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Background: Prostate cancer (PCa) is one of the most common cancers in males
around the globe, and about one-third of patients with localized PCa will experience
biochemical recurrence (BCR) after radical prostatectomy or radiation therapy.
Reportedly, a proportion of patients with BCR had a poor prognosis. Cumulative
studies have shown that RNA modifications participate in the cancer-related
transcriptome, but the role of pseudouridylation occurring in lncRNAs in PCa
remains opaque.

Methods: Spearman correlation analysis and univariate Cox regression were utilized
to determine pseudouridylation-related lncRNAs with prognostic value in PCa.
Prognostic pseudouridylation-related lncRNAs were included in the LASSO (least
absolute shrinkage and selection operator) regression algorithm to develop a
predictive model. KM (Kaplan-Meier) survival analysis and ROC (receiver operating
characteristic) curves were applied to validate the constructed model. A battery of
biological cell assays was conducted to confirm the cancer-promoting effects of
RP11-468E2.5 in the model.

Results: A classifier containing five pseudouridine-related lncRNAs was developed to
stratify PCa patients on BCR and named the “ψ-lnc score.” KM survival analysis
showed patients in the high ψ-lnc score group experienced BCR more than those in
the low ψ-lnc score group. ROC curves demonstrated that ψ-lnc score
outperformed other clinical indicators in BCR prediction. An external dataset,
GSE54460, was utilized to validate the predictive model’s efficacy and
authenticity. A ceRNA (competitive endogenous RNA) network was constructed
to explore themodel’s potential molecular functions andwas annotated through GO
(Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
analyses. RP11-468E2.5 was picked for further investigation, including pan-cancer
analysis and experimental validation. Preliminarily, RP11-468E2.5 was confirmed as a
tumor promoter.

Conclusion: We provide some evidence that pseudouridylation in lncRNA played a
role in the development of PCa and propose a novel prognostic classifier for clinical
practice.
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1 Introduction

According to the cancer statistics in the United States in 2022,
prostate cancer alone will account for 27% (268,490/983,160) of cancer
diagnoses in men, exceeding lung cancer to be the top one (Siegel et al.,
2022). On the other hand, PCa was the second most diagnosed
worldwide, only behind lung cancer (Siegel et al., 2021; Sung et al.,
2021). Generally, localized PCa patients can yield a favorable
prognosis after radical prostatectomy (RP) or radiation therapy
(RT). However, biochemical recurrence (BCR), recognized as a
detectable serum prostate-specific antigen (PSA) elevation within
10-year follow-ups, occurs in one-third of patients with RP or RT
(Pound et al., 1999; Freedland et al., 2007; Boorjian et al., 2011; Van
den Broeck et al., 2019). Furthermore, a long-term follow-up BCR
study reported that about 24% of patients with BCR developed clinical
progression, and the cancer-related mortality hit approximately 16%
(Boorjian et al., 2011; Van den Broeck et al., 2019). Therefore,
predicting the probability of developing BCR appears pivotal to the
prognosis of PCa patients with the increasing incidence rate of PCa.

Thanks to the general application of next-generation sequencing
to whole genomes and transcriptomes, numerous pieces of evidence
show that less than 2% of the human genome encodes proteins while
the rest is transcribed into non-coding RNAs (ncRNAs) (Djebali et al.,
2012). Genetic mutations are primarily responsible for cancer, and
most of the mutations reside inside the regions that transcribe ncRNAs
(Huarte, 2015). In particular, more-than-200-nucleotide long non-
coding RNAs (lncRNAs) take up a giant population of ncRNAs, and
remarkably, they are gaining more and more attention in the cancer
paradigm for exerting dual functions as both oncogenic and tumor-
suppressive factors (Sánchez and Huarte, 2013). Given that lncRNAs
are reportedly tissue-specific, it is likely that they may share some
specific connections with certain cancer subtypes, shedding light on
the development of novel biomarkers for the diagnosis, prognosis, or
therapeutic targets of cancers (Ling et al., 2015). For instance, prostate
cancer antigen 3 (PCA3), the first FDA-approved lncRNA, appears as
a promising and pragmatic biomarker for supporting PCa diagnosis
(Sartori and Chan, 2014; Sánchez-Salcedo et al., 2021).

RNA modifications are gradually coming into focus due to the
development of novel modification detection methods and the
realization that ncRNAs are no longer “junks” in the genome and
their expression links to complex physiological and pathological
processes (Ling et al., 2015; Barbieri and Kouzarides, 2020). Like
DNA and proteins, RNAs can be subject to over 170 post-
transcriptional modifications, catalyzed by highly conserved
enzymes whose dysregulation leads to a broad spectrum of
illnesses, including cancer (Jonkhout et al., 2017; Dinescu et al.,
2019; Wiener and Schwartz, 2021). Among all these RNA
modifications, seven kinds connect to cancer pathogenesis the
strongest, such as 7-methylguanosine modification (m7G), N6-
methyladenosine modification (m6A), N1-methyladenosine
modification (m1A), 5-methylcytosine modification (m5C),
pseudouridylation (ψ) and so forth but the underlying machinery
of these modifications except m6A in the cancer field, has remained
opaque (Barbieri and Kouzarides, 2020). Of the seven ones,
pseudouridylation was the first discovered in the 1950s, once called
the “fifth RNA nucleotide” (Davis and Allen, 1957) and the most
abundant modification in total RNA of human cells (Penzo et al., 2017;
Barbieri and Kouzarides, 2020). Pseudouridine used to be frequently
detected and studied in tRNA, rRNA, and snRNA (small nuclear

RNA); until recently, it was also discovered in mRNA and lncRNA,
especially cancer-related lncRNA (Song and Yi, 2017; Dinescu et al.,
2019). For example, ψ sites appeared in lncRNAs such as MALAT1
(metastasis-associated lung adenocarcinoma transcript one), XIST
(X-inactive specific transcript), TERC (telomerase RNA
component), SNHG1 (Small nucleolar RNA host gene one), ZFAS1
(Zinc finger antisense one), etc. Each of them is related to different
malignant processes. Unfortunately, there is no established
relationship between ψ modification and cancer events, and further
studies are required to confirm this correlation. No previous study has
revealed the value of ψ-related lncRNAs in PCa. As a result, in this
study, we attempted to develop a ψ-related lncRNA predictive model
to serve BCR-risk stratification in PCa patients, validate it internally
and externally, and investigate its effects on cancer progression using
preliminary experiments.

2 Materials and methods

2.1 Data processing

For bioinformatics analysis, TCGA (The Cancer Genome Atlas)
dataset for prostate adenocarcinoma (PRAD) with patients’ clinical
data (n = 547; tumor tissue = 495, normal tissues = 52) was obtained
from the TCGAwebsite (https://portal.gdc.cancer.gov/), and only patients
with biochemical recurrent time >1 month (n = 460) were included in the
survival analyses. Additionally, the GSE54460 dataset (n = 100) was
acquired from the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). The baseline information for both datasets
is deposited in Supplementary Table S1. And we processed the data
following the instructions in one article (Li et al., 2021). FPKM
(Fragments Per Kilobase Million) data was first transformed into TPM
(Transcript Per Million) form and then normalized through log2 (TPM
+1). We included R software (version: 4.1.0) and two website tools,
“Sangerbox 3.0” (http://vip.sangerbox.com/) and “GEPIA2” (http://
gepia2.cancer-pku.cn/), for analyses in the study.

2.2 Identification of pseudouridine-related
lncRNAs

From literature mining (Rong et al., 2021), 13 pseudouridine-related
genes were collected. Then, the expression data of these 13 genes and all
lncRNAs from the TCGA-PRAD dataset was extracted. In addition,
Spearman’s correlation analysis (de Winter et al., 2016) was employed to
look into the relationship between lncRNAs and the 13 Ψ-related genes
(criteria: |Spearman R| > .4 and p < .05). Eventually, 265 lncRNAs were
qualified (Supplementary Table S2). Next, univariate Cox regression
analysis (Cox, 1972) was performed on these 265 lncRNAs to evaluate
their prognostic values, and finally, 100 lncRNAs with p-value <.05 stood
out (Supplementary Table S2).

2.3 Construction and validation of the Ψ-
related predictive model

The LASSO (Least Absolute Shrinkage and Selection Operator)
regression (Tibshirani, 1996) algorithm with ten-fold cross validation
and penalty (R package “glmnet”) was applied to narrow down the
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number of genes for establishment of the predictive model. The
algorithm constructed different models by including various
numbers of Ψ-related lncRNAs (n = 100), and the minimum
criteria chose the penalty parameter (λ). Ultimately, a five-gene
model with the best performance was selected and named the “Ψ-
lnc score”. The Ψ-lnc score comes from the formula:

Ψ − lnc score � ΣN
i�1 Coef f icienti × Expression level of lncRNAi( )

Where “N” (N = 5) represents the total number of the lncRNAs in the
predictive model, “Coefficienti” denotes a specific lncRNA’s
coefficient, and “Expression level of lncRNAi” refers to the relative
expression level of a certain lncRNA.

The TCGA PCa patients were separated into two balanced
subsets (the training subset and the testing subset, each
number = 230) using the createDataPartition function in R, and
the specific Ψ-lnc score for every patient was calculated using the
formula above. Given the median scores in the subsets (.296 in the
training subset and .288 in the testing subset), the low- and high-Ψ-
lnc score subgroups were defined. The Kaplan–Meier (KM) survival
analysis (Kaplan and Meier, 1958; Kim et al., 2018; Bichindaritz,
2021; Bichindaritz et al., 2021) in the “survminer” package depicted
the BCR-free survival probability curves between the subgroups.
The “survivalROC” package drew the 12-, 36-, and 60-month ROC
(Receiver Operating Characteristic) curves (Mandrekar, 2010) to
evaluate the predictive power of Ψ-lnc score, and the AUCs (Area
Under the Curve) of Ψ-lnc score and typical clinicopathological
traits were calculated to compare their clinical value. The
GSE54460 dataset (N = 100) validated the predictive model
externally.

2.4 Construction of ceRNA network and
functional enrichment analysis

The “GDCRNAtools” package was introduced to help construct
the potential competitive endogenous RNA (ceRNA) network
(Salmena et al., 2011; Li et al., 2018), and the website tool,
“Sangerbox 3.0” (http://vip.sangerbox.com/), conducted the
functional enrichments of the mRNAs included in the ceRNA
network mentioned above.

2.5 Cell culture, RNA extraction, and RT-qPCR
assays

Two PCa cell lines, LNCaP and C4-2B, were acquired from the
BeNa Culture Collection. Subsequently, both cell lines were cultured in
RPMI-1640 media. In addition, 10% fetal bovine serum and 1%
Penicillin-Streptomycin solution are combined to make the culture
media. The cultivation temperature was 37°C, and the concentration of
CO2 was 5%. Total RNAs from LNCaP and C4-2B cells were extracted
using Trizol reagent (15596018, Takara), and they were then reverse-
transcribed into cDNA with the help of TransScript All-in-one First-
Strand cDNA Synthesis SuperMix for qPCR (AT341-01, TransGen).
RT-qPCR (Real-time quantitative PCR) assays were carried out using
the PerfectStart Green (AQ601-02, TransGen) on an Applied
Biosystems 7,500 Real-Time PCR System. Eventually, the relative
expression of RP11-468E2.5 and other four lncRNAs (GAS1RR,
RP11-400K9.4, RP11-400K9.3, and LINC02688) were calculated

using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the
reference. All the experiments were equipped with three replicates.
Supplementary Table S7 shows the primers for RP11-468E2.5,
GAS1RR, RP11-400K9.4, RP11-400K9.3, and LINC02688.

2.6 Patient samples

Prostate cancer tissues (n = 10) and benign prostatic hyperplasia
tissues (n = 10) were collected, respectively, from patients of Zhujiang
Hospital, Southern Medical University. Fresh tissues were viewed and
approved by two pathologists, frozen immediately in liquid nitrogen,
and stored at −80°C.

2.7 RNA interference and loss of function
assays

GenePharm Company synthesized siRNAs targeting RP11-
468E2.5. RT-qPCR confirmed the transfection efficiency after the
transfection of siRNAs along with siRNA-Mate (GenePharm) for
72 h. The CCK-8 (Cell Counting Kit-8, MA0218-5, Meilunbio) cell
viability assay and colony formation assay inspected the proliferative
ability of PCa cell lines after knocking down RP11-468E2.5. The
transwell assay examined the change in the invasiveness of PCa
cells with downregulation of RP11-468E2.5. Detailed procedures for
the above assays are accessible in our previous study (Zhong et al.,
2021). All experiments were performed in triplicates. siRNAs targeting
sites in RP11-468E2.5 are in Supplementary Table S7.

2.8 Statistical analyses

All bioinformatics analyses were performed by R software version
4.1.0 (The R Project for Statistical Computing, Vienna, Austria). The
Spearman’s correlation analysis analyzed the correlation between the
Ψ-related regulators and lncRNAs. The “survival” package carried out
KM survival analysis, and the “survminer” package performed Cox
regression analysis. GraphPad Prism 7.0 (GraphPad, La Jolla, CA,
United States) analyzed the results of RT-qPCR and CCK-8 cell
viability assays. We displayed all statistical results in mean ± SD
(standard deviation) with a two-sided test and regarded the results
with a p-value of less than .05 as statistically significant.

3 Results

3.1 The landscape of pseudouridylation-
related modulators in PCa

The workflow diagram is displayed in Figure 1. Initially, a
pseudouridylation-related gene list (PUS1, RPUSD3, TRUB1, PUS3,
RPUSD4, RPUSD2, PUS10, PUS7, PUSL1, PUS7L, RPUSD1, DKC1,
and TRUB2) was generated via literature mining, and then their
expression profiling in the TCGA dataset for prostate
adenocarcinoma (TCGA-PRAD) was investigated. As shown in
Figure 2A, most of the pseudouridylation-related molecules (8 out
of 13) were significantly upregulated in tumor samples (n = 492)
compared to normal ones (n = 52). Then the CNV (copy number
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variation) mutation data in these genes was examined (Figure 2B).
Notably, CNV depletion exists in the majority of them (PUS1,
RPUSD3, TRUB1, PUS3, RPUSD4, RPUSD2, PUS10, PUS7,
PUSL1, and PUS7L), whereas CNV amplification is prevalent in
three of them (RPUSD1, DKC1, and TRUB2). Moreover, Figure 2C
depicted the locations of these genes with CNV mutations on
chromosomes. In line with this, the somatic mutations of these
molecules in PCa were determined using an R package called
“maftools.” As a result, only 8 (1.62%) of 495 samples experienced
genetic mutations of these genes (Figure 2D). The missense mutation
accounts for a giant proportion, followed by multi-hit mutation, in-
frame deletion, frame-shift deletion, and splice-site mutation.

3.2 Establishment of the prognostic model
with pseudouridylation-related LncRNAs and
its association with clinical characteristics
in PCa

The expression profile of all lncRNAs in TCGA-PRAD was
extracted to ascertain the lncRNAs associated with
pseudouridylation in PCa. Spearman’s correlation analysis then
defined the pseudouridylation-related lncRNAs as ones whose
correlation coefficients exceed |.4| with a p-value less than .05.
Consequently, we obtained 265 pseudouridylation-related lncRNAs
(Supplementary Table S1). Next, univariate Cox proportional hazards
regression was applied to figure out which lncRNAs presented
prognostic value in PCa among these 266 lncRNAs. Consequently,
100 out of 265 lncRNAs appeared to be the prognostic ones
(Supplementary Table S2). Subsequently, using the
createDataPartition function in R, the TCGA-PRAD dataset with
460 samples were divided into two balanced subsets: one training
subset and one testing subset, both of which contained 230 patients,
respectively. In the training set, the LASSO regression with ten-fold
cross validation and penalty was applied to determine the most
appropriate prognostic model, using the 100 pseudouridylation-
related lncRNAs above (Supplementary Figure S1A). And finally, a
five-gene model was considered the most suitable one based on the
LASSO results (Supplementary Figure S1B). Following that, the
relationship between clinical characteristics and the expression of
the five molecules was revealed in the form of a heatmap. Patients
with high expression of RP11-468E2.5 (ENSG00000259321) tended to
experience advanced T stage, high Gleason scores (GS), BCR, and
lymph node metastasis (Supplementary Figure S1C). To further
confirm our preliminary discovery, the samples were separated into
several binary subgroups based on the GS (GS <= 7; GS > 7), N stage
(N0; N1), T stage (T1/2; T3/4), etc. (Supplementary Figure S2). To
begin with, patients with GS > 7 expressed more RP11-468E2.5 than
those with GS <= 7 (p < .001); in contrast, patients with GS >
7 expressed the other four lncRNAs less (Supplementary Figure
S2B). Aside from GS, patients in the N-stage and T-stage
subgroups had the same expression patterns for RP11-468E2.5 (p <
.05) and the other four lncRNAs (Supplementary Figures S2C,D). Next
ten pairs of samples from local patients with PCa or benign prostatic
hyperplasia (BPH) corroborated the difference in expression of these
five lncRNAs between tumor (n = 10) and benign tissues (n = 10)
(Supplementary Figure S2E). The expression disparity of four
lncRNAs except for LINC02688 between tumor and benign
prostate tissues was consistent with the findings above.

3.3 Performance and validation of the
predictive model with the pseudouridylation-
related LncRNAs

After generating the predictive model, Spearman’s correlation
analysis confirmed the association between the 13 pseudouridylation-
related genes and the five pseudouridylation-related lncRNAs and it was
presented in the form of a correlation heatmap; generally, a strong
correlation showed up between these two subgroups of genes
(Figure 3A). Given the LASSO results, a scoring formula based on the
weighted expressions of the five chosen genes for scoring every PCa
patient’s prognosis was determined and named the “Ψ-lnc score.” The
weighted coefficients for each lncRNA were also displayed in a histogram
(Figure 3B). In addition, univariate Cox regression analysis confirmed the
prognostic value of these lncRNAs, and then the results were exhibited in
a forest plot (Figure 3C). Notably, RP11-468E2.5 appeared to be the only
risk factor with a hazard ratio (HR) of 2.36 (CI: 1.723–3.232), whereas the
others were all protective variables. Subsequently, KM survival curve
analysis were introduced to confirm the effects of their expression on PCa
prognosis (Supplementary Figures S3A–E). Consistent with the results
above, patients with high expression of RP11-468E2.5 had unfavorable
BCR-free survival (p < .001); in contrast, patients with high expression of
each of the other four lncRNAs experienced better BCR-free
survival (p < .05).

Initially, every patient in the training subset was scored using the
formula mentioned above; then, the median score served as the cutoff
point to define the high-score and low-score groups inside the training
subset. Consequently, Figure 3D depicts the distribution of the Ψ-lnc
score, BCR status, expression of the five genes for two subgroups, and
the survival analysis. Graphically, more patients who experienced BCR
and showed highly-expressed RP11-468E2.5 were in the high-score
group than those in the low-score group. In terms of survival, patients in
the high-score group had a lower rate of BCR-free survival than those in
the low-score group (p < .0001). Following that, ROC analysis was
employed to draw the 1-year, 3-year, and 5-year ROC curves, calculating
the corresponding AUCs to scrutinize the model’s clinically predictive
capability (Figure 3E). Remarkably, the five-gene predictive approach
showed promise in predicting BCR prognosis in PCa patients (1-year
AUC = .815; 3-year AUC = .804; 5-year AUC = .833). In parallel, a
multivariate ROC analysis confirmed the feasibility of the model in
clinical practice. Compared with some clinical traits like preoperative
PSA, age at diagnosis, GS and T stage in BCR prognosis, theΨ-lnc score
outperformed them with its AUC ranking first (.744; AUCGS = .671,
AUCPSA = .659, AUCT stage = .659, AUCAge = .516). Additionally, two
Cox regression models (the univariate and multivariate ones) were
employed to investigate the clinical value of Ψ-lnc score and the
aforementioned clinicopathological features (Supplementary Figure
S4). Consequently, Ψ-lnc score surpassed all other features with
the highest HR both in univariate and multivariate Cox regression
analysis.

Likewise, the established model was then internally validated with
the TCGA-PRAD testing subset. After separating the testing subset
into the high-score and low-score groups based on the median Ψ-lnc
score, the analyses above were repeated to verify the model’s
authenticity. Figure 4A displays the Ψ-lnc score distribution, BCR
status, and gene expression profiles in the two groups. Figure 4B shows
that patients in the low-score group yielded more favorable BCR-free
survival outcomes than those in the high-score group (p < .0001),
consistent with the previous results. In terms of predictive power, the
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model’s 12-month, 36-month, and 60-month AUCs in the testing
subset are .637, .715, and .775, respectively, harboring considerable
outcomes (Figure 4C). Finally, the GSE54460 dataset was introduced
to inspect the model’s external validity (Figures 4D,E). Patients in the
high-score and low-score groups showed a significant difference in
BCR-free survival; high-score patients yielded worse outcomes than
low-score ones.

3.4 Construction of the potential competing
endogenous RNA network and functional
enrichment analysis

Following a preliminary examination of the predictive model’s
performance, attention was drawn to the molecular functions that
these genes may possess. It is well known that lncRNAs are likely

FIGURE 1
The overall design and the flowchart of the study.
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involved in the ceRNA network to exert their effects. Thus, the
processed expression data from the TCGA-PRAD dataset was
utilized to explore the potential ceRNA network with the help of
an R package called “GDCRNAtools.” Given the results, all
the lncRNA-miRNA-mRNA pairs with their p-values and
correlation coefficients were obtained. The pairs
above were then filtered under the inclusive conditions (p <
.05 and |correlation coefficients| > .4) to form the ceRNA network.

As a result, a ceRNA network of 754 molecules (5 lncRNAs,
121 microRNAs, and 628 mRNAs) was identified and then
visualized using the software “Cytoscape” (Figure 5). Red circles
indicate the five lncRNAs, yellow lozenges represent the
121 microRNAs, and blue rectangles represent the 628 mRNAs in
the diagram. Detailed links among these three elements are available in
Supplementary Table S3. Later, the 628 mRNAs were put into
functional enrichment analysis to further investigate their potential

FIGURE 2
The landscape of Ψ-related regulators on expression, mutation, and chromosome location in PCa. (A) The differences of gene expression of the 13 Ψ-
related regulators between tumor tissues and adjacent normal tissues in the TCGA-PRAD cohort. Ns, no significance; **p < .01; ***p < .001; ****p < .0001. (B)
The CNV frequency diagram of the 13 Ψ-related regulators. The two endpoints of each column correspond to two CNV values of a specific Ψ-related gene,
with a blue point representing the depletion (Loss) frequency and a pink point denoting the amplification (Gain) frequency, respectively. (C) The exact
mutation locations of the 13 Ψ-related regulators on chromosomes. (D) Eight of 495 (1.62%) PCa patients appeared genetic alterations in the 13 Ψ-related
regulators, most of which were missense mutations. The percentages (0%) on the right indicate the mutation frequencies of each Ψ-related regulator,
respectively. Each column represents an Ψ gene-mutated individual.
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roles in biological processes. And the website tool called “Sangerbox
3.0” was applied to carry out the enrichment analyses, revealing the
gene ontology (GO) terms and KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathways highly related to these genes. The GO terms
with p < .05 and FDR (false discovery rate) < .25 were considered
significant; the KEGG pathways with p < .05 were also considered
meaningful. On the one hand, the top 10 GO terms from each of the

three categories (BP, Biological Process; CC, Cellular Component; MF,
Molecular Function) were chosen to exhibit in Figures 6A,B. In
particular, attention was paid to the underlying biological
processes. The top 10 GO terms in BP are regulation of alkaline
phosphatase activity (GO:0010692), pigmentation (GO:0043473),
positive regulation of alkaline phosphatase activity (GO:0010694),
endosomal transport (GO:0016197), cell-substrate junction

FIGURE 3
Construction of the prognostic model with Ψ-related lncRNAs. (A) The heatmap demonstrates the correlation between the 13 Ψ genes and the five
lncRNAs included in the model. *p < .05; **p < .01; ***p < .001. (B) The coefficients of each selected lncRNA in the Ψ-lnc scoring formula. (C) The forest plot
shows the univariate Cox regression results of the five lncRNAs. (D) The first diagram depicts PCa patients’ profiles on three aspects, Ψ-lnc score, BCR status,
and the five genes’ expression levels, in the TCGA training subset. The second one shows the Kaplan-Meier BCR survival analysis between two Ψ-lnc
score subgroups in the training subset. (E) The ROC curves show the accuracy of the Ψ-lnc score in predicting BCR-free survival, and the Ψ-lnc score
outperforms other clinical indicators.
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assembly (GO:0007044), positive regulation of pseudopodium
assembly (GO:0031274), response to cadmium ion (GO:0046686),
atrial septum development (GO:0003283), regulation of
pseudopodium assembly (GO:0031272), and adherens junction
assembly (GO:0034333). On the other hand, the top 10 KEGG
pathways were also displayed in the form of a ring plot as shown
in Figure 6C, including axon guidance (hsa04360), dilated
cardiomyopathy (DCM) (hsa05414), phosphonate and phosphinate
metabolism (hsa00440), 2-oxocarboxylic acid metabolism (hsa01210),
hypertrophic cardiomyopathy (HCM) (hsa05410), TGF-beta
signaling pathway (hsa04350), necroptosis (hsa04217), regulation of
actin cytoskeleton (hsa04810), sulfur relay system (hsa04122), and
glutathione metabolism (hsa00480). The complete information about
the GO and KEGG analyses is in Supplementary Table S4.

3.5 Pan-cancer analysis and experimental
validation of RP11-468E2.5’s effects on PCa

RP11-468E2.5 was the only risk factor with an HR of 1.86 in the
established model (Figure 3C), indicating its cancer-promoting effects,
so we decided to study its role in cancer, especially PCa, further. At the
beginning, a pan-cancer analysis was performed to explore the
relationship between its expression and tissue type (normal, tumor)
and between its expression and cancer prognosis. Sangerbox 3.0 was
used with TCGA data to determine the expression difference of RP11-
468E2.5 between tumor-adjacent and tumor samples in each type of
tumor, and unpaired Wilcoxon Rank Sum and Signed Rank Tests was
implemented to analyze the significance of the difference.
Consequently, RP11-468E2.5 is up-regulated significantly (p < .05)

FIGURE 4
Validation of the prognostic model with Ψ-related lncRNAs. (A) The PCa patients’ profiles on three aspects, Ψ-lnc score, BCR status, and the five genes’
expression levels, in the TCGA testing subset. (B) The Kaplan-Meier BCR survival analysis between two Ψ-lnc score subgroups in the testing subset. (C) The
ROC curves show the accuracy of theΨ-lnc score in predicting BCR-free survival. (D) The PCa patients’ profiles on three aspects,Ψ-lnc score, BCR status, and
the five genes’ expression levels, in the GSE54460 validating dataset. (E) The Kaplan-Meier BCR survival analysis between two Ψ-lnc score subgroups in
the GSE54460 validating dataset.
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in fourteen types of tumors such as PRAD, LUAD (Lung
adenocarcinoma), COAD (Colon adenocarcinoma), COADREAD
(Colon adenocarcinoma/Rectum adenocarcinoma), ESCA
(Esophageal carcinoma), STES (Stomach and Esophageal
carcinoma), KIRP (Kidney renal papillary cell carcinoma), KIRC
(Kidney renal clear cell carcinoma), KIPAN (Pan-kidney cohort;
KICH, Kidney Chromophobe; KIRC; KIRP), STAD (Stomach
adenocarcinoma), HNSC(Head and Neck squamous cell
carcinoma), LIHC (Liver hepatocellular carcinoma), BLCA (Bladder
urothelial carcinoma), and CHOL (Cholangiocarcinoma), as shown in
Supplementary Figure S5A. Next, the Cox proportional hazards
regression model analyzed the relationship between RP11-468E2.5’s
expression and the prognosis of each tumor, one by one. Then the Log-
rank test was run to obtain prognostic significance. Finally, the high
expression of RP11-468E2.5 in the three types of tumors (PRAD;
LUSC, Lung squamous cell carcinoma; ACC, Adrenocortical
carcinoma) shows a poor prognosis while the low expression level
of RP11-468E2.5 in another four types of tumors (PAAD, Pancreatic
adenocarcinoma; SKCM, Skin Cutaneous Melanoma; BLCA; READ)
indicates a poor prognosis (Supplementary Figure S5B). Therefore,
RP11-468E2.5 is upregulated generally in tumors and its expression
demonstrates dual effects on cancer patients’ prognosis.

Then experiments were performed to confirm RP11-468E2.5’s
role in PCa. To begin with, detailed information on RP11-
468E2.5 was scrutinized (Figure 7A). RP11-468E2.5 is a lncRNA
of 1,000 bp, located on Chromosome 14: 24,139,445–24,140,444.
The basal expression of RP11-468E2.5 was checked in six PCa cell
lines and one normal prostate cell line (Figure 7B). As a result,

RP11-468E2.5 is highly-expressed in four out of six PCa cell lines
(LNCaP, C4-2, C4-2B, and 22Rv1) compared to the normal prostate
cell line, BPH-1. Thus, two cell lines with the highest expression
levels of RP11-468E2.5, LNCaP and C4-2B, were selected for
further research. As shown in Figure 7C, three si-RNAs (si-62,
si-122, and si-339) were designed to interrupt the expression of
RP11-468E2.5 in LNCaP and C4-2B; however, only si-62 and si-122
silenced RP11-468E2.5 significantly, compared to the control
group, si-NC. Fluorescence in situ hybridization (FISH) assays
showed that RP11-468E2.5 mainly exists in the cytoplasmic part
of LNCaP and C4-2B cell lines (Figure 7D). Furthermore, its
subcellular localization was confirmed in tissues collected from
patients with PCa or BPH (Figure 7E). Consistent with our previous
findings, RP11-468E2.5 appears highly expressed in the tumor
tissue compared to benign prostate tissue. Then the CCK-8
assay examined whether the two RP11-468E2.5-silenced cell
lines’ proliferative ability was attenuated. After the 5-day
observation, silencing RP11-468E2.5 slowed PCa cells’
proliferation significantly (Figure 7F). In another aspect, plate
colony formation assay was performed to investigate the
influence of knocking down RP11-468E2.5 on PCa cells’
proliferation ability. Consequently, knock-down of RP11-
468E2.5 imposed an attenuative effect on PCa cell viability, too
(Figure 7G). The transwell assay demonstrated the decreased
invasiveness of PCa cells after downregulating RP11-468E2.5
(Figure 7H). Silencing RP11-468E2.5 hindered PCa cells’
invasive ability. Taken together, RP11-468E2.5 was preliminarily
confirmed to act as a promoting factor in the development of PCa.

3.6 Functional enrichment analysis for RP11-
468E2.5

In spite of RP11-468E2.5’s cancer-promoting effects on PCa, the
underlying mechanism remains opaque. Thus, RP11-468E2.5 and its
top 1,000 similar genes (Supplementary Table S5) obtained from the
website GEPIA2 were used to perform functional enrichment
analysis. Likewise, the GO terms with p < .05 (FDR <.25) and the
KEGG pathways with p < .05 were considered significant. Figure 8
exhibited the 10 GO terms (except for the MF category) and the top
eight KEGG pathways. Specifically, the GO terms in the biological
process category are as follow: RNA splicing (GO:0008380), mRNA
processing (GO:0006397), RNA processing (GO:0006396), RNA
splicing, via transesterification reactions with bulged adenosine as
nucleophile (GO:0000377), mRNA splicing, via spliceosome (GO:
0000398), RNA splicing, via transesterification reactions (GO:
0000375), mRNA metabolic process (GO:0016071), cellular
response to DNA damage stimulus (GO:0006974), mRNA export
from nucleus (GO:0006406), and mRNA-containing
ribonucleoprotein complex export from nucleus (GO:0071427).
And the top eight KEGG pathways are as foloow: mRNA
surveillance pathway (hsa03015), Spliceosome (hsa03040), Ether
lipid metabolism (hsa00565), Fanconi anemia pathway
(hsa03460), Base excision repair (hsa03410), Other glycan
degradation (hsa00511), Glycerophospholipid metabolism
(hsa00564), and alpha-Linolenic acid metabolism (hsa00592).
These results may shed some light on the RP11-468E2.5’s
molecular functions. Detailed information about the functional
enrichment results is in Supplementary Table S6.

FIGURE 5
The ceRNA network of five lncRNAs with potential miRNAs and
mRNAs.
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4 Discussion

The “central dogma” has become the consensus in molecular
biology for a drastically long period; The biological diversity all comes
from the changes in the nucleotide sequences in DNA/RNA and the
64 codons together to determine the amino acid sequences (Boriack-
Sjodin et al., 2018). With techniques for sequencing RNA and DNA
pioneered by Fred Sanger in the 1960s and 1970s (Brownlee et al.,

1967; Sanger et al., 1977), scientists have been gradually gaining access
to the biological details inside these macromolecules. Simultaneously,
the effects of chemical modifications to DNA and post-translational
modifications to proteins on gene regulation and cancer biology have
gained incredible attention in the research community (Esteller, 2007;
Chen et al., 2017). Despite this, our understanding of an intermediate
layer of regulation between DNA and proteins is still relatively limited.
As numerous RNA modifications have come to light, they collectively

FIGURE 6
The functional enrichment analysis of 628mRNAs in the ceRNA network. (A,B) The diagrams show the top 10 terms in three parts (BP, CC, and MF) of the
GO analysis. (C) The top 10 pathways in the KEGG analysis.
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constitute the concept of “epitranscriptome” (Saletore et al., 2012).
These modifications regulate almost every aspect of RNA, such as
splicing, nuclear export, translation, degradation, and so on (Gilbert

et al., 2016; Peer et al., 2017). It is becoming clear that RNA
functioning depends on RNA modifications greatly. And with the
dysregulation of RNA epigenetic processes come common human

FIGURE 7
Experimental validation of RP11-468E2.5’s cancer-promoting effects on PCa. (A) The gene information of RP11-468E2.5. (B) The basal expressions of
RP11-468E2.5 in six PCa cell lines and one normal prostate cell line (BPH-1). (C) The gene-silencing efficiencies of three siRNAs in LNCaP and C4-2B PCa cell
lines. (D) The fluorescence in situ hybridization (FISH) assays illustrated that RP11-468E2.5 mainly exists in the cytoplasmic part of LNCaP and C4-2B cell lines.
(E) FISH assays confirmed that RP11-468E2.5 is highly expressed in tumor tissue compared to benign prostate tissue. (F) The proliferation (CCK-8) assays
showed silencing RP11-468E2.5 compromised cell viability in LNCaP and C4-2B cell lines. (G) The plate colony formation assays demonstrated
downregulating RP11-468E2.5 attenuated cell viability in LNCaP and C4-2B cell lines. (H) The transwell assay showed silencing RP11-468E2.5 hampered PCa
cells’ invasiveness.
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diseases, including cancer (Esteller and Pandolfi, 2017; Barbieri and
Kouzarides, 2020). Pseudouridylation is one kind of cancer-associated
internal RNA modification but is still rarely investigated in the cancer
field compared to two notable ones, m6A, and m5C chemical
modifications (Esteller and Pandolfi, 2017; Barbieri and Kouzarides,
2020; Nombela et al., 2021). Pseudouridylation is reportedly the most
abundant modification in ncRNAs, and previous studies confirmed its
existence in tRNA, rRNA, and snoRNAs. But with the birth of various

Ψ-Seq techniques, pseudouridine was also observed in lncRNAs such
as XIST and MALAT1, and among ncRNAs, lncRNAs possess the
highest abundance of pseudouridine (Li et al., 2015; Esteller and
Pandolfi, 2017). How pseudouridylation impacts cancer through
modulating lncRNA remains to be elucidated.

PCa is responsible for 7% of newly diagnosed malignancies in males
worldwide (2021). According to the GLOBOCAN 2020 estimates, Asia
accounted for 26.2% of the global PCa incidence rate and 32.1% of its

FIGURE 8
The functional enrichment analysis of a gene set including RP11-468E2.5 and its similar genes. (A) The diagrams show the top 10 terms in three parts (BP,
CC, and MF) of the GO analysis. (B) The top eight pathways in the KEGG analysis.
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mortality rate in 2020 (Sung et al., 2021). PCa is becoming an unaffordable
health issue and an economic burden for the public, even in low-
incidence-rate areas like Asia. And indeed, a deeper understanding of
PCa is urgent for improving prognosis prediction and offering therapeutic
vision. From the academic standpoint, no research on pseudouridine-
modified lncRNAs affecting PCa’s carcinogenesis or progression has
existed. Therefore, we aim to reveal some details about this novel
topic with bioinformatics and preliminary experiments.

Initially, 13 pseudouridine-related modulators (DKC1, PUS1, PUS7,
PUS10, TRUB1, TRUB2, PUSL1, RPUSD4, RPUSD3, RPUSD1,
RPUSD2, PUS3, and PUS7L) were confirmed for further analysis
(Penzo et al., 2017). Next, pseudouridine-related lncRNAs in PCa
were identified by performing Spearman’s correlation analysis between
the Ψ-related genes and all lncRNAs in the TCGA-PRAD dataset. And a
five-pseudouridine-related lncRNA scoring signature for predicting BCR
survival in PCa, named “Ψ-lnc score”, was developed by the LASSO
approach (Tibshirani, 1996), given that LASSO is broadly introduced to
the Cox proportional hazard regression model for survival analysis in the
bioscience arena (Tibshirani, 1997; Zhang and Lu, 2007). The LASSO
method generated a scoring formula based on the expression levels of the
five selected genes, of which RP11-468E2.5 tends to be a risk factor, and
the other four (GAS1RR, RP11-400K9.4, RP11-400K9.3, and LINC02688)
serve as favorable ones.

RP11-468E2.5 is a lncRNA with a length of 1,000 nucleotides,
and its influences on cancer are poorly understood. To date, only
one study showed that RP11-468E2.5 could negatively target
STAT5 and STAT6 to affect the JAK/STAT signaling pathway
indirectly (Darnell et al., 1994; Leonard and O’Shea, 1998).
Upregulating RP11-468E2.5 curtails the JAK/STAT signaling
pathway by targeting two molecules, STAT5 and STAT6, and
finally attenuates cell proliferation but boosts cell apoptosis in
colorectal cancer (Jiang et al., 2019). However, how RP11-
468E2.5 regulates STAT5 and STAT6 negatively remains to be
elucidated. In contrast, LINC02688, one of the protective
indicators in the constructed model, stays more poorly studied.
Only one study unprecedentedly revealed that LINC02688 was
expressed less in gastric cancer (GC) tissues compared to paired
adjacent normal tissues, and its expression further decreased when
GC developed into an advanced one (Fattahi et al., 2021).
Additionally, it preliminarily showed considerable prognostic
power in GC based on the AUC values of the ROC curve.
Nevertheless, more rigorous studies with more clinical samples
of different types of cancers and populations from different
genetic backgrounds are necessary to explore the exact role of
LINC02688 in cancer progression. Lastly, the other three novel
lncRNAs haven’t unveiled their roles in cancer yet.

After the model construction, the predictive accuracy of Ψ-lnc score
was then inspected using KM survival analysis and uni-/multi-variate
time-dependent ROC analysis (Heagerty et al., 2000). As a result, Ψ-lnc
score appeared to be a satisfactory indicator with the highest AUC value,
outperforming typical clinicopathological parameters such as PSA, GS,
pathological T stage, and so forth. Subsequently, a dataset (GSE54460)
was introduced for the model’s external validation; the outcomes were
consistent with the previous ones.

Increasing studies demonstrate that lncRNAs that harbor MREs
(miRNA-response elements) come up as natural miRNA decoys
(Karreth and Pandolfi, 2013). And they are bioinformatically
presumed to be broad miRNA targets, suggesting their functioning as
ceRNAs (competitive endogenous RNAs) (Griffiths-Jones et al., 2008;

Paraskevopoulou et al., 2013). With the ceRNA hypothesis, we asked
whether these five lncRNAs in the predictive model work as ceRNAs via
the R package “GDCRNAtools” and consequently obtained an interactive
ceRNA network. To better understand the ceRNA network’s functions,
functional annotation analysis (GO analysis and KEGGpathway analysis)
was performed. As mentioned before, RP11-468E2.5 was the only risk
factor with the highest coefficient in the scoring formula, suggesting its
dominant role in the model. Given the pan-cancer analysis, RP11-
468E2.5 is highly-expressed (p < .05) in fourteen types of tumors,
including PCa, compared to their correspondent normal tissues.
Additionally, its expression exerts tumor-suppressing or cancer-
promoting effects on seven kinds of malignancies. Then in vitro
experiments were implemented to validate its oncogenic role, and
consistent results were found in cell proliferation assays in two PCa
cell lines (C4-2B and LNCaP). Furthermore, its molecular functions were
annotated bioinformatically; annotation analysis using RP11-468E2.5 and
its 1,000 similar genes showed it might be involved in the RNA splicing
process.

The current study has its limitations, too. Firstly, more public
datasets are necessary for better external validation of the established
model. Secondly, more advanced experimental validation of RP11-
468E2.5 is meaningful for inspecting its molecular functions for the
sake of novel pseudouridine-related biomarker development. In
aggregate, the constructed model still has a long way to go before
it comes into practice.

5 Conclusion

A predictive model containing pseudouridine-related lncRNAs was
created to forecast BCR survival probabilities for PCa patients and
validated internally and externally. Furthermore, preliminary
experiments were performed to validate the cancer-promoting effects
of the dominant lncRNA, RP11-468E2.5, in the model. This work sheds
some insight into the influence of non-coding RNA modifications on
PCa. Still, in-depth studies need to explore how the novel modification,
pseudouridylation, functions in the cancer arena.
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Glossary

PCa prostate cancer

RP radical prostatectomy

RT radiation therapy

BCR biochemical recurrence

PSA prostate-specific antigen

ncRNA non-coding RNA

lncRNA long non-coding RNA

m7G 7-methylguanosine

m6A N6-methyladenosine

m1A N1-methyladenosine

m5C 5-methylcytosine

ψ pseudouridylation/pseudouridine

MALAT1 metastasis-associated lung adenocarcinoma transcript 1

XIST X-inactive specific transcript

TERC telomerase RNA component

SNHG1 small nucleolar RNA host gene 1

ZFAS1 zinc finger anti-sense 1

TCGA the cancer genome atlas project

TCGA-PRAD TCGAdataset for prostate adenocarcinoma (TCGA-PRAD)

GEO gene expression omnibus

FPKM fragments per kilobase million

TPM transcript per million

LASSO least absolute shrinkage and selection operator

KM Kaplan-Meier

ROC receiver operating characteristic

AUC area under the curve

ceRNA competitive endogenous RNA

GAPDH glyceraldehyde 3-phosphate dehydrogenase

CCK-8 cell counting kit-8

CNV copy number variation

GS Gleason score

BPH benign prostatic hyperplasia

HR hazard ratio

GO gene ontology

KEGG Kyoto encyclopedia of genes and genomes

BP biological process

CC cellular component

MF molecular function

FISH fluorescence in situ hybridization

GC gastric cancer

MRE MiRNA-response element
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