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The clinical and molecular phenotypes of prostate cancer (PCa) exhibit substantial
heterogeneity, ranging from indolent tometastatic disease. In this study, we aimed to
identify PCa subtypes and construct a gene signature that can predict the
recurrence-free survival (RFS) of PCa patients based on chromatin regulators
genes (CRGs). Strikingly, we identified two heterogeneous subtypes with distinct
clinical and molecular characteristics. Furthermore, by performing differential
analysis between the two CRGs subtypes, we successfully constructed a gene
signature to predict PCa prognosis. The signature, comprising four genes (MXD3,
SSTR1, AMH and PPFIA2), was utilized to classify PCa patients into two risk groups;
the high-risk group was characterized by poor prognosis and more aggressive
clinical features. Moreover, we investigated the immune profile, mutation
landscape and molecular pathways in each of the groups. Additionally, drug-
susceptibility testing was performed to explore sensitive drugs for high-risk
patients. Furthermore, we found that MXD3 downregulation suppressed the
proliferation of PCa cell lines in vitro. Overall, our results highlight the signature
based on CRGs as a powerful tool for predicting RFS of PCa patients, as well as an
indicator for personalized treatment of those patients.
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Introduction

Prostate cancer (PCa) is among the leading causes of cancer-related death in men, with
approximately 350,000 deaths annually (Sung et al., 2021). Patients with localized disease at a
low to intermediate risk of recurrence generally have a favorable outcome of 99% 10-year
overall survival if the disease is detected and treated at an early stage (Rebello et al., 2021).
However, patients with metastatic androgen-independent prostate cancer (mCRPC) have
progressive and morbid disease with a median survival of 10–12 months (Attard et al.,
2016). Therefore, considering the substantial prognostic differences, there is a need to
develop biomarkers with the potential to improve prognostic classification of PCa. The
pathogenesis, tumor outcomes, and pathological types of PCa are strongly correlated with
gene mutations and epigenetic changes, along with factors such as age, ethnicity and family
history (Sinha et al., 2019; Ge et al., 2020; Li et al., 2020). Importantly, nearly half of the
interindividual variation in PCa risk can be attributed to genetic factors (Mucci et al., 2016). For
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instance, men with a germline mutation in BRCA2 or HOXB13 have
an approximately eightfold to ninefold higher and approximately
threefold higher risk, respectively, of developing PCa than men
without a mutation (Kote-Jarai et al., 2011; Karlsson et al., 2014;
Kote-Jarai et al., 2015; Merseburger et al., 2021). Additionally, MYC is
almost ubiquitously expressed at each stage of tumor development; it
can be upregulated through direct transcriptional targeting by many
other genes, thereby driving proliferation and therapeutic resistance
(Hubbard et al., 2016). Furthermore, epigenetic alterations play
important roles in promoting PCa. One study showed that 22% of
mCRPC patients exhibited a novel epigenomic subtype associated
with hypermethylation and somatic mutations in TET2, DNMT3B,
IDH1, and BRAF (Zhao et al., 2020). Clinical and preclinical studies
have revealed epigenetic alterations (DNA methylation, histone
modification, and chromatin remodeling) that may be useful in
distinguishing among aggressive types of prostate tumors
(Kumaraswamy et al., 2021).

Chromatin regulator (CRs) are clusters of regulatory elements
with distinct functions that are strongly related to genetic changes and
epigenetic alterations (Keung et al., 2014; Lu et al., 2018). Chromatin
regulators are indispensable upstream regulatory factors of epigenetics
that modify chromatin in unique combinatorial, spatial, and temporal
patterns (Keung et al., 2014). Altered epigenetic regulation of genomic
activity is important in tumorigenesis, and multiple CRs exhibit
dysregulated gene expression patterns across cancer types.
Furthermore, high-resolution genome-sequencing efforts have
discovered numerous mutations in genes encoding epigenetic
regulators that have roles as “writers”, “readers”, ‘“editors” of CRs
which act as DNA methylator and/or chromatin states (Plass et al.,
2013; Lu et al., 2018). Lei Gu et al. found that overexpression of the
gene encoding BAZ2A (TIP5) is involved in PCa-related epigenetic
alterations that lead to disease recurrence (Gu et al., 2015). Mutations
in epigenetic pathways highlight the importance of links between gene
defects and epigenetic changes. Although there remains limited
integration of cancer epigenetic profiles with cancer genetic
profiles, a CR-based signature may be useful in forecasting the
clinical prognosis of PCa patients.

In this study, we screened chromatin regulator (CRs) related to
PCa prognosis through differential analysis and Cox analysis. On the
basis of consistent clustering findings, we identified stable molecular
subtypes with different prognostic and pathological characteristics.
Furthermore, we used differential analysis to develop a prognostic
signature based on CRs subtypes. Our findings highlight recurrence-
free survival (RFS) stratification, somatic mutations, immune cell
infiltration, nomogram construction and potential drug prediction
according to risk characteristics. Finally, we selected the hub gene
MXD3 for further validation in vitro.

Materials and methods

Patient gene profile and clinical information
data collection

This study enrolled two independent PCa cohorts. Firstly, Gene
expression (RNA-seq) transcriptome (raw counts and transcripts per
million reads (TPM)) and sample clinical profiles were downloaded
from The Cancer Genome Atlas (TCGA) database (2022.5.1) (https://
portal.gdc.cancer.gov/). Certain clinical characteristics, such as

Gleason score, which were not accessible in the Genomic Data
Commons (GDC) data portal were curated from UCSC XENA
(https://xenabrowser.net/datapages/). In total, 491 patients were
incorporated into this study. GSE70770 cohort, including 203 PCa
patients with microarray expression profile and matched
clinicopathological information were curated from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/gds/). The baseline characteristics of patients in the two
cohorts are shown in Supplementary Table S1. Chromatin
regulators (CRs) were summarized from the previous literature (Lu
et al., 2018).

Differential expression analysis and functional
enrichment analysis

We performed DESeq2 algorithm using DESeq2 R package (R
v1.36.0) to explore differentially expressed genes between the normal
prostate and tumor part. LfcShrink and “ashr” method was used to
generate more accurate estimates (Love et al., 2014). Differential
expressed chromatin regulator genes (DE-CRGs) were a

cquired by comparing normal and tumor part in TCGA and filter
criteria was |Log2Foldchange| greater than 1.2 and FDR lower than
0.05. “ClusterProfiler” R package (R v4.4.4) was applied to perform
Gene Oncology (GO) functional enrichment analysis (Yu et al., 2012).
Furthermore, we visualized co-expression potential using the R
package corrplot (R v4.1.2), to easily present co-expression and
anti-correlation between genes.

Chromatin regulators genes-based
clustering

We firstly identified DE-CRGs associated with recurrence-free
survival (RFS) by performing univariate Cox regression analysis (p <
0.05). And the heatmap was further used to present the correlation
between these genes, which was assessed by chi-square test. Then
“ConsensusClusterPlus” R package (R v1.54.0) was utilized to perform
cluster analysis to identify CRs-related subtypes (Wilkerson and
Hayes, 2010). For verification of the distinct classification between
Cluster 1 and Cluster2, we conducted principal component analysis
(PCA) using “prcomp” function in R (v4.0.4). We performed
1,000 times repetitions to determine the stability of this
classification. Kaplan-Meier (K-M) analysis was further used to
compare the clinical outcome between the two clusters.

Clinical and immune scores specific for the
CRs-related subtype

Besides, chi-square test was also utilized to assess
clinicopathological characteristics distribution between two CRs-
related subtypes. Next, we obtained ten oncogenic pathways which
are somatically altered in varying cancers. And ssGSEA algorithm was
performed to explore the distinct of the ten oncogenic pathways
between two CRs-related subtypes (Sanchez-Vega et al., 2018).
Moreover, the somatic mutation transcriptome of PCa patients was
downloaded from the TCGA database. We analyzed the somatic
mutation data by using the “maftools” R package (Mayakonda
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et al., 2018). We further applied a metagene approach utilized
previously for immune cell subpopulations for PRAD tumor
microenvironment evaluation (Bindea et al., 2013). The gene set
variation analysis (GSVA) method was used to estimate the relative
infiltration score of immune cells (Hänzelmann et al., 2013).
Furthermore, immune profile differences between two subgroups
were assessed by Wilcoxon test.

Signature development and validation based
on CRs-related subtype

Firstly, the differentially expressed genes (DEGs) between two
subtypes were obtained by using the R package “limma” (R v3.52.2)
(Foldchange> 1.5 and FDR <0.05) (Ritchie et al., 2015). Then we
intersected these DEGs with differentially expressed genes between the
normal prostate and tumor part in TCGA database for subsequent
analysis. We then used univariate Cox regression analysis to identify
genes correlated with RFS in the training cohort (p < 0.05). The least
absolute shrinkage and selection operator (LASSO) algorithm was
applied to remove the overfitting between the prognosis-associated
genes and reduce the scope of the prognosis-associated genes with
penalty parameter tuning conducted via 10−fold cross−validation
according to the R package “glmnet”. Next, the genes curated from
LASSO regression analysis were incorporated in the multivariate Cox
regression analysis. The signature risk score was calculated according
to the average expression of each gene and matched regression
coefficients generated from multivariate Cox regression analysis.
The risk score formula was calculated as follows:

Risk score = betagene1× exprgene1+ betagene2×exprgene2+
betagenen × exprgene.

Then the patients were clustered into high- and low-risk groups
based on the median risk score. In addition to the Kaplan–Meier
survival curves, we also applied the time-dependent receiver
operational feature curves (ROC) generated by the R packages
“suvminer” and “survival ROC” to evaluate the performance of the
signature risk score in predicting the RFS of PCa patient.

Construction of a nomogram including risk
score and clinical characteristics

Independent prognostic factors and related clinical parameters
were obtained from Cox stepwise regression analysis for constructing
a prognostic nomogram to predict 1-, 2-, and 3-year RFS for PCa
patients. Then we used Calibration curves of 1-, 2-, and 3-year to
evaluate the reliability of this nomogram. Moreover, we also utilized
the decision curve analysis (DCA) to compare the performance of
clinical parameters and the nomogram model.

Comparison of clinical parameters, immune
scores and TMB between different risk group

We exerted chi-square tests on the related clinical characteristics
in different risk groups including T stage, Gleason score, and clinical
outcome. CIBERSORT is an online tool for quantifying the infiltration
abundance of 22 types of immune cells according to the basement of
linear support vector regression (Chen et al., 2018). Aiming to estimate

the immune cell function between the different risk groups, we used
CIBERSORT to calculate the abundance of Tumor-infiltrating
immune cells (TIICs) in PRAD. We further drew a comparison in
the abundance of tumor infiltrating immune cells between the high-
and low-risk groups by Wilcoxon test. Besides, the ESTIMATE
algorithm was utilized to assess immune infiltration in PRAD
patients (Li et al., 2017). Moreover, a Spearman correlation analysis
between immune infiltrating cells and risk score or core genes
constituting the risk score was performed. Additionally, we also
performed chi-square test analysis to explore the TMB differences
in the HR and LR subtype.

Distinct molecular characteristics between
high-risk group and low-risk group

To explore the differences of molecular characteristics between the
CRGs subgroups, we performed the gene set enrichment analysis
(GSEA) based on the “ClusterProfiler” R package. GSVA enrichment
analysis was also carried out to compare the transcriptomic
remodeling using GSVA R package (R v1.44.2). “Limma” package
was also utilized to nominate the distinct molecular pathways between
the two subgroups (p < 0.05 was considered significant). Besides, we
used “pRRophetic” R package to explore the therapeutic sensitivity
and the concentration inducing 50% reduction growth (IC50) of
targeted inhibitors. Then we performed Wilcoxon test to compare
the IC50 difference between the two subgroups.

Cell culture

The human Pca cell lines PC3 and C4-2 were purchased from the
American Type Culture Collection (Manassas, United States) and
cultured in RPMI-1640 medium (Corning, Inc., Corning, NY,
United States) containing 10% fetal bovine serum (GIBCO) and 1%
penicillin/streptomycin (GIBCO). All cells were grown at 37 °C in a 5%
CO2 humidified incubator.

Plasmids and lentivirus infection

Short hairpin RNA (shRNA) expression sequences are
documented in Additional file: Table S3. Then these sequences
were cloned into the pLKO.1 vector. And plasmids were
transfected into HEK293FT cells utilizing PEI 25K (23966–1;
Polysciences, Warrington, PA, United States) based on the
manufacturer’s instructions. PC3 and C4-2 cells were transduced
with lentivirus, and stable transformants were selected with
puromycin (5 μg/ml) for 7 days.

Real-time PCR analysis

RNAwas isolated using TRIzol reagent (Invitrogen) in accordance
with the manufacturer’s instructions. Then 1 ug of total RNA was
reverse transcribed into cDNA using a PrimeScript™ first Strand
cDNA Synthesis Kit (6110A; TaKaRa). qRT-PCR was conducted using
TB Green Premix ExTaq (Tli RNaseH Plus) (RR420; TaKaRa) on the
ABI7500 System (Applied Bio Systems, Foster City, CA,
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United States). Then we used 2 −ΔΔCtmethod to calculate the relative
expression levels of genes. GAPDH was considered as an internal
control for RT-PCR. Primers used to amplify genes of interest were
listed in Additional file Table S3.

Cell growth and colony formation assay

Cell growth was detected by Cell Counting Kit-8 (CK04; Dojindo,
Kumamoto, Japan) at indicated time points according to the
manufacturer’s instructions. The cells were cultured in 96-well
plates (1000 cells per well) for 6 days. Ten μL CCK8 reagent was
added to 100 μl complete medium in each well and then cultured at
37 °C for 3 h. Then the absorbance values were assessed using a
microplate reader (Tecan, Mechelen, Belgium) at 450 nm (A450).
Colony formation assay was conducted by seeding 1000 cells in
complete medium for 10–12 days depending on colony size. Then
the cells were fixed using methanol for 10 min and stained using 0.5%
crystal violet for 1 h. Images were captured following wash of PBS.

Statistical analysis

Statistical analysis in this study was performed using R software
v4.0.4 and Prism software, version 8 (GraphPad Software, San Diego,

CA, United States). p values less than 0.05 were thought to be
statistically significant.

Results

Identification of differentially expressed CRs-
Related genes and biological function analysis

The main analysis workflow is presented in Figure 1. Firstly, we
identified differentially expressed genes (DEGs), including
2001 upregulated genes and 1928 downregulated genes by
performing differential analysis between prostate tumor and
normal part acquired from The Cancer Genome Atlas (TCGA)
dataset (Figure 2A). Subsequently, we obtained 36 differentially
expressed CR-related genes based on the intersection of CR-related
genes and DEGs in TCGA (Figure 2B). Gene Ontology enrichment
analysis revealed that the above differentially expressed CR-related
genes were mainly enriched in “histone modification” in the
biological process category, “condensed chromosome” in the
cellular component category and “hydrolase activity, acting on
carbon nitrogen (but not peptide) bonds” in the molecular function
(Figure 2C). Univariate Cox analysis suggested that 18 CR-related
genes are significantly associated with recurrence-free survival
(RFS) (Figure 2D). Furthermore, correlation analysis suggested

FIGURE 1
The main analysis workflow.
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that most genes were significantly associated with each other
(Figure 2E).

Chromatin regulators genes-based clustering

For exploration of CRs-related genes heterogeneity in PCa, we
applied consensus clustering analysis to construct CRs-related
molecular clusters of Pca using a TCGA cohort. The results of the
consensus package in R were used to identify two CRs-related subtypes
(Figure 3A) (Wilkerson and Hayes, 2010). We conducted principal
component analysis (PCA) using “prcomp” function in R (v4.0.4) to
verify the distinct classification between Cluster 1 and Cluster2
(Supplementary Figure S1). The two subtypes showed distinct

clinical outcomes. Kaplan–Meier (K-M) plots revealed that patients
in cluster 2 exhibited inferior RFS (Figure 3B). Similarly, the
GSE70770 cohort could also be divided into two subgroups based
on the CRs-related genes expression (Supplementary Figure S2A), and
K-M plots also showed a similar difference in RFS between the two
subtypes (Supplementary Figure S2B). Additionally, comparison of
the two subtypes based on clinical parameters revealed that cluster
2 contained a greater proportion of patients with a higher Gleason
Score (GS), advanced T stage and recurrent status present more
proportions in cluster 2 (Figure 3C). Next, we performed single-
sample gene set enrichment analysis (ssGESA) method to compare ten
distinct oncogenic pathways between the two subtypes. Notably, the
score of oncogenic pathways involved in the deterioration of prostate
cancer, including Cell Cycle, MYC and PI3K-AKT pathways, were

FIGURE 2
(A) Volcano plot showing 2001 up-regulated and 1928 down-regulated genes in TCGA database (p < 0.05 and |log2FC| > 1.2) (B) Venn diagram used to
identify the common CRGs and differentially expressed gene between normal prostate and tumor parts (C) The enriched pathways belonged to BP, CC, and
MF in GOanalysis for DE-CRGs (D) Forest plots presents there are 18 prognostics differentially expressed CRGs based on the univariate cox regression analysis.
(E) The correlations between the prognostic differentially expressed CRGs.
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significantly elevated in cluster2 (Figure 3D). Collectively, these results
implied that the clinical and molecular characteristics of PCa were
more aggressive among patients in cluster 2.

Mutational landscape and immune profile
specific to CRs-related subtype

We obtained simple nucleotide variation data from TCGA to
explore differences in genomic mutations between CRs-related
subtypes. The top 10 genes with the highest mutation frequencies
are presented in Figure 4A; TP53, SPOP, and FOXA1 were more
frequently mutated in cluster 2. Additionally, we evaluated the
infiltration abundances of immune cells using the ssGSEA method
to determine the association of each CR-related subtype with immune
status. Patients in cluster 2 showed higher infiltration abundances of
activated CD4 T-cell, CD56dim natural killer cells, gamma-delta T-cell,
and type 2 helper cells (Figure 4B). Furthermore, the ESTIMAT score
further revealed that cluster2 had lower immune and stromal scores
compared to the cluster1 (Figure 4C). Comprehensively, the results

implied that CRs-related subgroups of prostate cancer can accurately
indicate immunity status.

Risk model construction

For further investigation of mechanisms that contribute to the
heterogeneity of CRs-related subtypes and application of these
subtypes to clinical prediction and treatment, we firstly performed
differential analysis of the two subtypes. We recognized 963 DEGs that
were correlated with the two CRs-related subtypes (fold-
change >1.5 and false discovery rate <0.05) (Figure 5A). The
intersection of these DEGs with DEGs identified through
comparisons of normal prostate and tumor tissue in TCGA yielded
483 DEGs (Figure 5B). Subsequently, univariate Cox analysis
identified 261 genes that were correlated with RFS (supplementary
Table S2). Next, we used lasso regression analysis to optimize the
number of genes; we selected the six genes listed in Figure 5C. Finally,
4 genes including MXD3, SSTR1, AMH, and PPFIA2 were obtained
based on the stepwise cox multivariate regression analysis. Then we

FIGURE 3
(A) The consensus matrix reveals patients with two distinct CRGs subtype in the TCGA dataset. (B) Kaplan-Meier curves for recurrence-free survival
according to CRGs subtype (Log-rank test) in TCGA dataset. (C) Stratified proportion of clinical features of PCa patients in CRGs-related subtype in the TCGA
database. (D) the distinct of cancer-related pathway in CRGs-related subtype.

Frontiers in Genetics frontiersin.org06

Ma et al. 10.3389/fgene.2022.1110723

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1110723


constructed a 4 genes prognostic signature to predicate the RFS of PCa
patients. Then, patients in the TCGA and Gene Expression Omnibus
(GEO) cohorts were clustered into a high-risk group (HRG) and low-
risk group (LRG) based on the following risk score (RS) formula:
Risk score = 0.796*MXD3+0.138*AMH+0.137*SSTR1+0.15*PPFIA2.

We used the median RS value as the cut-off for classifying patients
into the HRG and LRG. K-M survival analysis indicated that the HRG
exhibited a worse prognosis than the LRG in both the training and
validation cohorts (Figures 6A, C). For additional assessment of risk
model accuracy, we conducted receiver operating characteristic (ROC)
analysis in both the training and validation cohorts. In the training
cohort, the areas under the ROC curve of 1-year, 2-year, and 3-year
RFS were 0.79, 0.76, and 0.76, respectively. In the validation cohort, the

areas under the ROC curve of 1-year, 2-year, and 3-year RFS were 0.71,
0.65, and 0.64, respectively (Figures 6B, D).

Construction of a nomogram containing RS
and clinical characteristics

Univariate and multivariate Cox analyses were conducted to assess
the relationships of RFS with potential variables. Pathological T stage,
RS and GS were identified as independent risk factors (Supplementary
Figure S3A, B). Consequently, a nomogram with an integrated
prognostic risk score model, pathological T stage and GS was
constructed for RFS prediction in PRAD samples from prostate

FIGURE 4
(A)Mutation information of the top 10mutation genes is presented in the waterfall plot. (B,C) Box plot presenting the relative abundance of immune cells
in the CRGs-related subtype.
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adenocarcinoma patients (Figure 7A). The calibration curves at 1, 2,
and 3 years showed good linearity and suggested that the nomogram
could accurately predict the RFS of PRAD patients (Figure 7B).
Furthermore, the decision curve analysis (DCA) suggested that,
compared with clinical parameters such as GS or pathological T
stage, the nomogram showed superior net clinical benefit (Figure 7C).

Distinct clinical characteristics and immune
cell infiltration between the HR group and LR
group

To gain insights into the correlation between clinical features and
risk model, we performed Chi-square test to study the distribution of
patients in the HR group and LR group based on clinical characteristic

including GS, T stage and clinical outcome. Results from the analysis
provided the evidence that in the TCGA cohort HR group was
significantly associated with higher GS, aggressive T stages and
poor prognosis. Furthermore, patients in cluster 2 occupied a
greater proportion of the HR group (Figures 8A, B). Additionally,
to determine whether the signature score was associated with tumor
immunity, we compared the numbers of distinct tumor-infiltrating
immune cells between the two subtypes using the CIBERSORT
algorithm. The results suggested that, compared with the LRG, the
HRG contained more regulatory T-cell (p < 0.01) and more
M2 macrophages (p < 0.01). In contrast, low-risk group had more
plasma cells (p < 0.01) and more resting mast cells (p < 0.05)
(Figure 9A). Notably, the signature score was positively associated
with the enrichment scores of regulatory T-cell and M2 macrophages
(Figures 9C, D). Conversely, the RS was negatively correlated with

FIGURE 5
(A) Volcano diagram of DEGs between the two CRGs-related subtypes. (B) The Venn diagram demonstrated 483 genes obtained after the intersection of
DEGs between the two subtype and DEGs between Prostate tumor and normal part in TCGA database. (C,D) LASSO Cox regression was utilized to construct
the signature and the best log(λ) value was 0.0428.
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plasma cells and mast cells (Figures 9E, F). Previous studies
demonstrated that high levels of infiltrating M2 macrophages and
regulatory T-cell were correlated with biochemical recurrence
(Andersen et al., 2021). This partly explain the poor prognosis of
PCa patients in the high-risk group. Importantly, correlation analysis
between risk-related genes and tumor-infiltrating immune cells
revealed that MXD3 had the strongest positive correlation with the
number of regulatory T-cell (Figure 9B).

Identification of HRG-specific and LRG-
specific molecular pathways and screening of
small molecule drugs

To investigate correlation between the CRs-related signature and
the mutational landscape, we calculated the tumor mutational burden
(TMB). Compared with patients in the LRG, patients in the HRG
exhibited higher TMBs (Figure 10A). Strikingly, K-M plots suggested
that patients with higher TMBs were more likely to exhibit
progression, compared with patients who had lower TMBs

(Figure 10B). Furthermore, use of combined risk models showed
that patients in the high-risk + high-TMB group exhibited the
worst prognosis, according to K-M survival analysis (p < 0.01)
(Figure 10C). These findings indicated that both the risk score and
TMB can predict poor prognosis in Pca patients.

Gene set enrichment analysis (GSEA) suggested that patients in
the HR and LR groups have different transcriptomic alterations. Gene
Ontology terms enriched in the HRGwere myc targets V2, myc targets
V1, oxidative phosphorylation, DNA repair, E2F targets, and G2-M
checkpoint (Figure 10D). Similarly, gene set variation analysis (GSVA)
revealed that Gene Ontology terms enriched in the HRG were cell
cycle, base excision repair, mismatch repair, DNA replication, and
homologous recombination (Figure 10E). These findings indicated
that the risk model was closely associated with cell cycle-related
pathways or DNA repair-related pathways, which require the
participation of multiple CRs. Because a high RS is associated with
poor prognosis and multiple oncogenic signaling pathways contribute
to progression in PCa patients, we used the pRRophetic package in R
to explore the relationship between RS and potential targeted
inhibitors. As shown in Figure 9F, high-risk score samples were

FIGURE 6
(A) Kaplan–Meier survival analysis suggested that patients in the high-risk group weremore prone to recurrence in the training cohort. (B) The AUC curve
plotted by ROC analysis of the signature revealed that the predictive performance of the signature was good. (C) Kaplan–Meier survival analysis suggested that
patients in the high-risk group were also more prone to recurrence in the validation cohort. (D) The AUC curve plotted by ROC analysis of the signature was
also presented in the validation cohort.
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more sensitive to Erlotinib, Sunitinib, VX-680, TAE684 and
Crizotinib. These drugs may be used as alternative treatment for
PCa progression in high-risk patients.

MXD3 was essential for growth of PCa cells

Because MXD3 is a hub gene with a central role in the PCa
signature, we focused on MXD3 during in silico and in vitro analyses.
Analysis of TCGA PCa data revealed that MXD3 was strongly
upregulated in PCa tissue (Figure 11A). Kaplan-Meier analysis of
TCGA data indicated that the level of MXD3 expression was
significantly associated with RFS of Pca patients (Figure 11B).
Moreover, K-M analysis of mCRPC patient data from the West
Coast Prostrate Cancer Dream Team (WCDT) cohort (Quigley
et al., 2018) showed that high expression of MXD3 was strongly
associated with overall survival (Figure 11C). Additionally, we
analyzed the differential expression level of the MXD3 in various
pathological stages and Gleason score of Pca patients using TCGA
data; the findings indicated that MXD3 is significantly upregulated in
higher T stage and higher Gleason score groups (Figure 11D). For
additional exploration of the biological function of MXD3 in PCa, we
performed in vitro experiments to validate the oncogenic role of
MXD3 in the PC3 PCa cell line. We silenced MXD3 in PC3 cells

and used reverse transcription polymerase chain reaction to confirm
MXD3 knockdown (Figure 11E). Cell proliferation was evaluated
using the CCK-8 method, and the results suggested that
MXD3 knockdown significantly reduced the growth of PCa cell
(Figure 11F). Colony formation assays indicated that
MXD3 inhibition considerably reduced the numbers of PC3 cell
colonies (Figures 11G, H). Considering the role of AR in the
progression of prostate cancer, we selected the C4-2 PCa cell for
further validation. Similarly, MXD3 knockdown significantly reduced
the growth of C4-2 (Supplementary Figure S4). Collectively, these
results demonstrated that MXD3 is essential for growth of PCa cell.

Discussion

The identification of distinct tumor molecular subtypes facilitates
the rational use of new drugs and subsequent exploration of potential
therapeutic targets. Heterogeneity has been studied in many cancers
(e.g., breast cancer (Zardavas et al., 2015), lung cancer (Errico, 2014),
gastric cancer (Shah and Ajani, 2010) and prostate cancer (Boutros
et al., 2015). Heterogeneity in PCa prognosis is currently observed via
risk stratification, which involves the prostate-specific antigen (PSA)
level, T stage, Gleason score, the percentage of positive biopsy sores
and age (Chang et al., 2014). Advances in molecular technology have

FIGURE 7
(A)Nomogram based on signature score, T-stage and GS predicting RFS of PCa patients from TCGA cohort. (B) The calibration curve of the nomogram.
The y-axis is actual RFS and the x-axis is the nomogram-predicted RFS. (C) The Decision curve analysis (DCA) evaluating the clinical practicality of the
nomogram.
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revealed increasing evidence that CRs play significant roles in
tumorigenesis and cancer progression. However, few studies have
thoroughly analyzed CRs function in an effort to generate a
molecularly heterogeneous model for PCa.

This study was conducted to identify a molecular subtype and
constructed a new prognostic model based on CRs. Firstly, we
screened 36 CRs-related genes in TCGA that were differentially
expressed between prostate cancer tissues and normal tissues.
Then, we performed univariate Cox regression analyses, which
identified 18 CR-related genes that were associated with PCa RFS.
Consequently, CRs-related subtypes were established based on
these genes. Patients in cluster 2 experienced inferior clinical
outcomes. This finding was confirmed by analysis of data in the
GEO (GSE70770) cohort. Genetic alteration is one of the main
mechanisms involved in the onset of PCa (Abida et al., 2019).
Comparison of genomic mutations between the two subtypes
revealed that mutations in genes such as TP53, SPOP, and
FOXA1 were more common in cluster 2. Many studies have
showed that mutations in TP53 contribute to the onset of
metastatic PCa (Levine, 2020). TP53 and RB1 knockout models
exhibit enzalutamide resistance and the upregulation of basal

markers, neuroendocrine markers, and lineage-defining and
stemness-related transcription factors, as well as the
downregulation of luminal cell markers; these changes often
suggest a more aggressive tumor and worse prognostic outcome
(Levine, 2020). PCa-associated SPOP mutations reportedly confer
resistance to BET inhibitors (Dai et al., 2017), which constitutes a
new challenge in the treatment of PCa. FOXA1 mutations alter
pioneering activity, differentiation and prostate cancer phenotypes
(Adams et al., 2019). Alterations of biological behavior may lead to
greater PCa malignancy. Additionally, analysis of 10 tumor
abnormality-related pathways revealed that pathways associated
with malignant phenotypes (e.g., cell cycle, MYC signaling, PI3K
signaling, and TP53 signaling) exhibit greater activation in cluster
2 than in cluster 1. These alterations in key genes and signaling
pathways imply the prognosis difference of the subtypes.
Furthermore, analyses of immune cell relative abundances
indicated that the numbers of activated B-cell, dendritic cells,
CD56bright natural killer cells, macrophages, and mast cells were
greater in cluster 1 than in cluster 2. These changes in immune
system and immune microenvironment may contribute to the
observed prognostic differences.

FIGURE 8
(A) Stratified proportion of clinical features of PCa patients in the HR group and LR group. (B) Association of the risk score with CRGs-related subtype and
clinical characteristics including T stage, recurrence status and GS.
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To investigate the mechanisms contributing to heterogeneity in
CRs-related subtypes and construct a signature for prediction of RFS
in individual patients, we first analyzed the differences between cluster
1 and cluster 2. We identified four core genes (MXD3, SSTR1, AMH,
PPFIA2) as independent risk factors based on the results of univariate
Cox analysis, lasso regression, and multivariable Cox analysis. We
finally established and validated a model, in which low and high risk
were classified according to RS, for prediction of individualized clinical
prognostic outcome. Survival analyses revealed that the model
demonstrated good predictive ability. We then explored the
relationships of RS with clinical characteristics of PCa; we observed

significant differences between the HRG and LRG in terms of T stage,
GS, and recurrence status. Furthermore, we found that the signature
was positively associated with the numbers of infiltrating
M2 macrophages and regulatory T-cell, which contribute to the
biochemical recurrence of PCa. TMB, defined as the number of
somatic mutations per megabase of interrogated genomic sequence
(Sha et al., 2020), is emerging as a predictive biomarker in solid
tumors; it can be used to predict clinical responses of many cancers to
immune checkpoint inhibitor treatment (Chan et al., 2019). Our study
showed that the risk score has good prognostic value, regardless of
whether it is used in combination with the TMB. Compared with

FIGURE 9
(A)CIBERSORT algorithmwas used to estimate the relative abundance of tumor infiltrating immune cells between the different risk group. (B)Correlation
analysis was performed to explore the relationship between core genes and infiltrating immune cells (C,D) The risk score was positively correlated with
regulatory T-cell and M2 Macrophages (E,F) The risk score was negatively correlated with Plasma cells and resting mast cells.
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other riskmodel with potential to predicate prognosis of PCa patients (Liu
et al., 2018;Martini et al., 2019), CRs signature comprehensively evaluated
the differences of gene mutation and immune profile between high and
low risk groups in risk model; and predicated potential drug targets in
high-risk PCa patients. Importantly, we selected the hub gene in CRs
signature for further biological verification.

The risk score is computed with four genes including MXD3,
SSTR1, AMH and PPFIA2. Their function contributing to the
development of PCa remains to be explored. We confirmed that the
downregulation of MXD3 significantly suppressed the proliferation of

PCa cells in vitro. PPFIA2 (liprin-α2) is an important component of
R2TP, an HSP90 co-chaperone (Maurizy et al., 2018). In cancer cells,
HSP90 facilitates the function of numerous oncoproteins (Trepel et al.,
2010). Analysis of the relationship between PPFIA2 and
HSP90 indicated that PPFIA2 may affect the biological behavior of
PCa by stabilizing HSP90, although the mechanism has not yet been
clarified. PPFIA2 is used as a prognostic factor in the early diagnosis of
PCa (Leyten et al., 2015), consistent with our findings. MXD3, a
member of the MXD family, plays pivotal roles in cell cycle
progression and cell proliferation; it is regarded as an onco-

FIGURE 10
(A) Boxplot showing HR group possess higher TMB than LR group. (B) Kaplan–Meier survival analysis demonstrated that patients with high TMB had
worse prognosis than patients with low TMB. (C) K-M plot also revealed that patients in the high-risk subgroupwith high TMB had theWorst prognosis. (D) The
heatmap of GSVA enrichment analysis showed the different signaling pathway between the HR group and LR group. (E) GSEA analysis demonstrated that the
potential molecular mechanism activated in the HR group. (F) Box plots showing drugs including Erlotinib, Sunitinib, VX-680, TAE684 and Crizotinib are
more sensitive in the high-risk group of patients.
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immunological biomarker (Wu et al., 2021). Moreover, pan-cancer
analysis discovered that MXD3 interacted with gene ancestry (GA)
and exacerbated observed survival disparities (Lee et al., 2022).
Besides, MXD3 was reported to be a potential therapeutic target in
pre-B cell acute lymphoblastic leukemia (Satake et al., 2014). However,
the function of MXD3 in prostate cancer requires further investigation.
Somatostatin receptor 1 (SSTR1) belongs to the G protein coupled
receptor family and have a wide expression pattern in solid tumors
(Theodoropoulou and Stalla, 2013). SSTR1 have been reported to be the
most prominent candidates of biomarkers associated with aggressive
prostate cancer phenotype (Kosari et al., 2008). In addition to that,
SSTR1 plays a significant role in the onset and progression of prostate
cancer. Depending on the cell system and extracellular environment,
activation of the mitogen-activated protein kinase (MAPK) pathway can

also halt cell growth, thereby promoting cell differentiation. PCa may
transform into neuroendocrine prostate cancer (NEPC), which exhibits
more aggressive clinical behavior and a poor prognosis. Although
neuroendocrine PCa can arise de novo, most PCa patients are
diagnosed with standard prostatic adenocarcinoma and receive
hormone therapy before the onset of neuroendocrine PCa, leading to
the term “treatment-related neuroendocrine PCa” (Beltran et al., 2012;
Tagawa, 2014). Anti-Mullerian hormone (AMH) is also reportedly
associated with PCa prognosis.

GSEA and GSVA analysis revealed enhanced activation of the cell
cycle pathway and DNA repair pathway in the HR group. Disruption of
cell cycle regulatory mechanisms can lead to uncontrolled growth of
normal cells. Many factors can regulate cell proliferation in vivo, including
CRs. DNA damage repair genes may confer an increased risk of early-

FIGURE 11
Clinical correlation analysis and in vitro experiment analysis of MXD3. (A) MXD3 expression in PCa paired tissues from the TCGA prostate
adenocarcinoma (PRAD) dataset. (B) Kaplan-Meier curve of RFS (recurrence-free survival) in high and low MXD3 group in TCGA database. (C) Kaplan-Meier
curve of OS (overall survival) for patients with high and low MXD3 expression in WCDT cohort. (D) Clinical correlation of MXD3 in TCGA prostate
adenocarcinoma (PRAD) dataset. (E) PC3 cells were transfected with short hairpin RNAs targeting. The efficiencies of the shRNAs were verified by real-
time PCR. (F) CCK8 assays revealed that knockdown of MXD3 remarkably reduce the cell viability. (G) Inhibition of MXD3 reduced the colony numbers in the
colony formation assay. (H) The numbers of colonies in each group were counted. Each value means the mean ± standard deviation of three independent
experiments. ***p < 0.001.
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onset PCa (Attard et al., 2016). However, DNA repair pathway
dysfunction may contribute to resistance to DNA-damaging
chemotherapy and radiotherapy (Curtin, 2012). Additionally, we also
applied “pRRophetic” R package to identify the sensitive drugs in the HR
group. The results suggested that drugs including Erlotinib, Sunitinib, VX-
680, TAE684 and Crizotinib possess higher IC50 in HR group. However,
these results warrant further research, both in vivo and in vitro.

Although we identified stable molecular subtypes and successfully
developed a powerful prognostic signature, this study had limitations
that should be addressed in future research. Firstly, we constructed
and validated the signature utilizing retrospective data from the TCGA
and GEO database. Prospective real-world data are needed to assess
clinical utility of the molecular signature. Second, there is a need for
further in vitro and in vivo experiments to explore underlying
mechanisms correlated with the CR-related subtypes and risk model.

Conclusion

Overall, this study identified CRs-related subtypes in prostate
cancer and constructed a prognostic signature based on CRs-
related subtypes. The clinical characteristics, gene mutation status,
immune profile and drug sensitivity between the two subtypes and
different risk groups were also investigated. The molecular signature
may provide evidence for clinical judgement of individual patient
prognosis and personalized treatment.
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