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Background: Glycolysis is closely related to the occurrence and progression of

gastric cancer (GC). Currently, there is no systematic study on using the

glycolysis-related long non-coding RNA (lncRNA) as a model for predicting

the survival time in patients with GC. Therefore, it was essential to develop a

signature for predicting the survival based on glycolysis-related lncRNA in

patients with GC.

Materials and methods: LncRNA expression profiles, containing 375 stomach

adenocarcinoma (STAD) samples, were obtained from The Cancer Genome

Atlas (TCGA) database. The co-expression network of lncRNA and glycolysis-

related genes was used to identify the glycolysis-related lncRNAs. The Kaplan-

Meier survival analysis and univariate Cox regression analysis were used to

detect the glycolysis-related lncRNA with prognostic significance. Then,

Bayesian Lasso-logistic and multivariate Cox regression analyses were

performed to screen the glycolysis-related lncRNA with independent

prognostic significance and to develop the risk model. Patients were

assigned into the low- and high-risk cohorts according to their risk scores. A

nomogram model was constructed based on clinical information and risk

scores. Gene Set Enrichment Analysis (GSEA) was performed to visualize the

functional and pathway enrichment analyses of the glycolysis-related lncRNA.

Finally, the robustness of the results obtained was verified in an internal

validation data set.
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Results: Seven glycolysis-related lncRNAs (AL353804.1, AC010719.1,

TNFRSF10A-AS1, AC005586.1, AL355574.1, AC009948.1, and AL161785.1)

were obtained to construct a risk model for prognosis prediction in the

STAD patients using Lasso regression and multivariate Cox regression

analyses. The risk score was identified as an independent prognostic factor

for the patients with STAD [HR = 1.315, 95% CI (1.056–1.130), p < 0.001] via

multivariate Cox regression analysis. Receiver operating characteristic (ROC)

curves were drawn and the area under curve (AUC) values of 1-, 3-, and 5-year

overall survival (OS) were calculated to be 0.691, 0.717, and 0.723 respectively.

Similar results were obtained in the validation data set. In addition, seven

glycolysis-related lncRNAs were significantly enriched in the classical tumor

processes and pathways including cell adhesion, positive regulation of vascular

endothelial growth factor, leukocyte transendothelial migration, and JAK_STAT

signaling pathway.

Conclusion: The prognostic prediction model constructed using seven

glycolysis-related lncRNA could be used to predict the prognosis in patients

with STAD, which might help clinicians in the clinical treatment for STAD.

KEYWORDS

glycolysis, lncRNA, prognostic model, stomach adenocarcinoma, the cancer genome
atlas

Introduction

Gastric cancer, also known as stomach cancer, is a common

malignant tumor of the digestive system. Its morbidity and

mortality were ranked fifth and fourth, respectively, among

the global malignant tumors. More than half of the new cases

were reported in developing countries with poor medical and

health conditions. (Sung et al., 2021). Due to difficulties in early

detection and rapid progress, the 5-year overall survival rate of

gastric cancer (GC) is about 25–30%. (Siegel et al., 2016). In

recent years, with advancements in the diagnosis and treatment

of GC, the survival rate of early-stage GC has been significantly

improved but its prognosis in the patients with advanced GC is

still very poor (Shen et al., 2013; Song et al., 2017; Selim et al.,

2019). This has become a prominent public health issue,

threatening the health of people worldwide, especially in

China. Due to the poor overall prognosis and large differences

in the term of prognosis among GC patients (Costa et al., 2018), it

is difficult to assess its prognosis in clinical practices. Therefore,

the establishment of an evaluation system with good diagnosis

and prognosis screening is particularly important for the

diagnosis and treatment of GC. At present, in addition to the

TNM (tumor node metastasis) staging system, which is

commonly used in clinical practices, many studies (Eom et al.,

2015; Tonello et al., 2021; Zhang and Yu, 2021) have proposed

the construction of new classification and prognosis-related

prediction models. However, most of these models are based

on the general data and clinical pathological data of patients,

thereby having a certain lag in the evaluation of tumor prognosis

as compared to molecular indicators, such as genes. In addition,

these factors are not conducive to the quantitative expression of

prediction results, leading to the lack of accuracy and

effectiveness. With the advent of the era of precision medicine

and the rapid development of gene sequencing technologies, the

tumor prognosis prediction models often incorporate molecular

indicators, such as genes, long non-coding RNAs (lncRNAs), and

miRNAs, to improve the performance of the prediction models.

Changes in cellular metabolism are closely related to the

occurrence and development of multiple tumors, one of the most

prominent changes is glycolysis (Ganapathy-Kanniappan, 2018;

Liu et al., 2019; Orang et al., 2019). The energy acquisition of cells

is mainly derived from glycometabolism. Normal cells mainly

produce ATP through oxidative phosphorylation under aerobic

conditions, while in hypoxic conditions, cells obtain ATP via

glycolysis. In 1924, Warburg proposed the “Warburg effect”,

demonstrating that the cancer tissues mainly obtain ATP

through glycolysis; even in the presence of sufficient oxygen

supply, they mainly use glycolysis to meet energy demand for

their rapid growth. (Warburg, 1956). Aerobic glycolysis is the

most basic metabolic change in the process of tumor malignancy,

this phenomenon is widely present in various tumors (Chen

et al., 2019; Weng et al., 2020; Zhang et al., 2020). Glycolysis

promotes the proliferation of tumor cells, enhances invasiveness,

and participates in tumor resistance. (Gatenby and Gillies, 2007;

Akram, 2013). This phenomenon has also been found in GC (Liu

et al., 2019) and indicates that aerobic glycolysis can lead to

tumor progression and poor prognosis. (Gatenby and Gillies,

2004). Glycolysis can not only quickly supply energy and change

the tumor microenvironment but also provides precursors or

intermediates, such as nucleic acids, required for cell synthesis
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(Yu et al., 2017; Hofmann, 2018), which is considered an

optimized way for the oncocytic cells to respond to cellular

stress. This makes the enzymes and signaling pathways related

to glycometabolism potential targets for the treatment of tumors.

(Gatenby and Gillies, 2007).

In the past few decades, people have made great

advancements in studying the molecular mechanisms of GC

(Carlomagno et al., 2017; Ye et al., 2020). However, there is still

a lack of molecular markers in the treatment and prognosis

assessment of GC. LncRNA, a type of RNA

with ≥200 nucleotides length, has no functions on encoding

the proteins. (Cabili et al., 2011). Recent studies have shown

that the lncRNAs are widely distributed in the genome and

participate in the regulation of chromatin modification, gene

transcription, and other important physiological processes,

which are closely related to the initiation and progression of

the tumor, and can be used as a potential biomarker for the

diagnosis and prognosis assessment of tumor (Ponting et al.,

2009; Gómez-Maldonado et al., 2015). However, the

mechanisms of action of glycolysis-related lncRNA in GC

patients are still unclear. Furthermore, the potential values of

glycolysis-related lncRNAs in the diagnosis, treatment and

prognosis evaluation of GC are still needed to be explored.

Therefore, a glycolysis-related lncRNA signature and a

nomogram were constructed in this study to provide

clinicians with a quantitative method for predicting the

survival in GC patients. This might help clinicians to make

accurate and personalized clinical decisions and prognostic

assessments for the patients with GC.

Materials and methods

Sample data sets and data pre-processing

From the Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/), the RNA-seq data of 375 cases and

clinical data of 443 cases in stomach adenocarcinoma (STAD)

were obtained. In the TCGA official website, “transcriptome

profiling” was selected in Data Category, “Gene Expression

Quantification” was selected in Data Type, “RNA-Seq” was

selected in Experimental Strategy, and “illumine” was selected

in Platform. The inclusion criteria of this study were: 1)

Pathological diagnosis was stomach adenocarcinoma; and 2)

Patients had complete sequencing data and clinical

information (gender, age, distant metastasis, lymphatic

metastasis, primary tumor, TNM Stage, and survival status).

In addition, when the clinical information of the patients was

screened, those with a follow-up period of ≤30 days were

excluded. After screening, a total of 337 STAD samples,

having both the lncRNA expression and prognostic data, were

included for the construction and verification of the prognostic

model; among which, 296 STAD samples, having complete

clinical and prognostic data, were selected to perform the

univariate and multivariate Cox regression analysis.

Screening of lncRNA and identification of
glycolysis-related LncRNA

First, the gene name data was used in the HUGO Gene

Nomenclature Committee (HGNC, https://www.genenames.org)

database to identify and isolate the lncRNA data from all the

RNA-seq data sets to obtain lncRNA expression profiles. The

total lncRNA expression data was normalized using

log2 transformation. The glycolysis-related gene list was

obtained from the Molecular Signatures Database (MSigDB)

(https://www.gsea-msigdb.org/GSEA/msigdb). “Glycolysis” was

used as a keyword to search for the glycolysis-related gene set,

“REACTOME_GLYCOLYSIS”, which was then downloaded.

Then, the Pearson correlation analysis was performed to

calculate the correlations between lncRNAs and glycolysis-

related genes. The lncRNAs, having correlation coefficient |R

(Siegel et al., 2016)| >0.3 and p-value < 0.001, were considered

glycolysis-related lncRNAs. Subsequently, the co-expression

network was drawn using Cytoscape (Version 3.7.1) to

visualize the correlations.

Development and analysis of prognostic
prediction model

First, a univariate Cox regression analysis was performed to

evaluate the prognostic value of the identified glycolysis-related

lncRNA. In univariate Cox regression analysis, all the glycolysis-

related lncRNAs with a p-value < 0.05 were considered as related

to the prognosis of STAD patients. The glycolysis-related

lncRNAs with prognostic significance analysis were included

to perform Lasso regression analysis. Then, the lncRNAs,

which were obtained via Lasso regression analysis, were

incorporated into a multivariate Cox regression model for the

construction of a risk scoring model. The risk score for each

patient was calculated using the following equation: Risk score =

Coef lncRNA 1) × Expr lncRNA 1) + Coef lncRNA 2) × Expr

lncRNA 2) + ... + Coef lncRNA (n) × Expr lncRNA (n). Coef

value was the regression coefficient obtained through

multivariate Cox regression analysis, and Expr lncRNA (n)

was the expression of lncRNA (n). The patients were assigned

into high- and low-risk cohorts according to the median value of

risk score. Log-Rank (Mantel-Cox) test was used to compare the

survival differences between the two cohorts. The survival

program package in R 3.6.3 software was used to draw the

survival curve of the model prognosis and compare the

differences in survival between the two cohorts. SurvivalROC

package in R software was used to draw the receiver operating

characteristic (ROC) curve and the area under curve (AUC) value
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was calculated to evaluate the sensitivity and specificity of the

prognostic model.

Construction and analysis of nomogram
graph

A nomogram graph was constructed to predict the survival

time of patients with STAD. In order to verify the accuracy of the

nomogram, the index of concordance (C-index) was calculated

and calibration curves were drawn. The nomogram can provide a

quantitative prediction method for clinicians and decision-

makers in health-related departments. Therefore, a nomogram

was constructed based on risk scores and clinicopathological

information. In addition, the calibration curves for 1-, 3- and 5-

year survival time were drawn concurrently. The closer the

calibration curve is to the standard curve, the better the

prediction model’s performance. Then, the clinical data,

including demographic data, pathological TNM stage,

pathological tumor, node, metastasis stage and patient’s risk

score, were merged and those lacking accurate clinical data

were deleted. In order to verify and compare the efficacy of

the constructed prognostic signature with other clinical

prognostic factors, a multivariate ROC curve was drawn.

Furthermore, the AUCs of multiple factors, including age,

gender, TNM stage, pathological grade and risk score, were

calculated.

Gene Set Enrichment Analysis (GSEA) and
correlation analysis

Although the usability of prognostic signature was tested for

survival predictions, it was unclear how the function of

glycolysis-related lncRNA would work. Therefore, the GSEA

analysis, including Gene Ontology (GO) analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways

analysis, was performed to explore the functional enrichment

of glycolysis-related lncRNAs. The top five enrichment analysis

results of GO and KEGGwere presented. All the RNA-seq data of

patients with STAD were also assigned into the low- and high-

risk cohorts according to the median value of risk score. In the

first, the previously obtained risk score data and lncRNA

expression data were integrated and converted into “cls” and

“gct” file formats. Subsequently, these data files were

imported into GSEA software (version 4.0.3) to explore

significant differences in the functions of glycolysis-related

lncRNA between the low- and high-risk groups. Furthermore,

correlations between risk level and clinicopathological

characteristics were calculated using Pearson’s

correlation coefficient analysis, where coefficient >0 indicated

a positive correlation and coefficient <0 indicated a negative

correlation.

Model verification

A total of 170 samples were randomly selected from

337 STAD samples having both the RNA-seq data of lncRNA

and prognostic data to form an internal cross-validation data set,

which was used to verify the constructed prediction model and

evaluate its robustness. The Kaplan-Meier plots between the

high- and low-risk groups, ROC curve of multiple factors

including clinical information and risk score, and univariate

and multivariable Cox regression analysis were performed

using similar methods as described in above-mentioned section.

In addition, we performed 5-fold cross-validation to make

the verification results more reliable. 337 STAD samples were

divided into five cohorts where 80% of the data was used as

training data and remaining 20% was used as a validation set, and

then we repeat this five times so that every cohort serve as a

validation set. The accuracy measures (AUC, confusion matrix,

sensitivity, specificity) was reported.

This process was performed to identify consistency in the

conclusions of training and verification cohorts to evaluate the

robustness and reliability of the risk prognosis model.

Statistical analyses

Kaplan-Meier method was used to draw survival curve and

Log-rank test was used to compare the survival curve between

high-risk and low-risk cohorts. Cox regression analysis and Lasso

regression analysis were performed to screen the glycolysis-

related lncRNAs and clinical information that have a

prognostic impact for the patients with STAD. The ROC

curves were drawn to evaluate the performance of the

prediction model. Univariate and multivariate Cox regression

analyses were performed to recognize the predictors in clinical

variables and risk scores, and then, the usability of the risk model

as an independent prognostic indicator was assessed. Strawberry

PERL (version 5.30.2.1) was used to process the data. All the

statistical analyses in this study were performed using R software

(version 4.0.2). The statistical test was two-sided, and p <
0.05 was considered statistically significant. The prediction

with AUC >0.60 was considered to be an acceptable

prediction, while the AUC >0.75 was considered to have a

good predictive value.

Results

Co-expression network construction

The detailed flow chart for the prognostic predictive model

construction in this study was shown in Supplementary Figure

S1. A total of 14,142 lncRNAs in the TCGA-STAD data sets were

extracted from the TCGA database and 72 glycolysis-related
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genes were extracted from the GSEA-MSigDB database, among

which, 70 genes were expressed in STAD (Supplementary Table

S1). The co-expression network of glycolysis-related lncRNA was

constructed to identify lncRNA related to glycolysis. Finally, a

total of 870 lncRNAs were identified as glycolysis-related

lncRNAs (|R (Siegel et al., 2016)|>0.3, and p < 0.001).

Construction of glycolysis-related lncRNA
signature

Based on 870 glycolysis-related lncRNAs, univariate Cox

regression analysis was used to screen the glycolysis-related

lncRNAs having prognostic significance in the 337 cases of

FIGURE 1
Development of the seven glycolysis-related lncRNAs signature. (A) Lasso coefficient values of nine glycolysis-related lncRNAs in stomach
adenocarcinoma (STAD). The vertical dashed lines are at the optimal log(lambda) value. (B) Variables going to zero as we increase the penalty
(lambda) in the objective function of the Lasso. (C) Results of the multivariate Cox proportional hazard model based on the nine variables; seven
lncRNAs were screened to construct the signature.
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TCGA-STAD data set. The univariate Cox regression analysis

showed that there were 13 lncRNAs (AL353804.1, AC010719.1,

TNFRSF10A-AS1, MAPKAPK5-AS1, AC005586.1, SREBF2-

AS1, AC009948.1, AL355574.1, AL161785.1, AC084033.3.

AP003392.1, AC037198.1, and AP001528.2), having significant

prognostic value for STAD patients (p < 0.05, Supplementary

Table S2). Subsequently, the Lasso regression analysis was used to

avoid overfitting. After performing the Lasso regression, nine

glycolysis-related lncRNAs were identified (Figure 1;

Supplementary Table S3). Then, these lncRNAs were

subjected to multivariate Cox regression analysis and a

prognostic signature with seven glycolysis-related lncRNAs

was developed. Among them, five lncRNAs (AL353804.1,

AC010719.1, TNFRSF10A-AS1, AC005586.1, and AL355574.1)

were identified as favorable prognostic factors, while the

remaining two lncRNAs (AC009948.1 and AL161785.1) were

presented as poor prognostic factors (Table 1). Subsequently,

these seven lncRNAs were used to develop a glycolysis-related

lncRNAs signature. Risk score = (-0.42868* AL353804.1) +

(-0.16952* AC010719.1) + (-0.10245* TNFRSF10A-AS1) +

(-0.19337* AC005586.1) + (0.279,944* AC009948.1) +

(-0.17044* AL355574.1) + (0.052446* AL161785.1). In

addition, a co-expression network of prognostic-related

glycolytic lncRNAs was constructed (Figure 2).

Simultaneously, a combined Sankey diagram was drawn based

on 25 glycolysis-related genes, seven glycolysis-related lncRNAs

and their risk conditions (Figure 3).

Glycolysis-related lncRNA signature for
prognosis prediction in STAD

The risk score of the glycolysis-related lncRNA risk model was

calculated using the above risk score formula (Table 2). Survival

program package in R software was used to analyze survival

differences based on the patient’s risk score and the risk score

curve, survival status map, and heat map based on the expression

level of seven lncRNAs were drawn using the R programming

language. Kaplan-Meier plot showed that the risk score was

significantly correlated with overall survival (OS) of patients

with STAD. As compared to the low-risk cohort, the OS of the

high-risk cohort was significantly shorter (p < 0.001, Log-rank test)

(Figure 4). With the increase in risk score, the number of patients’

deaths in the high-risk cohort was significantly higher than that in

the low-risk cohort, indicating the poor OS of STADpatients in the

high-risk cohort (Figure 5). The above results showed that the risk

score was significantly correlated with the OS of patients with

STAD and exhibited a significant impact on the prognosis in

STAD. It was suggested that the risk signature might better predict

the survival and prognosis in STAD.

Clinical value and significance of the
glycolysis-related lncRNA signatures

The risk score, lymph node status and pathological TNM

stage were prognostic indicators identified by univariate Cox

regression analysis. The Cox regression result of risk score are as

follow: [HR = 1.315, 95% CI (1.056–1.130), p < 0.001],

(Figure 6A). When the influence of other factors (gender, age,

and tumor stage) was controlled and eliminated, the risk score

was still identified as an independent prognostic indicator

according to multivariate Cox regression analysis [HR =

1.092, 95% CI (1.054–1.131)), p < 0.001], (Table 2; Figure 6B).

Subsequently, the survivalROC program package was used to

draw the ROC curve of the risk model and evaluate its sensitivity

and specificity. The results showed that the calculated AUC

values of the prognostic signatures for 1-, 3-, and 5-year

survival time were 0.691, 0.717, and 0.723, respectively

(Figure 6C). Furthermore, the risk score, TNM stage, and age

were used to construct a nomogram. As shown in Figure 7A, the

risk score was the most important contributing factor to the 1-, 3-

, and 5-year OS in STAD. The calculated C-index of the

prediction model was 0.651 (95% CI: 1.056–1.135). The 5-year

AUC of risk score was 0.703, which was higher than age (AUC =

0.571), gender (AUC = 0.540), TNM stage (AUC = 0.592), tumor

stage (AUC = 0.561), node stage (AUC = 0.569), and distal

metastasis stage (AUC = 0.521) (Figure 7B). The correlation

analyses found that the level of risk score was not significantly

correlated with age, gender, TNM staging, etc. (Table 3).

TABLE 1 Multivariate Cox results of glycolysis-related lncRNAs in STAD.

lncRNA Coefficient HR HR.95L HR.95H p Value

AL353804.1 −0.429 0.651 0.498 0.852 0.002

AC010719.1 −0.170 0.844 0.703 1.014 0.070

TNFRSF10A-AS1 −0.102 0.903 0.825 0.988 0.026

AC005586.1 −0.193 0.824 0.690 0.984 0.033

AC009948.1 0.280 1.323 1.098 1.594 0.003

AL355574.1 −0.170 0.843 0.721 0.986 0.032

AL161785.1 0.052 1.054 1.024 1.084 <0.001
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FIGURE 2
The coexpression network and Sankey diagram of prognostic glycolysis-related lncRNAs. (A) The coexpression network between prognostic
glycolysis-related lncRNAs and glycolysis-related genes in STAD. Red diamond nodes represent prognostic glycolysis-related lncRNAs, and the sky-
blue oval nodes represent glycolysis-related genes. The coexpression network was visualized using Cytoscape 3.7.1 software. (B) Sankey diagram
showed the association between prognostic glycolysis-related lncRNAs, glycolysis--related genes, and risk types.
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FIGURE 3
The Kaplan-Meier Survival curve of seven prognostic glycolysis-related lncRNAs. Two glycolysis-related lncRNAs (AC009948.1 and AL161785.1)
were independent unfavorable factors. Five lncRNAs (AL353804.1, AC010719.1, TNFRSF10A-AS1, AC005586.1 and AL355574.1) were independent
beneficial factors for STAD.
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GSEA analysis

In order to explore the functional differences in the

glycolysis-related lncRNAs between the high- and low-risk

groups, GO and KEGG enrichment analyses were performed

using GSEA version 4.0.3, which are shown in Figures 8A,B. A

total of 3009 GO entries and 95 KEGG pathways were

obtained. In GO analysis, the enrichment results were

mainly concentrated on the regulation of inositol

phosphate biosynthetic process and vasculature

development, activation of phospholipase C activity,

positive regulation of vascular endothelial growth factor

TABLE 2 Multivariate Cox regression based on clinical characteristics and risk scores in STAD.

lncRNA B SE Z HR HR.95L HR.95H p Value

Age 0.027 0.010 2.753 1.027 1.008 1.047 0.006

Gender 0.277 0.201 1.374 1.319 0.889 1.956 0.169

Stage 0.256 0.211 1.215 1.292 0.855 1.952 0.224

T 0.088 0.154 0.573 1.092 0.808 1.476 0.567

M 0.243 0.429 0.566 1.275 0.550 2.955 0.571

N 0.147 0.117 1.257 1.159 0.921 1.458 0.209

Risk Score 0.088 0.018 4.905 1.092 1.054 1.131 <0.001

FIGURE 4
The Kaplan-Meier survival curve of risk score based on seven glycolysis-related lncRNAs.
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production, vascular endothelial growth factor production,

etc. (Figure 8A). KEGG pathways analysis showed that the

glycolysis-related lncRNAs were mainly involved in cell

adhesion molecules (CAMs), extracellular matrix (ECM)

receptor interaction, calcium signaling pathway, leukocyte

transendothelial migration, and JAK_STAT signaling

pathway (Figure 8B). In addition, it was also found that

these enrichment results were related to important

biological processes and functional pathways in the

initiation and progression of the tumor. For instance, the

regulation of vasculature development and vascular

endothelial growth factor production, cell adhesion,

leukocyte transendothelial migration, and JAK_STAT

signaling pathway were closely related to the proliferation,

invasion, and metastasis of tumor.

Verification in the internal verification set

The same Coef value was used to further verify the above

results in the validation cohort (n = 170). Consistent with the

results of the training cohort, the OS of high-risk patients was

shorter than that of the low-risk STAD patients (p = 0.003)

(Figure 9). The calculated AUC values of the risk model based on

internal validation cohort for 1-, 3-, and 5-year survival times

were 0.686, 0.699, and 0.730, respectively (Figure 8). The

univariate and multivariate Cox regression analyses indicated

that the risk score also was an independent predictor, affecting

the prognosis of STAD (p < 0.001 and p = 0.012, respectively). In

addition, the results of 5-fold cross-validation are shown in

Figure 10, with similar results to the previous training dataset

in most cohorts. The mean and standard deviation of the

FIGURE 5
The analysis of glycolysis-related lncRNA signature for patients in STAD. (A) The risk score between the high-risk group and low-risk group. (B)
The survival status of the high-risk group and the low-risk group in STAD patients. (C)Heat map of seven glycolysis-related lncRNAs’ expression. The
color from green to red reveals a rising tendency from low to high expression levels.
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sensitivity and specificity in the cross-validated training dataset

were 0.629 ± 0.012, 0.594 ± 0.010 respectively, and the sensitivity

and specificity in the cross-validated training dataset were

0.625 ± 0.046, 0.594 ± 0.040 respectively.

Discussion

The occurrence and development of tumors are closely

related to abnormal cellular metabolism. Changes in energy

metabolism promote the growth and proliferation of tumor

cells and have been considered as emerging cancer biomarkers

(Hanahan and Weinberg, 2011; Yuan et al., 2016). In 1924,

Warburg discovered the abnormalities between cancerous and

normal cells and showed that even under aerobic conditions, the

cancer cells could maintain a higher glycolysis rate than the

neighboring normal tissues, known as the “Warburg effect”

(Warburg, 1956; Gatenby and Gillies, 2004). This

phenomenon has been widely found in various tumor tissues,

including GC (Liu et al., 2019), indicating that aerobic glycolysis

could lead to tumor progression and poor prognosis (Luo et al.,

2020; Xia et al., 2021). LncRNA is a type of non-coding RNA

molecules that regulates the growth, development, and survival of

cancer cells and plays an important role in multiple aspects in the

initiation and progression of tumors. Therefore, the lncRNAs are

considered as a novel biomarker for tumor diagnosis and

prognosis (Kong et al., 2016). Many previous studies have

focused on the function of specific glycolysis-related genes or

prognostic signature (Liu et al., 2019; Luo et al., 2020) but there is

a lack of systematic studies on glycolysis-related lncRNA as a risk

signature for predicting the survival time of patients with GC.

Therefore, it is necessary to construct the glycolysis-related

lncRNA risk signature for the prognosis prediction in STAD,

which should fulfill the deficiency of the traditional TNM stage in

predicting the individualized prognosis of patients.

In this study, a total of seven glycolysis-related lncRNAs

(AL353804.1, AC010719.1, TNFRSF10A-AS1, AC005586.1,

AL355574.1, AC009948.1, and AL161785.1) with prognostic

FIGURE 6
Prognostic indicators based on glycolysis-related lncRNAs showed great predictive performance. The forest plots for univariate (A) and
multivariate (B) Cox regression analysis in STAD. (C) The areas under the ROC curve about 1-year, 3-year, and 5-year OS.
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FIGURE 7
The evaluation of prognosticmodels based on seven glycolysis-related lncRNAs. (A) The nomogramof 1-, 3- and 5-year OS based on risk score,
age, and TNM stage. (B) The ROC curves analysis based on risk score and the clinicopathologic parameters; (C–E) The calibration plots of 1-, 3- and
5-year OS for evaluating the concordance between the predicted and the standard OS for the prognosis model. The closer the calibration curve (red
line) is to the standard curve (grey line), the better the prediction model’s performance.
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significance in STAD were identified using Lasso and Cox

regression analyses. Among them, the two glycolysis-related

LncRNAs (TNFRSF10A-AS1 and AC009948.1) have been

reported in previous studies (FU et al., 2020; Wei et al., 2020).

In a study by Wei et al. (Xia et al., 2021), TNFRSF10A-AS1 was

identified as an autophagy-related lncRNA associated with the

poor prognosis of colorectal cancer, and along with other seven

autophagy-related lncRNAs, it constructed a prognostic

signature for colorectal cancer, which was used to predict the

prognosis in colorectal cancer patients. TNFRSF10A-AS1 was

identified as a lncRNA related to glycolysis in this study. The

univariate and multivariate Cox regression analyses showed that

it was related to the prognosis in GC patients. These results

suggested that the lncRNA TNFRSF10A-AS1 might be a

common prognostic target for gastrointestinal tumors or

multiple tumors and might be involved in various biological

processes, such as autophagy and glycolysis. These findings also

suggested that the TNFRSF10A-AS1 might participate in a

variety of biological processes, affecting the prognosis of

various tumors, and is worthy of further exploration in

subsequent studies with good research potential. Fu et al. (FU

et al., 2020) found that AC009948.1 was co-expressed with

HSD11B2, which is related to the progression and prognosis

of melanoma as demonstrated by mining the data of melanoma

in TCGA. The GSEA analysis suggested that HSD11B2 was

related to multiple cancer-related genes and pathways,

including cytosolic DNA-sensing pathway, JAK_STAT

signaling pathway, T-cell receptor signaling pathway, and

Toll-like receptor signaling pathway. For the remaining five

glycolysis-related lncRNAs (AL353804.1, AC010719.1,

AC005586.1, AL355574.1, and AL161785.1), there were no

published studies on their prognostic effects in cancers.

Therefore, further studies are needed to explore the effects of

these glycolysis-related lncRNAs on the prognosis of STAD

patients.

Based on the risk signature, containing seven glycolysis-

related lncRNAs, the prognosis of STAD could be significantly

predicted. The AUC of 1-, 3- and 5-year OS were 0.691, 0.717,

and 0.723 respectively. Similar results were obtained in the

validation cohort, where the OS of the high-risk group was

worser than that of the low-risk group, and the ROCs for 1-,

TABLE 3 Clinical influences of risk score signature for TCGA-STAD
data.

Clinical Group n Risk score t P

Mean SD

Age >60 194 1.35 3.613 0.354 0.724

≤60 102 1.256 0.649

Gender 0 110 1.066 0.636 -1.444 0.15

1 186 1.466 3.681

Stage I-II 135 1.454 4.317 0.669 0.505

III-IV 161 1.203 0.615

T 1-2 74 1.781 5.806 0.915 0.363

3-4 222 1.163 0.602

M 0 277 1.314 3.042 -0.197 0.844

1 19 1.362 0.688

N 0 90 1.013 0.586 -1.734 0.084

1-3 206 1.45 3.506

FIGURE 8
Gene set enrichment analysis showing the GO and KEGG enrichment between the high-risk and low-risk group. (A) GSEA for GO enrichment
analysis; (B) GSEA for KEGG enrichment analysis.
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3- and 5-year OS were 0.686, 0.699, and 0.730 respectively.

Compared with other GC-related lncRNA signatures (Wang

(Wang et al., 2020) LncSig’ AUC = 0.589, Zhang (Zhang

et al., 2019) LncSig’ AUC = 0.536 and Han (Han et al., 2021)

LncSig’ AUC = 0.618), our glycolysis-related lncRNA signature

performed better in prognosis prediction in TCGA-STAD

datasets. These results indicated that this prognostic risk

signature had a certain potential value for predicting

prognosis in STAD patients. The risk score based on seven

glycolysis-related lncRNAs could be used as independent

FIGURE 9
The result of validation cohort based on seven glycolysis-related lncRNAs in STAD. (A) The risk score, survival status and heat map of seven
glycolysis-related lncRNAs between the high-risk and the low-risk group in validation cohort. (B) Kaplan-Meier survival curve of risk score in
validation cohort. (C) The areas under the ROC curve about 1-, 3-, and 5-year in validation cohort. (D,E) The forest plots for univariate (D) and
multivariate (E) Cox regression analysis in validation cohort.
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FIGURE 10
The result of 5-fold cross-validation based on seven glycolysis-related lncRNAs in STAD. AUC, confusion matrix, sensitivity and specificity were
showed in each cross-validation cohort, results of training cohort on the left and validation cohort on the right in figure. (A,B), (C,D), (E,F), (G,H), (I,J)
are the results from the first cross-validation to the fifth cross-validation.
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prognostic indicators for the STAD patients through univariate

and multivariate Cox regression analysis. Age and TNM stage

were extracted from the training cohort to draw a concise

nomogram, which was used to predict the prognosis of STAD

patients. Besides, there was a good convergence between the

calibration curve and standard curve. According to the results of

the C-index, ROC, and calibration curve, the nomogram

exhibited high discrimination and accuracy, which might

become a novel potential predictive tool to provide

individualized predictions in patients with GC.

Finally, although the usability of this signature in survival

prediction was tested, the functions of glycolysis-related

lncRNA were still unclear. Therefore, GSEA analysis was

performed to explore functional differences between the

high-risk and low-risk cohorts. The results of functional

enrichment analysis showed that the most important

pathways among these predicted glycolysis-related lncRNAs

in KEGG analysis included cell adhesion, leukocyte

transendothelial migration, JAK_STAT and other tumor-

related classical pathways. These results could help explore

and understand the mechanisms of glycolysis-related

lncRNA in affecting the prognosis of STAD. Tumor invasion

and metastasis are a continuous and complex process and the

adhesion of tumor cells is closely related to the migration and

metastasis of tumor cells. As compared to healthy tissues, tumor

cells carry out glycolysis (Warburg effect) not only under

hypoxic conditions but also in normoxic conditions,

decreasing the extracellular pH (acidosis) due to increased

glycolysis. As shown in a study by Hüsing et al. (Hüsing

et al., 2021), after incubation at pH 6.6, the cell adhesion

and migration abilities in AT1 prostate cancer cells increased

by 75% and 100%, respectively, which increased lung

metastases in rats. These results showed that the

extracellular pH had an important effect on the migration

and adhesion of tumor cells.

A previous study has shown that the JAK-STAT signal

transduction pathway, widespread in humans, is related to

glucose metabolism (Rastogi et al., 2007). JAK-STAT signal

activation can reduce glucose metabolism by driving the

expression of pyruvate dehydrogenase (PDH) kinase, which

is also involved in the expression of multiple lncRNAs. The

down-regulation of non-coding RNA ceruloplasmin (NRCP),

identified as a highly expressed lncRNA in ovarian cancer, can

lead to increased apoptosis, decreased cell proliferation, and

inhibition of glycolysis (Rupaimoole et al., 2015). In addition,

the lncRNA-nuclear paraspeckle assembly transcript 1

(NEAT1) is highly expressed in GC; the down-regulation of

NEAT1 can inhibit the growth of GC cells and participate in the

endogenous competition of miR-506/STAT3 to regulate the

carbohydrate metabolism pathway in GC (Rupaimoole et al.,

2015).

This study still had some limitations too. First of all, the

data source of this study was single with not large sample size.

Therefore, the results of the analyses might have certain

deviations. Secondly, this study was a retrospective study

with the inherent limitations of a retrospective study.

Therefore, more prospective studies are needed to prove the

predictive performance of this prognostic risk signature.

Third, the validation data set of the prediction model was

randomly selected as a part of the STAD samples and only

internal cross-validation was carried out. We performed 5-fold

cross-validation to further validate the predictive model due to

lack of suitable external data for validation, but two cohorts

with unsatisfactory results appeared in the validation dataset

during 5-fold cross-validation (Figures: 10F and 10H). We

compared the datasets in 10F and 10H with the other datasets

of 10B, 10D, and 10J, respectively, and found that there were

no significant differences in gender, age, tumor stage, etc.

Thus, we supposed that the poor outcomes of 10F and 10H

might be related to the small sample size. Therefore, further

validation in other independent cohorts is necessary. Fourth,

further experiments are needed to explore the potential

mechanism of the lncRNAs included in the prediction

model that has not been confirmed by functional

experiments in the prognosis of STAD. Despite these

limitations, our signature was the first prognostic risk

signature based on glycolysis-related lncRNAs. In addition,

the nomogram would provide clinicians with a quantitative

method for predicting the survival time in STAD, which could

be easily performed using Polymerase Chain Reaction (PCR)

to distinguish the patients with poor prognosis from all the

patients. In this way, the model might facilitate

gastrointestinal oncologists to adopt a clinically

individualized treatment plan. At the same time, the

nomogram contained objective indicators, which could

reduce differences among the observers and make the

prediction of survival time more accurate.

Conclusion

In conclusion, a seven glycolysis-related lncRNA signature

has been successfully developed and verified for predicting the

survival time of STAD patients. This model was used to

distinguish the patients with different risks and was identified

as a significant independent factor for STAD. As compared to

other common prognostic factors, this prognostic signature was

proved to be better. These seven glycolysis-related lncRNAs and

their risk signature might act as molecular biomarkers and

therapeutic targets for STAD. In addition, the nomogram with

high discrimination and accuracy might provide clinicians with a

novel and quantitative tool to predict the survival time in STAD

patients. This model might facilitate clinicians to adopt a

clinically individualized treatment plan. However, a

prospective, multi-center, large-scale study is required to

confirm these results.
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