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Integrating genome-wide association studies (GWAS) with transcriptomic data, human
complex traits and diseases have been linked to relevant tissues and cell types using
different methods. However, different results from these methods generated confusion
while no gold standard is currently accepted, making it difficult to evaluate the discoveries.
Here, applying three methods on the same data source, we estimated the sensitivity and
specificity of these methods in the absence of a gold standard. We established a more
specific tissue-trait association atlas by combining the information captured by different
methods. Our triangulation strategy improves the performance of existing methods in
establishing tissue-trait associations. The results provide better etiological and functional
insights for the tissues underlying different human complex traits and diseases.
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1 INTRODUCTION

Establishing associations between human complex traits and tissues or cell types is essential in
current genetics and biology. It provides useful etiological and functional insights for understanding
the regulatory mechanisms underlying complex traits and diseases and subsequently directs the
clinical research and even treatment. However, one can hardly answer such a question systematically
by traditional experimental designs.

Genome-wide association studies (GWAS) produced a tremendous amount of summary
association data describing the associations between millions of single-nucleotide
polymorphisms (SNPs) and various phenotypes. On the other hand, RNA-sequencing
(RNA-seq) technology has generated high-throughput gene expression data not only in
different tissues (Lonsdale et al., 2013) but also at the single-cell level (Jaitin et al., 2014;
Habib et al., 2017). With these resources, we now have a chance to link particular tissues or cell
types to a complex trait by investigating the genes that have coherent effects at the expression
level and on the trait. This serves as a general approach that tackles the topic via genome-wide
architecture.

Several methods have been proposed in recent years, prioritizing trait-relevant tissues or cell types
(Trynka et al., 2013; Slowikowski et al., 2014; Calderon et al., 2017; Ongen et al., 2017; Finucane et al.,
2018; Shang et al., 2020; Zhu et al., 2021). Most of these methods try to uncover this problem by
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identifying genes that are specifically expressed in certain tissues
or cell types and, at the same time, regulate the trait according to
GWAS (Slowikowski et al., 2014; Calderon et al., 2017; Finucane
et al., 2018; Shang et al., 2020). Genotype-Tissue Expression
(GTEx) consortium used tissue-specific expression quantitative
trait loci (eQTL) data instead of using gene expression data
directly, trying to establish eQTL-based associations between
tissues and traits (Ongen et al., 2017).

Regardless of these available methods, this is a typical
discovery problem where a yes/no inference needs to be made
for each test. Normally with the same null hypothesis, applying
different methods to the same data produces similar answers as
the statistical power is similar. However, for the tissue-trait
association problem, the different methods developed are
sometimes distinct not only in their setup but also in
producing distinct discoveries. For example, Calderon et al.
(2017) detected that total cholesterol (TC) was associated with
liver (p = 2 × 10–4), small intestine (p = 0.01), spleen (p = 0.04),
and adrenal gland (p = 0.05), supported by, e.g., the nutrient
absorption function of the small intestine and the link between
spleen and lipid metabolism (Fatouros et al., 1995; Ai et al., 2018).
While in Ongen et al. (2017)’s study, the top 5 enriched tissues for
TC were liver (p = 2.05 × 10–13), pancreas (p = 3.83 × 10–13),
thyroid (p = 9.85 × 10–13), uterus (p = 1.23 × 10–8), and small
intestine (p = 5.59, ×, 10–9). Most tissues’ p-values were lower
than 0.05, but the spleen was ranked 19/44 and the adrenal gland
21/44. Their results were quite different from those by Cameron
et al. (1974) but claimed to be supported by traditional medical
evidence (Pucci et al., 2000). Who to trust? Intuitively we now
seem to have more confidence in the cholesterol-liver and
cholesterol-intestine associations. Different assumptions or
setups may capture different biological natures, but it could
also be limited power that makes their results not agree well.
Thus, to see the general picture, we need to systematically
evaluate the associations between complex traits and tissues,
making use of these available distinct methods to gain more
information. This requires assessing the operating
characteristics of different methods, which is impossible to
do conventionally as a gold standard for each tissue-trait
association is mostly absent.

In fact, for three or more distinct methods testing the same
set of null hypotheses, the sensitivity and specificity of each
method can be estimated without any gold standard (Pepe and
Janes, 2007), as long as the methods are conditionally
independent (distinct enough, e.g., with distinct assumptions
or modelling logic). Thus, based on the estimated operating
characteristics, one can combine information captured by
different kinds of methods testing tissue-trait associations,
since none of the methods could capture the full information
of the underlying biology.

Here, we aim to integrate the results from different methods to
better investigate the tissue-trait association problem. We
approach this by: 1) applying three distinct methods on the
same set of tissue-trait pairs; 2) conducting maximum
likelihood estimation of the sensitivity and specificity of each
method in the absence of a gold standard; 3) subsequently

combining the results from these methods to generate a more
credible tissue-trait association atlas.

2 MATERIALS AND METHODS

2.1 Estimation of Operating Characteristics
and Prevalence
Let random variable Ai represent the unobservable true
association status for the i-th pair of tissue and trait, where Ai

= 1 represents associated, andAi = 0 unassociated. In ourmodel, ρ
= P (Ai = 1) is the same for any given i, so without losing
generality, we use A to denote Ai. Given a particular set of
significance thresholds for K binary tests of the status of A, we
have K random variables Y1, . . . , YK, for each of i = 1, . . . , n pairs
of tissues and traits. Writing the true- and false-positive rates of
the K binary tests as ϕk = P(Yik = 1|A = 1) and ψk = P(Yik = 1|A =
0), respectively, the unknown parameters are the prevalence of
tissue-trait association ρ = P (A = 1) and θ = (ϕk, ψk), k = 1, . . . , K.
With KP3 observed tests, ρ and θ can be estimated by
maximizing the likelihood function

L θ, ρ( ) � ∏
n

i�1
ρPθ Yi1, . . . , YiK|A � 1( ) + 1 − ρ( ){

Pθ Yi1, . . . , YiK|A � 0( )}. (1)
As the available degrees of freedom, 2K − 1, is no less than the
number of parameters, 2K + 1. Assuming conditional
independence of the K binary tests, i.e., given A and the
outcome of any test Yi, one cannot predict the outcomes of
the other tests, we have

L θ, ρ( ) � ∏
n

i�1
ρ∏

K

k�1
Pθ Yik|A � 1( ) + 1 − ρ( )∏

K

k�1
Pθ Yik|A � 0( )⎧⎨

⎩
⎫⎬
⎭.

(2)
For various p-value thresholds for different tissue-trait
association test methods, we used quasi-Newton method for
optimization to solve the above maximum likelihood problem.
We bootstrapped the observed binary data to assess the variation
of the estimates. In this article, we repeated the bootstrap
procedure for 99 times. Our implementation is publicly
available as an R package (see Code Availability), which can
assess three or more methods simultaneously. For the scenario of
three methods, the maximum likelihood estimates (MLE) of the
parameters can be derived analytically (Pepe and Janes, 2007) (see
Supplementary Appendix).

For a particular p-value threshold, with the estimated
operating characteristics, we used the estimated specificity ψk′ �
1 − ψk as weights to highlight the methods with high specificity.
We derived a tissue-trait association specificity score to evaluate
the associations. The score sums up the estimated specificity of
the methods that gave a positive signal to a particular tissue-trait
association, divided by the sum of specificity across all the
methods:
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Si � ∑K
k�1 Yikψk′( )
∑K

k�1ψk′
. (3)

The K variables Yi1, . . . , YiK, for each of i = 1, . . . , n pairs of
tissues and traits, are the binary results across Kmethods under a
particular significance threshold. The score is ranged from 0 to 1,
and the higher the score, the higher confidence of the association.

As operating characteristics were estimated, the false discovery
rate (FDR) for each method can be subsequently calculated as ψk
(1 − ρ)/(ψk (1 − ρ) + ϕkρ). Then, corresponding to Si, the FDR for
the i-th tissue-trait pair could be calculated to quantify the
confidence of the association:

FDRi �
∏
k

I Yik � 1( )ψk 1 − ρ( ) + I Yik � 0( )ψk′ 1 − ρ( )[ ]
∏
k

I Yik � 1( )ψk 1 − ρ( ) + I Yik � 0( )ψk′ 1 − ρ( )[ ] +∏
k

I Yik � 1( )ϕkρ + I Yik � 0( )ϕk′ρ[ ],

(4)

where ϕk′ � 1 − ϕk. With the calculated FDRi, the overall FDR
across all the tissue-trait pairs could be assessed by

∑n+
i�1 ωiFDRi( )
∑n+

i�1ωi
, (5)

where ωi � φ−1(rankSi > 0(Si)) + 1 and n+ = ∑iI(Si > 0), so that
methods with high/low FDR are down-/up-weighted. φ−1 (rank
(·)) stands for standard inverse-Gaussian transformation. ∑n+

i�1ωi

is the number of significant discoveries of our combined results.

2.2 Simulation
We set the true prevalence ρ = P (A = 1) while A indicate the true
association status between traits and tissues. For each method, we
gave the number of tests n = 1,000, 10,000, 100,000 and assigned
0–1 values to Yi, i = 1, . . . , n representing the binary test results.
We gave the true values of the true- and false-positive rates of the
K = 3 binary tests, i.e., ϕk = P(Yik = 1|A = 1) and ψk = P(Yik = 1|A =
0), and calculated the theoretical probability of each binary results
combination P(Yi1, . . . , YiK), assuming conditional
independence. We randomly produced the binary results Yik

(Yik ∈ {0, 1}) of the K = 3 methods from the multinomial
distribution with the calculated corresponding probabilities
P(Yi1, . . . , YiK). Then, based on the simulated binary data Yik,
we estimated the operating characteristics of the K = 3 methods θ
= (ϕ1, ψ1, ϕ2, ψ2, ϕ3, ψ3) and the prevalence ρ using our maximum
likelihood procedure above. We repeated the simulation for
100 times to assess the variation of our estimates.

2.3 Choice of Three Different Methods
Based on the modelling logic, we classified the methods reviewed
by Zhu et al. (2021) into four different categories (Supplementary
Table S1): 1) methods assessing genetic effects enrichment on
tissue-specific gene expressions, including LDSC-SEG (Finucane
et al., 2018), deTS (Pei et al., 2019), and SNPsea (Slowikowski
et al., 2014); 2) methods assessing the tissue-specific eQTL effects
on a complex trait, including NTCS (Ongen et al., 2017) and
eQTLEnrich (Gamazon et al., 2018); 3) methods modeling the
genetic variance component using the gene expression data,
including RolyPoly (Calderon et al., 2017), IGREX (Cai et al.,
2020), and RhoGE (Mancuso et al., 2017); and 4) methods

assessing the genetic effects in tissue-specific gene-gene co-
expression networks, i.e., CoCoNet (Shang et al., 2020). With
these, we chose the LDSC-SEG procedure (we named as LDSC),
the NTCS procedure (we named as eQTL), and RolyPoly to
represent the three distinct types of methods for subsequent
evaluation. The network-based CoCoNet method is currently
limited to ranking tissues for each given trait instead of multiple
traits (Zhu et al., 2021).

2.4 Real Data Analysis
We collected the GWAS summary statistics of 27 complex human
traits and diseases from different consortia (see Data
Availability). We used tissue-specific transcriptome data from
the GTEx project version 7. Samples were collected from 48 non-
diseased tissue sites (> 70 samples for each tissue) across more
than 700 individuals. The gene expression data between GTEx
project version 6p and 7 are consistent (Supplementary
Figure S7).

We applied RolyPoly (Calderon et al., 2017) and stratified
linkage disequilibrium score regression (LDSC) (Finucane et al.,
2018) on these data set to detect associations between each pair of
the 27 traits and 48 tissues. See below for the pipeline details of
these two methods. For the third eQTL method, we directly took
the p-values from the report by Ongen et al. (2017) for the tissue-
trait pairs. Ongen et al. analyzed the tissue-specific eQTL data
from GTEx version 6p, which only covered 44 tissues. Thus, we
abandoned the p-values of the four tissues missed by Ongen et al.
from RolyPoly and LDSC results and the tissue-trait pairs with
missing values. p-values of the same 1,008 tissue-trait pairs from
these three distinct methods were passed onto our operating
characteristics assessment procedure. We gave a particular
p-value threshold to turn the p-values into binary status.
Varying the p-value threshold, one can consider the estimated
operating characteristics as a receiver operating characteristic
(ROC) curve.

2.5 Stratified LD Score Regression Analysis
For every GWAS summary-level data, we performed LDSC to test
heritability enrichment on tissue-specifically expressed genes in
order to infer the associations between tissues and complex traits.
We analyzed the tissue-level GTEx v7 gene expression data.

For GTEx data, we used the median TPM value across
individuals to represent the gene expression in each tissue. In
each gene expression data set, following the procedure by Skene
et al. (2018), we calculated an expression specificity score for each
gene, defined as the proportion of each gene’s expression in each
tissue or cell type. Only protein-coding genes were kept for
further analysis.

For every tissue or cell type, we selected the 10% of expressed
genes with the highest expression specificity score as the
specifically expressed gene set. Then we extracted the genome
start and end positions of the genes in each specifically expressed
gene set based on GRCh37 reference. In stratified LDSC analysis,
SNPs within the specifically expressed genes were annotated as 1
otherwise 0.

LD scores for the annotated SNPs in each tissue and cell type
were calculated based on a one centiMorgan (cM) window. Only
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HapMap3 SNPs were retained for the analysis. We included all
the pre-built baseline annotations in the ldsc software as
covariates in the stratified regression model. We used the
-overlap-annot argument and frequency files
1000G_Phase3_frq.tgz to confine our analysis on SNPs with
MAF > 5%. The MHC region was excluded from our analysis
by applying regression weights
1000G_Phase3_weights_hm3_no_
MHC.tgz. Enrichment p-values (one-sided) were used to test
associations between each tissue/cell type and a phenotype.

2.6 RolyPoly Analysis
RolyPoly tries to catch the relationship between the variance
of GWAS-estimated SNP effects and gene expressions in a
tissue or a cell type in order to prioritize trait-relevant tissues
or cell types.

Following the RolyPoly package tutorial, first, each GWAS
data file was formatted. The positions of SNPs match GRCh37
reference genome. Second, we labeled genes by ENSG IDs and
filtered out non-protein-coding genes. For normalization, we
transformed, across all genes, the expression values to their
quantiles. Across all the tissues, we inverse-normal
transformed the values to standard normal distribution
quantiles. We took absolute values to ensure the expression
values are positive as the tutorial recommends. Third, an
annotation file of the genes is required, consisting of the
chromosome, start and end of the block, and a block label.
The block label corresponds to the gene IDs in the expression
data set. Following the settings in the tutorial, we chose a 10 kb
window as a block centered at each gene’s transcription starting
site (TSS). We produced this annotation file from the Ensembl
GRCh37 gtf file. Autosomal genes and SNPs were analyzed. For
LD reference data, we used the files provided by the RolyPoly
package, calculated via PLINK based on 1,000 Genomes phase 3
reference, filtered with R2 > 0.2.

3 RESULTS

3.1 Rationale of Sensitivity and Specificity
Estimation Without a Gold Standard
Since the true biological relevance between a pair of tissue and
trait is mostly unclear, it is challenging to evaluate the each
method’s performance in detecting tissue-trait associations. To
take advantage of different analysis strategies, we start by
estimating each method’s operating characteristics in the
absence of a gold standard. Under a particular p-value
threshold, each method is a binary test on n pairs of tissues
and traits. Yik represents the outcome of the i-th test using the k-
th method, k = 1, 2, . . . ,K. 2K + 1 parameters are unknown and to
be estimated, including the sensitivity and specificity of each
method (denoted jointly as θ) and the prevalence of true
associations (denoted as ρ) in the n tissue-trait combinations.
The likelihood function is

L θ, ρ( ) � ∏
n

i�1
ρPθ Yi1, . . . , YiK|A � 1( ) + 1 − ρ( ){

Pθ Yi1, . . . , YiK|A � 0( )}. (6)
If only two methods are considered, the parameters in the
likelihood function are unidentifiable, which is why we usually
need a gold standard to compare two methods. However, when
KP3, the available degrees of freedom (2K − 1) becomes no less
than the numbers of parameters (2K + 1) so that we can estimate θ
and ρ. An uncheckable but usually justifiable assumption in
practice is that the evaluated methods are conditionally
independent, 15 meaning that for a single test, one cannot
easily predict the result from one method based on the result
from another. The assumption fits the scientific problem we face
here. We implemented a maximum likelihood estimation
procedure to estimate θ for any number of K (see Code
Availability).

3.2 Simulation
Different method uses different modelling logic and even data
sources. As the true biological relevance between a tissue and a
trait can hardly be simulated without any bias that favours a
particular method, a gold standard cannot be simulated to
examine different methods. Nevertheless, simple true-false
association status across a set of tissue-trait pairs can be
simulated, useful for testing the validity of our maximum
likelihood estimation procedure. We simulated three
conditionally independent methods with pre-defined
prevalence, sensitivity, and specificity values. The pre-defined
specificities of the three methods were 0.85, 0.35, 0.8, and the
sensitivities were 0.35, 0.85, 0.8. With the simulated binary test
results, we estimated the operating characteristics of the three
methods and prevalence (Figure 1, Supplementary Figure S2).
The sample size n is the number of tests by each method in one
simulation. We repeated the simulation 100 times for each
simulation setting to obtain the empirical distribution of the
estimates. The receiver operating characteristic (ROC) results
showed that our estimates were consistent. The estimates
converged to the true values as the sample size increased. We
also tested our procedure under different levels of true prevalence
(Supplementary Figures S3,S4). The estimation efficiency
decreased when the prevalence value was close to the
boundary of the parameter space.

3.3 Evaluation of Tissue-Trait Associations
We summarized the similarities and differences between three
methods testing for tissue-trait or cell-type-trait associations
(Supplementary Table S1). These three methods were so
different, based on distinct theories and assumptions, that they
could be considered conditionally independent–For each test
between a tissue and a trait, given the result from one method,
one can hardly predict the result from another method.

The first method RolyPoly is a hierarchical polygenic model to
evaluate the association between gene-level variant effects and
gene expression (Calderon et al., 2017). The second method has
been particularly applied to link brain cell types to schizophrenia
and Parkinson’s disease (Skene et al., 2018; Bryois et al., 2020). It
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uses stratified linkage disequilibrium score regression (LDSC)
(Finucane et al., 2018) to test whether the SNP heritability of a
trait is enriched on the specifically expressed genes in a given
tissue or cell type. We applied LDSC using the same setup as
described by Skene et al. (2018) The third method was conducted
by the Genotype-Tissue Expression (GTEx) consortium, which
used cis-eQTL effects data to infer causal tissues for complex
traits by implementing the regulatory trait concordance (RTC)
score (Nica et al., 2010). We named it eQTL in this paper and
directly extracted the p-values reported by the GTEx consortium
(Ongen et al., 2017).

We preprocessed publicly available GWAS summary statistics
of 27 complex traits and diseases from different global consortia
(see Data Availability). Based on these same GWAS summary
statistics and the same gene expression data of 48 tissues from the
GTEx project, we obtained tissue-by-trait p-value matrices for
RolyPoly and LDSC, respectively. We extracted p-values of the
eQTL method for the same GWASed traits from the original
publication by the GTEx consortium (Ongen et al., 2017), which
covered 44 tissues from GTEx project V6p. Removing missing
values from the results, we obtained a total of 1,008 tissue-trait
association tests of each method for further estimation
(Supplementary Table S2, Supplementary Figures S1, S5).
Under each particular p-value threshold, the eQTL method

FIGURE 1 | Simulations assessing the maximum likelihood estimation of operating characteristics in the absence of a gold standard. Three methods (represented
by squares, circles, and triangles, respectively) with known true sensitivities and specificities (red dots) were simulated, applied on different numbers of tests in total (n)
with a pre-defined prevalence of true positives. The estimated (blue dots) prevalence (ρ), sensitivity (ϕ), and specificity (ψ′) parameters are visualized for 100 simulation
repeats. TPR: true positive rate. FPR: false positive rate.

FIGURE 2 | ROC for three distinct methods. For the real data application
testing 27 traits v.s. 44 tissues, we estimated the operating characteristics of
each method (eQTL, LDSC, and RolyPoly). Each point represents the mean of
99 bootstrap estimates. The whiskers give the standard errors of TPRs
and FPRs based on the bootstrap estimates. Each point was evaluated under
a particular p-value threshold: 0.01, 0.02, . . . , 0.09, 0.1, 0.2, . . . , 0.9. TPR:
true positive rate. FPR: false positive rate.
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always produced more positive results, and RolyPoly always
produced less.

We estimated the three methods’ operating characteristics
via maximum likelihood under different p-value thresholds.
We bootstrapped the binary test results of the three methods
and performed the estimation procedure 99 times to obtain
standard errors of the operating characteristics (Figure 2,
Supplementary Table S3, Supplementary Figure S6). All
three methods showed limited statistical power in detecting
tissue-trait associations. The results also indicated that the
small p-values produced by the eQTL method were likely
inflated, which led to low specificity and generated many
positive results that could not be rediscovered by any other
method. The method RolyPoly discovered much less positive
results but meanwhile had higher specificity. In general, the
stratified LDSC method had a slightly better sensitivity-
specificity trade-off than the other two methods.

3.4 A Combined Tissue-Trait Association
Atlas
We defined an association score to assess the association between
each pair of tissue and complex trait, i.e., the sum of the estimated
specificity values of the methods that reported a positive
association, standardized to range from 0 (no association) to 1
(highest strength). Conditioned on the positive discoveries, we
incorporated the false discovery rate (FDR) of each method to
calculate the FDRs for the combined association scores (see
Methods for technical details).

We reported the combined association score for the
associations between 27 traits and 44 tissues under a
0.05 p-value threshold and evaluated the corresponding FDR
(Figure 3, Supplementary Table S4). 297 out of the 1,188 trait-
tissue pairs scored 0, indicating no evidence of an association.
Among the remaining 891 pairs with non-zero scores, 421
association scores had a combined FDR < 0.05.

Many complex traits or diseases have associations with
different tissues all over the body except brain tissues, such as
coronary artery disease (CAD), height, and birth weight. It
reflected the biological complexity of those phenotypes. In
particular, blood lipids showed strong signals in the liver and
also associations with the adrenal gland, visceral adipose tissue
(VAT), small intestine, and whole blood. Conversion of blood
cholesterol into cortisol hormone in the adrenal (Borkowski et al.,
1967) and adipose metabolism function of VAT supported these
associations. Type 2 diabetes (T2D) had strong signals on the
pancreas, aorta, and gastrointestinal tissues. Immune diseases,
including rheumatoid arthritis (RA) and gastrointestinal immune
diseases, showed high consistency, associated with the spleen
(Fishman and Isenberg, 1997; Di Sabatino et al., 2005; Sabatino
et al., 2013), lung, EBV (Epstein-Barr virus) transformed
lymphocytes, whole blood (Pauley et al., 2008), adipose tissues,
and small intestine (terminal ileum). Different from RA,
gastrointestinal immune diseases were also associated with
stomach (Büning et al., 2015). The profiles of gastrointestinal
immune diseases were similar.

Educational attainment and most psychiatric disorders
showed robust brain-specific associations. The link between

FIGURE 3 | Tissue-trait association scoring combining specificity estimates of three distinct methods. Association between 27 traits and 44 tissues were quantified
by association score. The association score sums the binary results from different methods, weighted by the specificity estimates. The p-value thresholds are 0.05 for all
three methods (eQTL, LDSC, and RolyPoly). * represent < 0.05 for the combined false discovery rate (FDR) of the association score.
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spleen and Alzheimer’s disease (AD) indicates that AD is
immune-related and is not significantly related to the brain
tissues. This finding agrees with the theory that immunity and
inflammation play an essential role in AD (Heppner et al., 2015).

Fasting phenotypes showed associations with fewer tissues.
Fasting glucose level was significantly linked to the pancreas, the
same as T2D. However, the pancreas association was not
significant for fasting insulin and proinsulin levels, possibly
due to the limited statistical power of these GWAS and low
heritability of these two traits.

Among the obesity-related anthropometric traits, only the
waist-hip ratio (WHR) was strongly associated with
subcutaneous adipose tissue. Such an association cannot be
detected in body mass index (BMI) and waist circumference,
regardless of the large sample size of BMI GWAS meta-analysis.
Such results suggestWHR as amore robust quantity that captures
adipose-induced obesity. BMI and waist circumference may be
more easily influenced by the postnatal environment or regulated
by nerves or hormones while showing more associations with the
brain. We noted that obesity measurements did not share a
similar profile with blood lipids.

Uterus showed strong associations with traits like
Educational attainment, birth weight, and breast cancer.
Ovary also showed no or weaker associations with these
traits. However, other genital organs, such as the testis and
vagina, had no similar signals. These findings likely implied the
maternal genetic effects on these traits, potentially relevant to
pregnancy (Pickett et al., 2000).

3.5 Incorporating Multiple Methods
Resulted in Better Discovery Performance
Based on the three methods’ estimated operating characteristics,
analog to standard ROC, we examined each method’s FDR as a

function of its number of claimed positives (Figure 4,
Supplementary Table S5). Though the LDSC procedure
showed the best overall performance for detecting tissue-trait
associations, the performance of the three methods was similar
and limited. Above, we constructed an association score
combining the results claimed by different methods, where we
re-weighted the three methods based on their specificities. This
led to better performance. The combined FDR was lower than
each method, and we had more significant discoveries than each
method at the same FDR level.

4 DISCUSSION

In the absence of a gold standard, we assessed the operating
characteristics of three methods that prioritize tissues associated
with complex traits and diseases. Then, we evaluated the
estimation procedure in simulation and obtained a ensemble-
analyzed score to construct tissue-trait associations by integrating
results from different methods. We proved that our results had
better FDR level than results from other existing methods. With
practice, we established amore credible association atlas across 44
human tissues and 27 complex traits and diseases.

Our analysis is different from conventional meta-analysis.
Normally, meta-analysis refers to researchers combining
results obtained from different samples/studies using the same
method (or very similar methods), in order to reach larger sample
size thus higher statistical power. However, we combined
different results from distinct methods based on the same/
similar data source. This is similar to the “ensemble” idea in
the field of machine learning. Thus, we are not performing any
meta-analysis for power (to improve sensitivity) but rather
gathering more information to reduce FDR (to improve
specificity).

Zhu et al. (2021) reviewed the existing methods, we still lack a
systematic evaluation of them with a quantified estimate on
performance. We emphasize that our estimation of the
sensitivity and specificity of each method requires the
assumption that the methods testing the same null
hypothesis are conditionally independent. This means that the
methods considered in our likelihood inference need to be as
distinct as possible, preferably based on distinct assumptions
and modelling logic. Therefore, simultaneously including
similar methods based on similar modeling ideas would
obviously violate the conditional independence assumption.
The three methods we chose differ in the underlying
statistical models, and they indeed produce sufficiently
distinct results to justify conditional independence. Our
assessment of the operating characteristics found the limited
performance of the RolyPoly and eQTL-based methods. LDSC,
focusing on the enrichment of heritability or genetic association
signals on tissue-specific gene expressions, showed slightly
better performance. Such an observation indicates that
methods that properly account for LD structure across the
genome tend to have less noise in the inferential process.
The eQTL method appeared to have inflated sensitivity as it
does not consider genome-wide architecture.

FIGURE 4 | The overall performance of three methods and the
combined results in terms of FDR v.s. the number of claimed significant
discoveries. We calculated the FDR for each method and the overall FDR for
the combined result based on the estimated operating characteristics.
Each point was evaluated under a particular p-value threshold: 0.01, 0.02, . . . ,
0.09, 0.1, 0.2, . . . , 0.9. Each curve was fitted for the exponential model of Y =
1 − e−aX. FDR: false discovery rate.
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When we assess three imperfect testing methods, while no
gold standard exists, the assumption of our likelihood inference is
that the methods are conditionally independent. Under this
assumption, if two methods report similar results, then we
have more confidence on such results, as we have evidence
from two conditionally independent sources. Nevertheless, it is
still possible that a good method might be down-weighted by two
bad/biased methods, especially when the two badmethods are too
much underpowered, i.e., simultaneously reporting a large
number of negatives. So, in practice, we need to consider
methods that have reasonable statistical power, so that our
combined inference results can gain more information and
produce more specific discoveries with smaller FDR.

Although the sensitivity and specificity parameters are the key
in our analysis, the prevalence parameter ρ might also be of
interest, referring to the global proportion of true associations.
The interpretation of ρwould be more straightforward if we could
estimate a trait-specific proportion of truly associated tissues;
However, this would only be ideal if the number of tissues
assessed is large. In the current analysis, having only an
overall prevalence parameter would maximize our power for
estimating the key sensitivity and specificity parameters. The
estimated prevalence only slightly varies as long as the thresholds
for the three testing methods are not too extreme
(Supplementary Table S3).

Themethods for establishing tissue-trait associations generally
link genome-wide association signals to tissue-specific gene
expression information. If we look into the genetic correlations
(Zheng et al., 2017) (Supplementary Table S6), it is not
surprising that similarities of tissue-association profiles
between the traits appeared to be positively correlated with
their genetic correlations. For example, bipolar disorder and
schizophrenia had a high genetic correlation (rg = 0.832, p =
5.36 × 10–106). However, some trait pairs with high genetic
correlation didn’t quite share a similar tissue-association
pattern, such as waist circumference and waist-hip ratio (rg =
0.733, p = 0), and BMI and waist-hip ratio (rg = 0.547, p = 1.79, ×,
10–65). Though we usually consider these three traits as similar
predictors of health, it seems that waist-hip ratio might be
affected by some particular pathways in the subcutaneous
adipose tissue rather than in brain tissues or neurons. The
trait pairs with high genetic correlations but not so similar
tissue-association profiles may suggest new insights on tissue
biology and underlying pathways.

Compared to previous studies that applied single methods, we
obtained more specific trait-relevant tissues. Nevertheless, we still
lack clear biological explanations for many tissue-trait
associations. For example, there is a link between human
height and artery: Does it reflect the negative genetic
correlation between heart disease and height (Nelson et al.,
2015), or does it imply any function of the artery in growth?
The tissue-trait associations gave us new knowledge for the
genetic architecture of complex traits, but more community
efforts are needed to explore the underlying physiological

and biological connections between complex traits and
tissues or cell types. The association atlas established here
helps understand the regulatory mechanisms underlying
complex traits and may assist experimental designs and
potential clinical research in the future.

5 CODE AVAILABILITY

The code we used in our analysis is available as an R package
triangulation at: https://github.com/xiashen/triangulation. The
software LDSC we used in this paper is available at https://
github.com/bulik/ldsc. The R package RolyPoly for inferring
relevant cell types and tissues for complex traits is available at
https://github.com/dcalderon/rolypoly.
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