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Background: Most patients with idiopathic pulmonary fibrosis (IPF) have poor
prognosis; Effective predictive models for these patients are currently lacking.
Epithelial–mesenchymal transition (EMT) often occurs during idiopathic
pulmonary fibrosis development, and is closely related to multiple pathways and
biological processes. It is thus necessary for clinicians to find prognostic biomarkers
with high accuracy and specificity from the perspective of Epithelial–mesenchymal
transition.

Methods: Data were obtained from the Gene Expression Omnibus database. Using
consensus clustering, patients were grouped based on Epithelial–mesenchymal
transition-related genes. Next, functional enrichment analysis was performed on
the results of consensus clustering using gene set variation analysis. The gene
modules associated with Epithelial–mesenchymal transition were obtained
through weighted gene co-expression network analysis. Prognosis-related genes
were screened via least absolute shrinkage and selection operator (LASSO)
regression analysis. The model was then evaluated and validated using survival
analysis and time-dependent receiver operating characteristic (ROC) analysis.

Results: A total of 239 Epithelial–mesenchymal transition-related genes were
obtained from patients with idiopathic pulmonary fibrosis. Six genes with strong
prognostic associations (C-X-C chemokine receptor type 7 [CXCR7], heparan
sulfate-glucosamine 3-sulfotransferase 1 [HS3ST1], matrix metallopeptidase
25 [MMP25], murine retrovirus integration site 1 [MRVI1], transmembrane four
L6 family member 1 [TM4SF1], and tyrosylprotein sulfotransferase 1 [TPST1]) were
identified via least absolute shrinkage and selection operator and Cox regression
analyses. A prognostic model was then constructed based on the selected genes.
Survival analysis showed that patients with high-risk scores had worse prognosis
based on the training set [hazard ratio (HR) = 7.31, p < .001] and validation set (HR =
2.85, p = .017). The time-dependent receiver operating characteristic analysis
showed that the area under the curve (AUC) values in the training set were .872,
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.905, and .868 for 1-, 2-, and 3-year overall survival rates, respectively. Moreover, the
area under the curve values in the validation set were .814, .814, and .808 for 1-, 2-, and
3-year overall survival rates, respectively.

Conclusion: The independent prognostic model constructed from six
Epithelial–mesenchymal transition-related genes provides bioinformatics guidance
to identify additional prognostic markers for idiopathic pulmonary fibrosis in the future.

KEYWORDS

idiopathic pulmonary fibrosis, prognostic model, epithelial-mesenchymal transition,
bioinformatics, bronchoalveolar lavage cells

1 Introduction

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease;
Its causes are unknown but may be associated with genetic,
environmental, and occupational exposure (Taskar and Coultas,
2006; Park et al., 2021). The clinical presentation of IPF includes
dyspnea and an irritating dry cough, among other symptoms (Raghu
et al., 2011). Although the incidence of IPF is only approximately
.09–1.30 per 10,000 people worldwide (Maher et al., 2021), its risk is
increasing annually (Richeldi et al., 2017). There are many limitations
to IPF treatment in current clinical practice. Pirfenidone and
nintedanib are the main therapeutic agents and improve patient
quality of life and clinical symptoms. However, both are associated
with adverse effects, such as thrombocytopenia and gastrointestinal
discomfort, and neither is effective in improving lung function
(Spagnolo et al., 2021). Further, some patients experience slow
disease progression, but other patient progress rapidly toward
death (Lederer and Martinez, 2018). At present, a clinical method
to determine the prognosis of IPF is lacking, and thus, it is necessary to
screen for IPF prognosis-related biomarkers to further advance
diagnostics and precision medicine.

Epithelial–mesenchymal transition (EMT) leads to the loss of
contact adhesion and apical–basal polarity in epithelial cells based
on a change in gene regulation, which changes the cytoskeletal and
mesenchymal features of the extracellular matrix (Lamouille et al.,
2014; Dongre and Weinberg, 2019). Many extracellular ligands, such
as epidermal growth factor, interleukin-1, and Wnt, bind to surface
receptors during EMT and activate multiple transcription factors
through multiple pathways, leading to decreased expression of
adhesion molecules (Lin and Wu, 2020; Jayachandran et al., 2021).
EMT is a physiological process that occurs during embryonic
development. EMT is also a pathological process that occurs in
many diseases (Mittal, 2018), such as breast cancer (Scimeca et al.,
2021) and lung cancer (Mittal, 2016), among others. Studies have
shown that the development of fibroblastic foci in IPF is closely related
to the EMT (DeMaio et al., 2012; Yamaguchi et al., 2017). The
mechanisms underlying EMT in IPF are mesenchymal cell
abnormalities and extracellular matrix remodeling, ultimately
causing abnormal activation of repair pathways in the damaged
alveolar epithelium (Hewlett et al., 2018). The EMT process in IPF
is influenced by multiple pathways and biological processes, so it more
likely to obtain a better prognostic model based on the EMT process.
Prognosis-related study is also an attempt to further explore the
specific mechanisms of the EMT process in IPF.

At present, with the development of microarray and sequencing
technology, genetic testing technology is becoming increasingly
common. Based on bioinformatics approach, one study explored a

prognostic model for lung adenocarcinoma from the perspective of
pyroptosis-related factors (Lin et al., 2022), and one study explored a
prognostic model for IPF from the perspective of immune-related
chromatin regulatory genes (Li et al., 2022). However, translating the
clinical and prognostic value of EMT-related genes to IPF requires
extensive research. Thus, it is necessary to screen prognosis-related
genes for IPF at the molecular level, based on EMT processes, and then
construct prognostic models for clinical purposes.

Bronchoalveolar lavage (BAL) is the subject of a common ancillary
test for IPF diagnosis (Meyer et al., 2012; Patel et al., 2021). Since
bronchoalveolar lavage fluid (BALF) better reflects the exudation of
inflammatory factors and mediators in IPF and improves the accuracy
of IPF biomarker construction, BAL cell samples were selected for
both the training and validation sets of this study (Xia et al., 2021;
Wang et al., 2022). First, differential EMT-related genes were
identified in patients with IPF via consensus clustering and
weighted co-expression network analysis (WGCNA). Additionally,
an enrichment analysis for EMT-associated genes was performed, and
then, genes associated with IPF prognosis were filtered through least
absolute shrinkage and selection operator (LASSO) and Cox
regression analyses. Through the construction and validation of
this prognostic model, new evidence is provided that will be
helpful in clinical situations and in determining the prognostic
outcomes of patients with IPF.

2 Materials and methods

2.1 Dataset acquisition and organization

The original data were obtained from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/),
using the criteria “idiopathic interstitial lung fibrosis,” “sample size
greater than 100,” “including clinical information,” and “expression
profiling by array.” The dataset GSE70866 was downloaded for this
study using the “GEOquery” R package (Davis and Meltzer, 2007).
These data consisted of mRNA expression of 196 BAL cell samples
from three independent cohorts and two platforms (Prasse et al.,
2019). Depending on different platforms, the Freiburg, Germany
(62 patients and 20 healthy donors) and Siena, Italy (50 patients)
cohorts (GPL14550) were used as training sets, whereas the Leuven,
Belgium (64 patients) cohort (GPL17077) was used as the validation
set. The quality of the raw data was evaluated using the PCA method.
EMT-related genes for reference were obtained from the HALLMARK
EPITHELIAL MESENCHYMAL TRANSITION gene set in the
Molecular Signatures Database (MSigDB) (Liberzon et al., 2015).
This study was not required to undergo ethical review because all
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data were sourced from open-source databases; the detailed process is
shown in Figure 1.

2.2 Acquisition of EMT-Related genes

The original data were corrected and normalized using the
“limma” R package (Smyth, 2005). Differences between control
samples and samples of patients with IPF were analyzed using the
training set. Here, 110 differentially expressed genes (DEGs) were
obtained using a Benjamini–Hochberg-adjusted p-value less than
.05 and an absolute fold-change value (log2FC) greater than 1.5.
The intersection between the 110 DEGs and the EMT-related genes
from the MSigDB was determined, and from this, four genes were
obtained. A circle map for these four genes was then generated using
the “RCircos” R package (Zhang et al., 2013).

2.3 Immunological correlation analysis

Immune cell infiltration in all samples was calculated using the
CIBERSORT algorithm and LM 22 signature matrix (Newman et al.,
2015). The CIBERSORT algorithm has a total ratio of one for
22 immune cell types in one sample. The expression differences
associated with 22 immune cell types between control and IPF
groups were compared using the “reshape2” and “ggpubr” R
packages. The Spearman correlation coefficients between the four

EMT-related genes and immune cell infiltration were plotted using the
“ggplot two” R package.

2.4 Consensus clustering and principal
component analysis (PCA)

Consensus clustering analysis was performed on the training set of
IPF samples based on the four EMT-related genes using the
“ConsensusClusterPlus” R package (Wilkerson and Hayes, 2010).
The 112 IPF samples were classified into different categories using
1,000 calculations. Based on the results of the consensus score,
cumulative distribution function (CDF), and area under the CDF,
clusters 1 and 2 were obtained based on the best K (K = 2) value for the
clustering effect.

2.5 Enrichment analysis

The consensus clustering results were analyzed using the
“GSVA” package (Hänzelmann et al., 2013). Gene files from the
Gene Ontology (GO) (c5.go.symbols.gmt) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) (c2.cp.kegg.symbols.gmt) databases,
which were obtained from the MSigDB [24], were analyzed, and
enrichment results for 112 samples were obtained in terms of
pathways and biological functions. The most distinct pathways
and biological functions in cluster 1 and 2 were selected from

FIGURE 1
Study outline.
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their functional enrichment levels using the “limma” package
(Smyth, 2005).

2.6 WGCNA

WGCNA was performed using the WGCNA package (Langfelder
and Horvath, 2008) for the top 15% of mutated genes in all 132 samples
(divided into control and IPF samples) and 112 IPF samples (divided
into cluster 1 and cluster 2). All modules were restricted to be greater
than 100, and the best soft thresholding power, as well as the topological
overlap matrix (TOM) and TOM dissimilarity measure (1-TOM), were
obtained based on an adjacency matrix. Different colors were randomly
assigned to the co-expressed gene modules, and the most significantly
different modules were selected for further analysis.

2.7 LASSO and cox regression analyses

The intersection between the two modules with the most significant
p-values in the WGCNA of the 132 samples and the 112 IPF samples
was determined, and 239 intersecting genes were obtained. LASSO
(“glmnet” R package) and Cox regression analyses were performed to
select EMT-related prognostic genes to form the prognosismodel. Based
on the LASSO regression, we obtained the EMT-related prognostic
genes and their corresponding coefficients. We multiplied the gene
expressions with the corresponding coefficients and summed all of them
(Wang et al., 2022). The risk score formula was constructed as follows:

Risk score � corresponding coef f icient of gene 1 × expression of gene 1

+ corresponding coef f icient of gene 2 × expression of gene 2

+ corresponding coef f icient of gene 3 × expression of gene 3

+/

+ corresponding coef f icient of gene n × expression of gene n

This formulawas used to calculate the risk scores for patients with IPF.

2.8 Model construction and evaluation

The prognostic nomogram and calibration curves for 1-, 2-, and 3-
year overall survival rates were plotted using the “rms” R package. The
“timeROC” and “survminer” R packages were used to create time-
dependent ROC and survival analysis plots, respectively. In the
training set, there were 19 females and 93 males, and the average age
of all patients was 67.179 years old (Supplementary Table S1). In the
validation set, there were 13 females and 51 males, and the average age of
all patients was 68.250 years old (Supplementary Table S2). The model
was tested based on a multifactorial Cox analysis with age and sex, and
the Leuven, Belgium (64 patients) cohort was used to test the model.

2.9 Statistical analysis and graphing

Statistical analysis and graphical plotting were performed using R
4.1.2. The Shapiro–Wilk test was used for the normal distribution of
continuous variables, and the Bartlett’s test was used for variance chi-
square analysis. The log-rank test was used for survival analysis. When

the data met the requirements of variance chi-square and normal
distribution, an independent samples t-test or Wilcoxon signed rank
test was used for analysis. If the Pearson’s correlation coefficient was
greater than .6, it was considered that there was a correlation. If the
p-value was less than .05, it was considered significant.

3 Results

3.1 Significantly changed EMT-Related genes
in IPF

By evaluating the quality of the raw data, we can see that the outlier
samples were little and the data can be further analyzed and processed
(Supplementary Figure S1A). The 20 controls and 112 IPF samples
from GSE70866 (GPL14550) were tested for differential analysis based
on a Benjamini–Hochberg-adjusted p-value less than .05 and an
absolute log2FC value greater than 1.5. A total of 77 significantly
upregulated DEGs and 33 significantly downregulated DEGs were
identified; those were displayed using a volcano plot (Figure 2A;
Supplementary Table S3). Since IPF is closely related to EMT-
related processes, the intersection between the 110 DEGs and
200 EMT-related genes from the MSigDB was determined
(Supplementary Table S4), and four related genes were obtained,
namely, secreted phosphoprotein 1 (SPP1), integrin beta-3 (ITGB3),
high temperature requirement 1 (HTRA1), and tissue inhibitor of
metalloproteinase 3 (TIMP3), which were significantly altered in IPF;
these were plotted using a Venn diagram (Figure 2B). The specific
locations of these four genes on the chromosome were determined
based on mapping using a gene circle (Supplementary Figure S1B). To
explore potential interactions among these four genes, the correlations
between them were calculated (in Supplementary Figure S1C). Only
positive correlations were identified, and the strongest correlation was
observed between HTRA1 and SPP1 (correlation = .75).

3.2 Immune cell infiltration analysis

Many immune cell types are expressed abnormally in the
development of IPF, and EMT process is also inextricably linked
to immune responses. Exploring different immune cell types
between disease and control samples by immune infiltration
analysis, we hope to provide more ideas for subsequent analysis.
CIBERSORT scores were obtained using the CIBERSORT algorithm
(Supplementary Table S5) and relative abundances were plotted
(Figure 3A). Based on the box plots, memory CD4+ T cell,
M1 macrophage, M2 macrophage, dendritic cell, neutrophil, and
naive B cell populations were significantly decreased, whereas naive
T cell, monocyte, and mast cell populations were significantly
increased, indicating that IPF development might be related to
immune cell type imbalances (Figure 3B). The aforementioned
four EMT-related DEGs were further subjected to an immune
correlation analysis (Figure 3C). These four genes were positively
correlated with activated mast cells with p-values <.001, suggesting
that the increased response to mast cells in IPF might be closely
related to the EMT process. The above results suggest that the EMT
process in IPF can be further investigated in the perspective of
immune abnormalities in the future.

Frontiers in Genetics frontiersin.org04

Zhao et al. 10.3389/fgene.2022.1109903

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1109903


3.3 Consensus clustering of IPF samples

Using four EMT-related genes, a consensus clustering of IPF
samples was performed. The aim of this analysis was to group IPF
samples by the four EMT-related genes, so we can get more EMT-
related genes in next analyses. The samples could be well separated
when K = 2, so the clustering effect was considered optimal when K = 2
(Figure 4A). When consensus index varied from .2 to .8, the CDF
curve of K = 2 was the most stable one; this supported the choice to
divide the IPF samples into two cluster when K = 2 (Figure 4B). When
K was changed from two to nine, the area under the CDF curve
changed significantly from K = 2 to K = 3 (Figure 4C), and the
consistency scores of cluster 1 and cluster 2 were both greater than .9
(Figure 4E), this also supported the choice to divide the IPF samples
into two cluster when K = 2. Based on the above analysis, the
112 patients with IPF were divided into cluster 1 (63 samples) and
cluster 2 (49 samples) (Supplementary Table S6). To test the clustering
effect, PCA was performed on the two clusters, which revealed that the
112 patients with IPF could be divided into two clusters with no outlier
samples, suggesting that the clustering was effective (Figure 4D). The
box plot demonstrated that the four genes related to EMT were
significantly differentially expressed between the two cluster groups
(Figure 4F). The heatmap also further reflected the specific expression
of the four genes in the two cluster groups (Figure 4G).

3.4 Functional enrichment analyses

To provide additional information about the biological
function and pathway differences between clusters 1 and 2,
gene set variation analysis (GSVA) was performed. Using
GSVA, butanoate metabolism, biosynthesis of unsaturated fatty
acids, limonene and pinene degradation, propanoate metabolism,
and peroxisome were enriched in cluster 2. Primary bile acid

biosynthesis and tyrosine metabolism were reduced in cluster 2
(Supplementary Figure S1D). Several GO biological processes
such as BBSome, membrane attack complex, positive
regulation of calcium ion transmembrane transporter activity,
positive regulation of memory T cell differentiation, and cation
chloride symporter activity were increased in cluster 2. A few GO
biological processes including positive regulation of extracellular
exosome assembly were decreased in cluster 2 (Supplementary
Figure S1E). Through the above GSVA analysis, we found
significant differences in the biological processes between
cluster 1 and cluster 2. The results indicated that there were
indeed some differences between different subgroups of patients
in IPF, so we can continue the WGCNA analysis and prognostic
analysis in the following.Together, these data suggested that the
EMT process in IPF might be closely related to abnormal
metabolic functions in the organism. It provided a direction
for us to further investigate the specific mechanism of EMT-
related genes in IPF.

3.5 Selection of gene module via WGCNA

Using the WGCNA algorithm, clusters 1 and 2 were generated for
co-expression network building, and the top 15% of genes showing the
highest variance for the calculation were selected. The minimum soft
threshold was four when the scale-free fit index was .9 (Figure 5A).
The best soft threshold was selected to construct the co-expression
network and produce the gene clustering tree (Figure 5B). After
clustering similar genes into one category and plotting the
correlation heatmap between modules (Figure 5C), the brown
module had the highest correlation and lowest p-value (P = 2e-16)
in cluster 1 (correlation = −.68) and cluster 2 (correlation = .68). Thus,
277 genes in the brown module (Supplementary Table S7) were
selected for subsequent analysis.

FIGURE 2
Acquisition and analysis of four EMT-related DEGs in IPF. (A) The 110 DEGs identified are displayed in the volcano plot based on the criteria of p < .05 and
log2FC > 1.5. (B) The EMT-related genes are presented in a Venn diagram. IPF, idiopathic pulmonary fibrosis; EMT, epithelial–mesenchymal transition; DEGs,
differentially expressed genes.

Frontiers in Genetics frontiersin.org05

Zhao et al. 10.3389/fgene.2022.1109903

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1109903


The IPF and control samples were also used for co-expression
network building, and the top 15% of genes with the highest variance
for the calculation were selected. The scale-free fit index was .9 when
the soft threshold was 4 (Figure 5D). The gene clustering tree under
the optimal soft threshold conditions (Figure 5E) and the correlation
heatmap between similar gene modules were plotted (Figure 5F). The
brown module had the highest correlation and the smallest p-value
(P = 3e-05) for the control (correlation = −.35) and IPF samples

(correlation = .35). Thus, 271 genes in the brown module
(Supplementary Table S8) were selected for subsequent analysis.

3.6 Prognostic model associated with EMT

The two groups of genes obtained from the above WGCNA
analysis were intersected and 239 intersecting genes were obtained

FIGURE 3
Analysis of immune cell type infiltration. (A) Relative abundance of immune cell types in the IPF and control samples. (B) Differences in immune cell
infiltration between IPF and control samples. (C) EMT-related DEGs displayed based on an immune correlation analysis. IPF, idiopathic pulmonary fibrosis;
EMT, epithelial–mesenchymal transition; DEGs, differentially expressed genes.
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(Supplementary Table S9; Figure 6A). Cluster 1 and cluster 2 were
clustered using EMT-related genes and the 239 intersecting genes
were derived from the subsequent WGCNA analysis, so these

239 genes were related to the EMT process in IPF. We used
these 239 genes as EMT-related genes for the filtering and
construction of our prognostic model. Through LASSO analysis,

FIGURE 4
Consensus clustering of IPF samples. (A) Consensus clustering matrix constructed based on the final K = 2. (B) Consensus CDF. The different color
numbers in the figure represent the different K from two to nine. The horizontal coordinate represents consensus index and the vertical coordinate represents
CDF value. (C) Area under the CDF. The horizontal coordinate represents the different K from two to nine and the vertical coordinate represents the change in
area under the CDF curve. (D) PCA of the two clusters. C1 is cluster 1, C2 is cluster 2. (E) The cluster-consensus plot demonstrates the consensus
clustering results. The horizontal coordinate represents the different K from two to nine and the vertical coordinate represents the consistency score. (F) The
box plot shows the significant differences in the four EMT-related genes between the two clusters. C1 is cluster 1, C2 is cluster 2. (G) The heatmap shows the
specific differences in the four genes between the two clusters. C1 is cluster 1, C2 is cluster 2. IPF, idiopathic pulmonary fibrosis; CDF, cumulative distribution
function; PCA, principal component analysis; EMT, epithelial–mesenchymal transition.
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six genes (C-X-C chemokine receptor type 7 [CXCR7], heparan
sulfate-glucosamine 3-sulfotransferase 1 [HS3ST1], matrix
metallopeptidase 25 [MMP25], murine retrovirus integration site
1 [MRVI1], transmembrane four L6 family member 1 [TM4SF1],
and tyrosylprotein sulfotransferase 1 [TPST1]) and their
corresponding coefficients were acquired (Figure 6B, C;
Supplementary Table S10). These genes were further validated
via univariate Cox analysis. All p-values for the six genes were

less than .05, suggesting that all six genes were associated with
prognosis. The hazard ratio (HR) of CXCR7 was less than 1 (HR =
.477), whereas the HRs of the other five genes—HS3ST1 (HR =
2.062),MMP25 (HR = 1.702),MRVI1 (HR = 1.611), TM4SF1 (HR =
1.561), and TPST1 (HR = 1.502)—were all greater than 1. This
indicated that, except for CXCR7, these genes were positively
associated with prognosis (Figure 6D). These six genes were
identified as prognosis-related genes and were combined with

FIGURE 5
Genemodule selection usingWGCNA. (A) Selection of the soft threshold power in clusters one and two.When the scale-free fit index is .9, theminimum
soft threshold is 4. (B) Gene clustering tree in cluster 1 and cluster 2. C1 is cluster 1, C2 is cluster 2. (C) Correlation heatmap between the co-expression
modules in clusters 1 and 2; the brown module has the highest correlation and the lowest p-value (P = 2e-16) in cluster 1 (correlation = −.68) and cluster 2
(correlation = .68). (D) Selection of the soft threshold power for the 112 IPF and 20 control samples. When the scale-free fit index is .9, the minimum soft
threshold is 4. (E) Gene clustering tree of the 112 IPF and 20 control samples. (F) Correlation heatmap between the co-expression modules in the 112 IPF and
20 control samples; the brown module has the highest correlation and the lowest p-value (P = 3e-05) in cluster 1 (correlation = −.35) and cluster 2
(correlation = .35). WGCNA, weighted gene co-expression network analysis; IPF, idiopathic pulmonary fibrosis.
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their corresponding coefficients to construct a prognostic model.
The formula for the risk score for this model is as follows:

Risk score � CXCR7 × −0.0881067640076111( )
+HS3ST1 × 0.0892716591390481( )
+MMP25 × 0.0138121800572637( )
+MRVI1 × 0.0353958603331637( )
+ TM4SF1 × 0.0585011127027571( )
+ TPST1 × 0.0853951015444165( )

3.7 Evaluation and validation of prognostic
models

A nomogram was constructed using the training set, which was
used to generate the prognostic model (Figure 7A). Calibration
curves were also plotted for 1-, 2-, and 3-year overall survival rates
(Figure 7B). To test the effect of our model, patients were divided
into high-risk and low-risk groups according to the median value of
the risk score in the training and validation sets (He et al., 2022; Lin
et al., 2022). The risk curve (Supplementary Figure S2A) and the
survival distribution figure (Supplementary Figure S2B) were

plotted for the training set. The threshold value of the training
set was .839, and there were 56 high-risk patients and 56 low-risk
patients in the training set. The risk curve (Supplementary Figure
S2C) and the survival distribution figure (Supplementary Figure
S2D) were plotted for the validation set. The threshold value of the
validation set was .615, and there were 32 high-risk patients and
32 low-risk patients in the validation set. The time-dependent ROC
curves were plotted. In the training set, the 1-year AUC was .872,
the 2-year AUC was .905, and the 3-year AUC was .868 (Figure 7C).
In the validation set, the 1-year AUC was .814, the 2-year AUC was
.814, and the 3-year AUC was .808 (Figure 7F), suggesting that the
model had good predictive ability. Box plots and survival curves
were also generated for the training and validation sets,
respectively. The box plots showed that the Wilcoxon p-values
were less than .05 for the training (P = 6e-11; Figure 7D) and
validation sets (p = .0018; Figure 7G), indicating a significant
difference between high- and low-risk patients in terms of
prognosis. Survival analysis showed that the prognostic
outcomes were poorer for high-risk patients in the training
[HR = 7.31, 95% confidence interval (CI): (4.24, 12.60), p <
.001; Figure 7E] and validation sets [HR = 2.85, 95% CI: (1.21,
6.74), p = .017; Figure 7H]. Two clinical factors (age and sex) were
obtained for multivariate Cox analysis with the model (Table 1),
revealing that both the training set risk score [HR = 13, 95% CI:

FIGURE 6
Generation of a prognostic model for patients with IPF. (A) The Venn diagram of the 239 EMT-related genes which got from the intersection of WGCNA
results. (B) LASSO coefficient profiles of the 239 genes. (C) The largest λ value (λ = 6) in the mean square error within the standard error. (D) Univariate Cox
analysis of the six selected genes. All p-values from the univariate Cox analysis of the six genes are less than .000. IPF, idiopathic pulmonary fibrosis; LASSO,
least absolute shrinkage and selection operator.
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FIGURE 7
Evaluation and validation of prognostic models. (A) Nomogram of the model for 1-, 2-, and 3-year overall survival rates. (B) Calibration curves of the
model based on 1-, 2-, and 3-year overall survival rates. (C) Time-dependent ROC curve based on themedian of risk score in the training set. The 1-year AUC is
.727, the 2-year AUC is .905, and the 3-year AUC is .868. (D) Box plots showing that the Wilcoxon P-test results (P = 6e-11) are less than .05 between the
different groups based on the median of risk score in the training set. (E) Kaplan–Meier survival curve showing a clear difference between groups based
on themedian of risk score in the training set [HR= 7.31, 95%CI: (4.24, 12.60), p < .001]. (F) Time-dependent ROC curve based on the validation set. The 1-year
AUC is .814, the 2-year AUC is .814, and the 3-year AUC is .808. (G) Box plots presenting a significant difference (p = .0018) in the validation set. (H)
Kaplan–Meier survival curve showing a clear difference in the validation set [HR = 2.85, 95% CI: (1.21, 6.74), p = .017]. ROC, receiver operating characteristic;
AUC, area under the curve; HR, hazard ratio; CI, confidence interval.
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(7.61, 22.9), p < .001] and validation set risk score [HR = 9.8, 95%
CI: (2.79, 34.4), p < .001] had independent prognostic power.

4 Discussion

IPF is a disease with poor prognoses and a variable and
unpredictable natural course. For prognostic outcomes of patients
with IPF, prediction methods are mainly based on clinical symptoms
and exposure, imaging, and histopathology (Lynch et al., 2018).
However, these prediction methods have limited accuracy and a few
are invasive; Thus, developing more accurate and safer methods for
determining IPF prognosis is an urgent unmet need in clinical
practice. With the development of bioinformatics, genomics and
transcriptomics are becoming increasingly important to identify
clinical predictive biomarkers (Kraaijvanger et al., 2020). Many
studies have screened genes as novel biomarkers of common
biological processes in IPF using bioinformatics. A study have
screened novel prognostic markers based on cellular senescence
characteristics in IPF (He and Li, 2022), whereas another study
have screened new prognostic markers associated with ferroptosis
characteristics in IPF (He et al., 2022). One study has shown that
EMT plays an important role in IPF development, and in this study,
an EMT-related prognostic model has been constructed using blood
samples (Zheng et al., 2022), but the evaluation capacity of this
model is limited, and the AUC values for both the training and
validation sets are less than .80. Therefore, in the current study, the
new perspective of EMT was used, and six novel prognostic
biomarkers with higher accuracy were identified using BAL cell
samples.

First, DEGs in BAL cells from normal and IPF samples were
obtained, and then, their intersection with EMT-related genes from
the MSigDB was determined to obtain differentially expressed
EMT-related genes (TIMP3, SPP1, ITGB3, and HTRA1). The
results indicated a link between EMT and IPF development. The
samples and the four obtained EMT-related genes were further
analyzed in depth. TIMP3 is highly expressed in lung fibroblasts, is
induced by transforming growth factor-β1, and may be an
important mediator of lung fibrosis (García-Alvarez et al.,
2006). Regarding SPP1, macrophages expressing high levels of
this marker have important effects on pulmonary fibrosis
(Morse et al., 2019). Blocking SPP1 expression in mice inhibits
the development of pulmonary fibrosis (Kumar et al., 2022).
ITGB3 plays an important role in vesicle uptake and is closely
associated with tumor metastasis (Fuentes et al., 2020). HTRA1 is
closely related to growth factor β, NOTCH, and other signaling

pathways and plays an important role in cell migration and
proliferation (Oka et al., 2022). Using the correlation and
immune cell infiltration analyses, we found that HTRA1 and
SPP1 may be positively correlated with the EMT process and
that EMT-related genes may be closely associated with immune
dysregulation, especially that pertaining to activated mast cells in
IPF. A previous animal experiment has also demonstrated the
correlation between IPF and activated mast cells. Accordingly,
mast cell deficiency reduces pulmonary fibrosis (Veerappan
et al., 2013). Therefore, it is valuable to screen EMT-related
genes in IPF for clinical and basic research.

We also performed a consensus clustering analysis of IPF
samples and classified patients with IPF into clusters 1 and
2 based on the differential expression of EMT-related genes; then,
PCA was used to verify the accuracy of the consensus clustering
results. Biological functions and pathways that differed between
clusters 1 and 2 were investigated using GSVA. The differential
functions and pathways identified were mainly related to metabolism
and immunity, suggesting that EMT might aggravate IPF
development through metabolic abnormalities. WGCNA was
further performed on the consensus clustering results, and
239 genes most associated with EMT were obtained, allowing the
identification of EMT-related candidate genes to construct
prognostic models. LASSO and Cox regression analyses were then
performed to obtain six genes that were closely related to prognosis,
allowing the construction of a prognostic model and a risk score
formula. The model was presented and evaluated based on the
nomogram plot and calibration curves. Survival, ROC, and
multivariate Cox analyses on the training and validation sets were
performed. The model better differentiated patients according to
their prognostic outcomes. In addition, the AUC values for the
training and validation sets for 1-, 2-, and 3-year overall survival
rates were greater than .80, demonstrating that this model exhibits
considerably better performance than the previous model (Zheng
et al., 2022) and suggesting that this prognostic model has better
predictive power.

A total of six genes were screened in the prognostic model
(CXCR7, HS3ST1, MMP25, MRVI1, TM4SF1, and TPST1). CXCR7
(updated as ACKR3) encodes atypical chemokine receptor 3, which
binds to a variety of endogenous and exogenous ligands, such as
stromal cell-derived factor 1 and macrophage migration inhibitory
factor (Wang et al., 2018). CXCR7 activates signaling pathways, such
as mitogen-activated protein kinase (Rajagopal et al., 2010; Heinrich
et al., 2012), and SDF-1/CXCR4 activation affects IPF development
(Amano et al., 2019). HS3ST1 encodes a member of the heparan
sulfate biosynthetic enzyme family. HS3TA is closely related to
inflammation and metabolism and is significantly associated with
the fibrosis developmental process (Ferreras et al., 2019). MMP25
encodes a member of the matrix metalloproteinase (MMP) family,
and MMP25 deficiency may lead to immune abnormalities in mice
(Soria-Valles et al., 2016). Further, MMP25 may be strongly
associated with cancer development and the progression of other
diseases by affecting immune functions (Sohail et al., 2008). MRVI1
encodes a protein whose expression is closely related to
nasopharyngeal and colorectal cancer (Zhu et al., 2019; Ma et al.,
2020). MRVI1 acts as a nitric oxide/protein kinase cGMP-dependent
1-dependent regulator that regulates intracellular Ca2+ to affect
physiological functions of the organism (Schlossmann et al.,
2000). MRVI1 might also be associated with IPF progression.

TABLE 1 Multivariate Cox analysis of the training and validation sets.

Multivariate cox analysis Training set Validation set

Age Hazard Ratio 1 1

p-value .456 .159

Sex Hazard Ratio 1 1.1

p-value .991 .844

Risk score Hazard Ratio 13 9.8

p-value <.001 <.001
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TM4SF1 encodes a transmembrane four superfamily protein, which
affects fibroblast motility, proliferation, and apoptosis through
pathways, such as protein kinase B/extracellular signal-regulated
kinases (Xu et al., 2020). TM4SF1 is associated with diseases, such as
non-small cell lung cancer and gastric cancer (Peng et al., 2018; Fu
et al., 2020). Its role in cell motility (Zukauskas et al., 2011) may be
related to fibroblast migration during IPF development. TPST1
encodes tyrosylprotein sulfotransferase 1, which affects
inflammatory and immune responses by altering protein activity
(Šmak et al., 2021); thus, TPST1 might be associated with IPF
progression. Studies on EMT-related prognostic genes in the
context of IPF are insufficient. Thus, future studies need to
identify and experimentally validate EMT-related genes as IPF
prognostic genes.

The prediction accuracy of the constructed prognostic model was
relatively high, with a 2-year AUC in the training set of .905 and a 2-
year AUC in the validation set of .814. Owing to a lack of EMT-related
prognostic models, this study provides reference values for the clinical
translation of EMT targets for IPF. There were some limitations to the
study. First, only a limited number of samples were included in the
study. Because the study was conducted based on comprehensive
bioinformatics, genes of interest were not experimentally validated. In
the future, the possible mechanisms of the identified EMT genes will
be explored through clinical and experimental approaches.

5 Conclusion

Here, EMT-related genes in IPF were determined. Through
bioinformatics analyses, six genes were identified that were closely
related to IPF prognosis and were used to construct a prognostic
model. This model better assessed the prognosis of IPF, which might
promote the translation of basic research on EMT to clinical strategies
for disease treatment. We hypothesize that this model may improve
IPF clinical diagnosis and treatment in the future.
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