c and hepatocellular
carcinoma

20 0.054 4.73E-
127

31538700 0

Interleukin-6 family signaling 100 100 100 il-6 signaling pathway 170 0.237 2.42E-
131

22713796 1

tnf signaling pathway 100 100 100 tnf signaling pathway 246 0.260 1.65E-
159

30591049 1

Inflammatory response pathway 100 100 100 Inflammatory response pathway 123 0.173 2.30E-
161

32517213 1

Amoebiasis 100 100 100 Amoebiasis 5 0.012 2.14E-
177

31173190 0

Pertussis 100 100 100 Pertussis 83 0.083 1.46E-
303

23737697 1

Cytokines and inflammatory response 100 100 100 Cytokines, inflammatory
response

559 0.212 0.00E+00 31176707 0

Lung fibrosis 100 100 100 Lung fibrosis 118 0.057 0.00E+00 31249780 1
Malaria 100 100 100 Malaria 137 0.044 0.00E+00 14657217 1
Micrornas in cancer 100 100 100 Micrornas 1,211 0.342 0.00E+00 28118616 1
Rheumatoid arthritis 100 100 100 Rheumatoid arthritis 357 0.074 0.00E+00 27307502 0
salmonella infection 100 100 100 salmonella 168 0.057 0.00E+00 11773163 0
Spinal cord injury 100 100 100 Spinal cord injury 82 0.034 0.00E+00 30008656 0
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Validation of the Enriched Pathways Using
Literature Support in the Melanoma Drug
Resistant-Sensitive Study
We found all of them relevant to melanoma cancer for the 33
consensus pathways among PAGER, EnrichR, and WebGestaltR
results. We listed the results using pathway name, the pairwise
term similarities, keywords used for co-citation retrieval, number
of co-citations, odds ratio, PubMed score, one of PubMed IDs, and
BEERE validation (in Table 2; Supplementary Table S2). All the
pathways were determined to be related to Melanoma with

PubMed literature support. For the 23 consensus pathways
between PAGER and EnrichR results, we found that all of them
have at least one literature support (Table 3). We showed all the
BEERE-identified semantic relationships in Supplementary Table
S3. We found that all the 5 consensus pathways between PAGER
and WebGestaltR results to be supported by PubMed literature
citations, and we ranked them based on the PubMed score
(Table 4; Supplementary Table S4). Each of the six consensus
pathways between EnrichR and WebGestaltR also had at least one
literature citation support (Supplementary Table S5).

TABLE 3 | The 23 consensus pathways between PAGER, EnrichR results with PubMed literature support.

Term P vs.
E (%)

Keywords k OR Score PMID BEERE
validation

axl signaling pathway 86 axl signaling 45 1.533 5.30E+00 31871265 0
g alpha (i) signaling events 97 g protein alpha signaling events 15 0.699 6.33E-02 33588787 1
Vitamin d receptor pathway 100 Vitamin d receptor pathway 23 0.734 5.49E-02 28218743 0
Age-rage signaling pathway in diabetic
complications

100 Age-rage signaling pathway, diabetes 1 0.200 7.12E-03 25909054 0

Activation of nlrp3 inflammasome by sars-cov-2 100 Viral protein interaction, cytokine receptor 154 0.580 8.48E-14 26920710 0
Viral protein interaction with cytokine and cytokine
receptor

100 nlrp3 inflammasome 14 0.225 6.84E-14 33649199 1

pi3k-akt signaling pathway 100 pi3k-akt signaling pathway 475 0.693 2.33E-17 22453015 0
Jak-stat signaling pathway 100 Jak-stat signaling pathway 103 0.478 1.39E-17 32194688 0
Kaposi sarcoma-associated herpesvirus infection 100 Kaposi sarcoma-associated herpesvirus

infection
12 0.085 2.15E-45 16443048 0

Proteoglycans in cancer 100 Proteoglycans 766 0.554 8.83E-72 31140988 0
Hematopoietic cell lineage 100 Hematopoietic cell lineage 63 0.130 3.82E-

128
26391013 0

Adipogenesis 100 Adipogenesis 25 0.060 1.48E-
139

27216185 0

nf-kappa b signaling pathway 100 nf-kappa b signaling 432 0.341 1.46E-
158

22433222 1

Glucocorticoid receptor pathway 100 Glucocorticoid receptor 131 0.168 1.91E-
179

31911848 1

Gastrin signaling pathway 100 Gastrin 23 0.034 3.80E-
246

1,6242076 1

Allograft rejection 100 Allograft rejection 76 0.081 2.85E-
288

26951628 0

Human papillomavirus infection 100 Papillomavirus 405 0.237 6.17E-
308

10767787 1

Selenium micronutrient network 100 Selenium 129 0.112 2.82e-
318

23470450 1

Nanomaterial-induced inflammasome activation 100 Nanotechnology 563 0.160 0.00E+00 28303522 0
Covid-19 adverse outcome pathway 100 Covid-19 289 0.043 0.00E+00 32734626 0
Pathogenic Escherichia coli infection 100 Escherichia coli 431 0.033 0.00E+00 34912719 0
Lipid and atherosclerosis 100 Lipid, atherosclerosis 21 0.012 0.00E+00 29903879 1
Human cytomegalovirus infection 100 Cytomegalovirus 195 0.125 0.00E+00 15922119 1

TABLE 4 | The 5 consensus pathways between PAGER, WebGestaltR results with PubMed literature support.

Term W vs. P (%) Keywords k OR Score PMID BEERE validation

Binding and uptake of ligands by scavenger receptors 100 Ligands, scavenger receptors 12 0.398 6.77E-05 31244937 0
Interleukin-4 and interleukin-13 signaling 100 Interleukin-4, interleukin-13 9 0.114 5.68E-24 23972995 1
Collagen chain trimerization 100 Collagen chain 153 0.257 4.14E-

102
21853302 0

Interleukin-10 signaling 100 Interleukin-10 349 0.332 1.05E-
136

7852279 1

Post-translational protein phosphorylation 100 Protein phosphorylation 2,850 0.301 0 17973544 0
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We ranked the pathways based on the PubMed score (Yue
et al., 2019a). As reported the highest PubMed score in Table 2,
the photodynamic therapy has been frequently reported for
melanoma treatment in recent years (Shivashankarappa and

Sanjay, 2019; Turkoglu et al., 2019; Abramova et al., 2021;
Yordi et al., 2021). We observed that in the overlapped genes
between differentially expressed gene candidates and the
photodynamic therapy-induced ap-1 survival signaling’s gene

FIGURE 4 | The top-ranked enriched pathways using the PubMed score and the expression of those overlapped genes with gene regulatory networks for
melanoma drug resistant-sensitive patients. In the box plots, the x-axis are the overlapped genes between differentially expressed gene candidates and pathway gene
members, and the y-axis are the gene expression values. In the gene regulatory networks, a red arrow indicates the direction of activation, and a green arrow indicates
the direction of inhibition. WAG002532 and WAG002805 are the PAG IDs of the enriched pathways shown in (A) The pathway with the highest PubMed score in
Table 2, and (B) one of the PubMed literature validated pathways in Table 3. The details of pathways shown can be retrieved online from: http://discovery.informatics.
uab.edu/PAGER/index.php/geneset/view/[PAG ID].

TABLE 5 | The performance of the three tools. k represents the citations of “melanoma” and the keywords from a pathway.OR represents the odds ratio. Score represents
the PubMed score.

Tool Precision

k > 0 OR > 0.1 score > 10e-5

PAGER 0.95 0.75 0.30
EnrichR 0.89 0.65 0.29
WebGestalt 0.99 0.70 0.24
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members, the five genes, IL6 (Interleukin 6), CDKN1A (Cyclin
Dependent Kinase Inhibitor 1A), FGF7 (Fibroblast Growth
Factor 7), BCL3 (B-Cell Lymphoma 3-Encoded Protein) and

PDGFRA (Platelet Derived Growth Factor Receptor Alpha) were
under-expressed in the drug-resistant patients, and the three
genes, IL6, CDKN1A and FGF7 were connected in the gene

FIGURE 5 | The performance comparisons among PAGER, EnrichrR and WebGestaltR using Receiver Operator Characteristic (ROC) curve and the t-test curve.
The pathways’ adjusted p-values were applied to generate the ROC curves. The PubMed scores were used for the t-test curve. (A) The sclerosis study (E-GEOD-
21942). (B) The inflamed colonic mucosa vs. non-inflamed colonic mucosa in Crohn’s disease study. (C) The inflamed colonic mucosa vs. non-inflamed colonic mucosa
in the ulcerative colitis study.
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regulatory network from PAGER (de Waal Malefyt et al., 1991)
(Figure 4). The pathway, “pi3k-akt signaling pathway” in
Table 3, contained twelve overlapped genes. Similarly, among
the under-expressed genes, the six genes, IL6 (Interleukin 6),
CDKN1A (Cyclin Dependent Kinase Inhibitor 1A), FGF7
(Fibroblast Growth Factor 7), OSM (Oncostatin M), COL1A1
(Collagen Type I Alpha 1 Chain) and COL1A2 (Collagen Type I
Alpha 2 Chain) were connected in the gene regulatory network
(Figure 4). OSM gene is upstream and stimulates the other five
genes. Since OSM is an interleukin-6 (IL-6) type cytokine to
inhibit melanoma proliferation, the loss of OSM gene expression
in drug-resistant patients may inhibit the activity of collagen
biosynthesis and interleukin-6 family signaling. Lacreusette A
et al. (Lacreusette et al., 2007) reported that the histone
deacetylase inhibitor (HDACi) Trichostatin A (TSA), increased
OSM protein activity and histone acetylation of the OSM
receptor-beta (OSMRbeta) promoter as well as expression of
OSMRbeta mRNA and protein. Therefore, Trichostatin A
(TSA) allows the OSM protein to activate the signal
transducer and activator of transcription 3 (STAT3) and
inhibit proliferation. Thus, OSM/IL-6 resistance of melanoma
cells in the late-stage patients may benefit from histone
deacetylase inhibitor Trichostatin A.

Another intriguing pathway, the interleukin 10 (IL-10)
signaling pathway, reported in PAGER also shows how
literature supports its involvement in melanoma. IL-10’s role
in immune system biology is that it acts as an immunomodulator,
which means that it regulates how the immune system behaves
(Terai et al., 2012). Terai et al. found that metastatic melanoma
cells can produce IL-10 and that this product can prevent the
immune cells from attacking it (Terai et al., 2012). The group also
found that IL-6 may play a role in the stimulation of IL-10
production in melanoma cells (Terai et al., 2012). Thus, the
PAGER analysis can help give hints to researchers as far as
finding potential disease mechanisms is concerned.

We applied precision to measure the performance among the
three tools using different cutoffs (Table 5). To evaluate the co-
citation coverage in the literature, we tested the result’s precision
using different cutoffs. When we set the co-citation (k) cutoff to
be 1, PAGER’s precision is 0.95 as a little lower thanWebGestalt’s
precision is 0.99. When the odds ratio cutoff is set to be 0.1,
PAGER has the best precision, which is 0.75, and when the
PubMed score cutoff is set to be 10e-5, PAGER still leads, giving
precision to be 0.30.

Validation of the Enriched Pathways Using
the Topology-Based Method and Literature
Support in Multiple Sclerosis (MS), Colonic
Mucosa in Crohn’s Disease (CD), and
Ulcerative Colitis (UC) Studies
In the sclerosis study, we found 20 pathways in the true set and
203 pathways in the false set using ground truth discovered by the
topology-based method, ROntoTools (Figure 5A). The PAGER
led by giving the AUC 0.88, EnrichR came the next with AUC to
be 0.87, and the WebGestaltR’s AUC was 0.77. In the t-test curve,
We found PAGER had the lowest average p-value (0.318)

compared with ROntoTools (0.319), EnrichR (0.319) and
WebgestaltR (0.319). In the inflamed colonic mucosa vs. non-
inflamed colonic mucosa in Crohn’s disease study (Figure 5B),
we found 40 pathways in the true set and 161 pathways in the false
set. Both EnrichR and PAGER had the highest AUC of 0.98, and
the WebGestaltR’s AUC was 0.87. We found EnrichR had the
lowest average p-value (0.316) compared with ROntoTools
(0.317), PAGER (0.322) and WebgestaltR (0.322). In the
inflamed colonic mucosa vs. non-inflamed colonic mucosa in
the ulcerative colitis study (Figure 5C), we found 6 pathways in
the true set and 199 pathways in the false set. The EnrichR had the
highest AUC of 0.99, PAGER came the next with AUC to be 0.98,
and the WebGestaltR’s AUC was 0.85. We found PAGER and
EnrichR tied with the lowest average p-value (0.317) compared
with ROntoTools (0.321) and WebgestaltR (0.322). Overall,
PAGER was among the best.

DISCUSSION AND CONCLUSION

To summarize, we developed an interactive online functional
genomics analysis tool, PAGER Web APP. The tool can provide
new and significant insights into functional genomics studies and
may support precision medicine in delivering the candidate
targets. In the melanoma drug-resistant-sensitive case study,
we observed that the P-type PAGs (pathways) reported in
PAGER lead to insights into molecular mechanisms validated
in literature support. PAGER web server supports the feature of
r-type PAG-to-PAG network generation.

There are two potential explanations for the differences in the
enrichment results among the three tools. First, we noticed that the
database versions might vary. As reported in the EnrichR and
PAGERWeb APP, the KEGG data was processed in 2021, and the
WebgestaltR’s KEGG data was processed in 2018. Newer database
processing time may suggest more freshly updated content of
databases—variability that we couldn’t control in this case
study. Second, the enrichment algorithms used in these three
tools are different. PAGER adapts hypergeometric test to
perform the enrichment analysis and applies adjusted p-value
using p0p (m + npi ≤p0 − 1), where p0 is the original p-value,
m is the number of p-value’s multiple tests from the PAGs under
the constraints of PAG source, overlaps, PAG size, and similarity
score, and the npi ≤p0 is the number of p-values in the multiple test
that has less than or equal to the original p-value. EnrichR uses
fuzzy enrichment analysis, and applies Benjamini–Hochberg for
FDR, according to the documentation online. The WebgestaltR
uses hypergeometric test to evaluate the significance of enrichment
and uses Bonferroni for p-value adjustment. To construct the
ground truth in assessing the performance of functional
genomics analysis tools, many data-driven approaches can be
applied, such as target pathway (Tarca et al., 2012; Tarca et al.,
2013) or gene knockout (KO) dataset (Nguyen et al., 2019). In the
target pathway approach, the datasets from diseases have a
pathway describing the underlying mechanisms, and hence this
pathway is implicated in this phenotype. Therefore, a pathway
analysis method is assessed based on the ranking and significance
of these target pathways. We explored the feasibility of using either
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pathway ground truth or gene knockout (KO) data sets for our case
study, i.e., the study of late-stage drug-resistant melanoma.
However, we could not find “target pathway” (Tarca et al.,
2012; Tarca et al., 2013) as ground truth or pathways that are
not directly related to the dataset to build all the counts in a
confusion table. For genes discovered in the enriched pathway, the
“pi3k-akt signaling pathway”, we didn’t find any OSM gene-KO
Melanoma dataset in the GEO database. We also could not use
non-melanoma KO experiments for fear of introducing additional
noises. Thus, we used BEERE to extract those semantic
relationships that co-mention melanoma and the pathways’
keywords with a statistical evaluation to assess the
statistical significance of the PubMed literature reference count
above a random model. As for NCBI e-utils literature retrieval, we
also applied the PubMed score to evaluate the statistical
significance of the literature counts to conquer the literature
volume and breadth.

In the future, we expect to implement features to enhance the
usage of PAGER Web APP, which can be plugged in geneset,
network, and pathway analysis (GNPA) to improve the use. In
the current version, we observed that the user interface, especially, in
the enriched results, the enriched PAGs’ result is not that interactive
enough for users to select a certain number of PAGs or arbitrarily
remove some of the records to generate PAG-to-PAG networks. We
will implement the interactive panels in the future release. PAGER
Web APP calls the PAGER API, which implements an over-
representation analysis (ORA) technique by default. In general,
advanced functional class scoring (FCS) techniques, e.g., Gene Set
Enrichment Analysis (GSEA) (Subramanian et al., 2005), Gene Set
Analysis (GSA) (Efron and Tibshirani, 2007) and Pathway Analysis
with Down-weighting of Overlapping Genes (PADOG) (Tarca et al.,
2012), can better detect the significant effects on pathways led by
large changes in individual genes and the weaker coordinated. Other
pathway analysis tools may also incorporate network topology
information to integrate signaling interactions among genes in a
pathway, e.g., Pathway-Express (Khatri et al., 2007), SPIA (Tarca
et al., 2009), Pathway-Guide (Advaita Bioinformatics, http://www.
advaitabio.com), TopoGSA (Glaab et al., 2010), Bayesian Pathway
Analysis (BPA) (Isci et al., 2011), and PathNet (Dutta et al., 2012),
etc. We plan to implement additional advanced topology-based
pathwayGSEA analysis techniques into the PAGERAPIs, and adopt
comprehensive benchmark data sets (Tarca et al., 2012; Tarca et al.,
2013; Nguyen et al., 2019) to guide users in selecting the proper
method for the right application scenario in future releases. Thus,
PAGER Web APP will offer users more expanded analysis choices
than today.
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