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Synthetic lethal (SL) genetic interactions have been regarded as a promising focus for
investigating potential targeted therapeutics to tackle cancer. However, the costly
investment of time and labor associated with wet-lab experimental screenings to
discover potential SL relationships motivates the development of computational
methods. Although graph neural network (GNN) models have performed well in the
prediction of SL gene pairs, existing GNN-based models are not designed for
predicting cancer cell-specific SL interactions that are more relevant to
experimental validation in vitro. Besides, neither have existing methods fully
utilized diverse graph representations of biological features to improve prediction
performance. In this work, we propose MVGCN-iSL, a novel multi-view graph
convolutional network (GCN) model to predict cancer cell-specific SL gene pairs,
by incorporating five biological graph features and multi-omics data. Max pooling
operation is applied to integrate five graph-specific representations obtained from
GCN models. Afterwards, a deep neural network (DNN) model serves as the
prediction module to predict the SL interactions in individual cancer cells (iSL).
Extensive experiments have validated the model’s successful integration of the
multiple graph features and state-of-the-art performance in the prediction of
potential SL gene pairs as well as generalization ability to novel genes.
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1 Introduction

Synthetic lethal (SL) is a functional relationship between two genes where the loss of either
gene is viable while the loss of both is lethal. The identification of gene pairs that demonstrate
synthetic lethality can help uncover potential mechanisms that will contribute to the discovery
of anti-cancer targets and development of therapeutic drugs. For example, olaparib and
niraparib, two PARP inhibitors, are FDA-approved drugs used to treat breast and ovarian
cancer in patients with BRCA mutations based on the well-known SL relationships between
PARP and BRCA1 and BRCA2 genes (Chan and Giaccia, 2011). However, such SL gene pairs
remain largely unclear in cancer cells, so the development of experimental technologies and
computational methods is urgently needed for their discovery and validation.

A gene that is required for the reproductive success of a cell or an organism under a specific
condition is considered essential, and several methods have been developed to identify gene
essentiality. High-throughput genome-editing methods have been developed, including
chemical libraries (Simons et al., 2001), RNA interference (RNAi) (Luo et al., 2009), and
CRISPR-Cas9 (Du et al., 2017), to identity gene essentiality. Then SL gene pairs can be identified
by comparing gene essentialities of the target gene between two cell groups with or without
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perturbation of the second query gene. More recently, combinatorial
RNAi (Grimm and Kay, 2007) and combinatorial CRISPR (Vidigal
and Ventura, 2015; Han et al., 2017; Boettcher et al., 2018; Najm et al.,
2018; Zhou et al., 2020) techniques have been developed for parallel
pairwise gene disturbance to systematically detect SL gene
interactions. As a combinatorial screen experiment is technically
limited to several hundred genes and their combinations, the
primary challenge is the selection of candidate genes and gene
pairs. This, in turn, will rely on a highly accurate computational
approach.

Several computational approaches proposed for predicting
potential SL pairs include rule-based statistical inference methods,
network-based models and machine learning methods (Tang et al.,
2022). Statistical inference methods, such as DAISY (data mining
synthetic lethality identification pipeline) (Jerby-Arnon et al., 2014),
ISLE (identification of clinically relevant synthetic lethality) (Lee et al.,
2018), ASTER (analysis of synthetic lethality by comparison with
tissue-specific disease-free genomic and transcriptomic data) (Liany
et al., 2020a) and MiSL (mining synthetic lethals) (Sinha et al., 2017),
perform statistical tests to infer SL pairs directly based on the
definition of synthetic lethality. Using multi-omics profiles and
genome-editing data from both cancer cell lines and cancer tumor
samples, SL gene pairs are typically derived from mutation
relationships in activation and essentiality between two genes.
Network-based methods to select gene combinations rank the
combinations based on the proportion of the network they control
or regulate, frequently identifying many top-ranked gene
combinations as SL gene pairs (Alvarez et al., 2016; Hu et al.,
2019), though neither statistical inference nor network-based
methods are trained using known SL data.

In recent years, machine learning methods, such as the random
forest (RF) algorithm, have gained popularity in the prediction of SL. Li
and colleagues calculated enrichment scores from pathways included in
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) databases for each gene as features in RF (Li et al.,
2019), and DiscoverSL incorporated multi-omics data of cancer patients,
including copy number variation (CNV), mutation, and expression, as
input features for context-specific SL predictions using RF (Das et al.,
2019). Moreover, SLant (synthetic lethal analysis via network topology)
considers protein-protein interaction (PPI) and GO data as feature
sources by manually calculating nodewise and pairwise network
parameters and applying the RF algorithm to predict novel SL pairs
(Benstead-Hume et al., 2019). Ensemble-based models, including
MNMC (multi-network and multi-classifier) (Pandey et al., 2010),
MetaSL (meta analysis of synthetic lethality) (Wu et al., 2014), and a
model proposed by Lu’s research team (Lu et al., 2015), have been used to
discover potential SL pairs, manually extracting features from either
multiple biological networks (Pandey et al., 2010; Wu et al., 2014) or
multi-omics data (Lu et al., 2015) and performing predictions based on a
collection of classifiers. Mashup integrates multiple heterogeneous
networks using graph representation learning methods, such as
random walk with restart (RWR), to learn compact topological
feature representations of genes and applies a support vector machine
(SVM) to predict SL pairs (Cho et al., 2016). Collective matrix
factorization (CMF) is another approach that integrates multiple
heterogenous networks to learn latent representations for predicting
SL interactions (Liany et al., 2020b). Similar to CMF, GRSMF (Huang
et al., 2019) and SL2MF (Liu et al., 2020) are also matrix factorization
(MF)-basedmethods, which adopt an encoder-decoder paradigm. These

methods utilize different types of MF encoders, for example, graph
regularized self-representative matrix factorization (Huang et al., 2019)
or logistic matrix factorization (Liu et al., 2020), to decompose the SL
matrix constructed from known SL gene pairs and then reconstruct the
matrix using latent representations to predict novel SL pairs.

Nevertheless, MF-based methods are shallow embedding methods
without sharing any parameters between nodes or leveraging node
features, and this may limit their learning capacity. In contrast, graph
neural networks (GNN) can effectively capture graph structures and
learn informative embeddings by aggregating information from
neighboring nodes. One widely used GNN model is the graph
convolutional network (GCN) (Kipf and Welling, 2016). Cai and
associates proposed DDGCN (dual-dropout GCN), the first GNN-
based model to predict SL, which utilized dropout techniques to
overcome overfitting and optimize prediction performance (Cai
et al., 2020). Another GNN model, GCATSL (graph-contextualized
attention network for predicting SL), integrated diverse biological
sources (GO and PPI) as features input to improve SL prediction and
included a graph attention network (GAT), a more advanced type of
GNN, to learn node embeddings from multiple sources with different
weights (Long et al., 2021). The other GNN model for SL prediction,
KG4SL (knowledge graph neural network for synthetic lethality),
integrates such factors as biological processes, diseases, and
compounds that could be pertinent to SL interactions into a
knowledge graph (KG) to facilitate useful interpretations (Wang
et al., 2021). A recently proposed method, PiLSL (pairwise
interaction learning-based GNN model), also considers knowledge
graph as input features as well as omics features to predict novel SL
gene pairs (Liu et al., 2022). It first constructs enclosing subgraphs for
pairs of genes from the knowledge graph and then utilizes attentive
embedding propagation to learn latent embeddings of the gene pair for
the final prediction.

Though the performance of statistical inference, network models,
machine learning, and GNN-based methods have been promising,
their application still faces challenges. First and far most, all these
approaches were designed to predict SL at the population level. The
population-based SL prediction reflects that input omics data and
features are derived from a set of cell lines or a collection of tumor
samples frommultiple patients, and these features are not designed for
an individual sample. In the machine learning and GNN models, SL
training and validation data were often collected from the SynLethDB
database (Guo et al., 2016) in which SL prediction is not specific to an
individual cell line. When applying these models for SL gene pair
selection, its SL prediction lacks a context under specific cancer
biology. In other words, current methods are limited to selecting
common SL gene pairs among all cancer types. It cannot predict SL for
a particular cancer cell. Second, none of these GNN methods have
integrated multiple biological graph features when making
predictions. They either only consider known SL network
(DDGCN, GCATSL) without other graph features, or utilize
knowledge graph that ignores individual information contained in
different biological graphs (KG4SL, PiLSL).

Here, we propose a novel multi-view graph convolutional network
model for the prediction of SL in individual cancer cells (MVGCN-
iSL). Our model, MVGCN-iSL, comprises three parts. In the first, the
GCN processes multiple biological networks independently as cell-
specific and cell-independent input graphs to obtain graph-specific
representations that provide diverse information for SL prediction. In
the second part, a max pooling operation integrates several graph-
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specific representations into one, and in the third part, a multi-layer
deep neural network (DNN) model utilizes these integrated
representations as input to predict SL. Extensive experimental
results demonstrate that MVGCN-iSL achieves state-of-the-art
performance in the prediction of novel SL gene pairs as well as
generalization to SL pairs of novel genes.

2 Materials and methods

2.1 Data collection

We collected cancer cell-specific SL data using themapping system
of Horlbeck and colleagues, who quantified genetic interactions of
pairwise combinations of 472 genes in two cell lines (K562 and Jurkat)
via a double-knockdown CRISPR (clustered regularly interspaced
short palindromic repeats) interference (CRISPRi) technique
(Horlbeck et al., 2018). Only those gene pairs with genetic
interaction scores below -3 are considered SL gene pairs.

We collected multi-omics data, including gene expression, copy
number, and mutation, from the Cancer Cell Line Encyclopedia
(CCLE) database (Ghandi et al., 2019) and CRISPR essentiality
data from the Cancer Dependency Map portal (DepMap) (Meyers
et al., 2017), derived protein-protein physical interaction data and
genetic interaction data from the Biological General Repository for
Interaction Datasets (BioGRID) (Oughtred et al., 2019), and removed
any genetic interactions that overlapped between BioGRID and
Horlbeck’s mapping from BioGRID.

2.2 Input features

2.2.1 Cell-specific networks
Informative cell-specific network features are generated from or

dependent on the cell line in which we are predicting. In our model,
based on known experimentally validated SL interactions in the
specific cell line, we constructed a cell-specific SL graph in which
each node represents a gene and each edge represents SL interaction.
We consider this graph representative of the cell-specific network and
that its topology can provide valuable information about unknown SL
interactions within this specific cell line.

2.2.2 Cell-independent networks
Apart from cell-specific networks, we also consider cell-

independent network features that are derived from general
population-based analysis and not specific to one cell line. Our
model incorporates four types of cell-independent biological
network features. We use the BioGRID database to generate two
PPI networks, one for physical interactions and the other for genetic
interactions, which together represent a union set of protein
interactions from multiple different cell lines and reveal common
relationships between genes. We then calculate Pearson correlation
between each pair of genes based on CCLE expression profiles and
build a co-expression network by connecting significant gene pairs
(p < 0.01) in the network. Similarly, we build a co-essentiality network
using DepMap CRISPR essentiality profiles. These cell-independent
networks reflect some common patterns of interaction between genes
that may offer valuable information for predicting synthetic lethality
that is specific to one cell line.

2.2.3 Gene node features
Apart from network features, initial representations for gene

nodes, known as node features, are also crucial for training the
model. These features include expression, copy number, and
mutation derived from CCLE and essentiality derived from
DepMap for each gene. They are cell-specific and provide
additional information about the gene that may complement that
from input biological networks.

2.3 Model speculation

Given multiple undirected graphs,
G(i) � (V, E(i)) : i ∈ 1, 2, 3, 4, 5{ }{ }, there are N � |V| nodes,
i.e., genes. These five graphs are indexed from one to five, in the
order of cell-specific SL graph, cell-independent physical PPI network,
genetic interaction network, co-expression network, and co-
essentiality network. The adjacency matrix A(i) is derived from
known network information for each input graph and is
symmetrically normalized after adding self-loops (Hall, 2010). The
input node features form an N × R matrixX that contains four multi-
omics features–gene expression, copy number, mutation, and
essentiality (R = 4) for each gene node. In this work, we formulate
the prediction of SL as a supervised classification task. Formally, given
a set of known SL gene pairs, we incorporate multiple input graph
features G(i) and node features X in an effort to predict whether novel
gene pairs are SL pairs. Figure 1 depicts the overall architecture of our
model, consisting of basic graph convolution operations applied
independently over multiple graphs, the use of max pooling
operations to integrate and the utilization of deep neural networks
as the final module for the prediction of synthetic lethality.

2.4 Graph convolution

The core part of our MVGCN-iSL model is the graph convolution
operation defined as (Kipf and Welling, 2016):

H i( ) � f A i( )XW i( )( ) (1)
where W(i) is the trainable weight matrix of the neural network for
processing the ith input graph, H(i) is the updated feature matrix for
the ith input graph, and f is an activation function, e.g., ReLU(·) �
max(0, ·).

This graph convolution operation computes a node’s new features
as the weighted average of its features and those of its neighbors (Li
et al., 2018), naturally combining both graph structures and node
features in the convolution. Through this aggregation scheme, two
nodes with identical neighboring structures with identical node
features on corresponding nodes will have identical representations
(Xu et al., 2018). Therefore, the representationH(i) generated from the
graph convolution operation is regarded as a good characterization of
similarities based on both graph information and node features.

Furthermore, the graph convolution operation can be stacked into
multiple layers to enable learning over a larger local neighborhood.
However, using too many layers can mix node features over a long
distance and make them indistinguishable (Li et al., 2018). Here, we
adopted a two-layer model:

Z i( ) � f A i( )f A i( )XW i( )
0( )W i( )

1( ) (2)
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where W(i)
0 and W(i)

1 are trainable weight matrices in the first and
second graph convolutional layer for the ith input graph. The
dimension of generated embeddings is determined by the
number of neurons in the second graph convolutional layer,
which is a predetermined number. Considering that all five
GCN models have the same input node feature matrix X, we
share trainable weight matrices across five GCN models to
reduce the model complexity.

2.5 Integration of multiple graph features:
Max pooling

In the former step, running the graph convolution operation in
each input graph generated a set of five graph-specific
representation matrices Z(i): i ∈ 1, 2, 3, 4, 5{ }{ }, where each Z(i) is
of the dimension N × K. Here, K is set at 128 to generate a 128-
length vector for each gene based on each input graph. To integrate
these five hidden representation matrices, we utilize the max
pooling operation, a popular technique in convolutional neural
network models for processing images (Krizhevsky et al., 2012).
Max pooling is a down-sampling strategy to reduce model
parameters and control overfitting. The integration scheme is
thus defined as:

Zjk � max Z i( )
jk : i ∈ 1, 2, 3, 4, 5{ }{ } (3)

where j ∈ [1, N] and k ∈ [1, K]. Basically, we are taking the maximum
value for each feature across five vectors and summarizing five N × K

representation matrices into one final informative representation
matrix. Practically, considering that some genes are only present in
one or two graphs, gene representations generated from a graph that
does not involve them will not be informative. Max pooling across
multiple graphs highlights the more important role of the most
influential graphs at an individual gene level.

2.6 Prediction module and optimization

After max pooling, the final representation matrix Z will generate
integrated features for a gene pair as input for a prediction module. A
three-layer deep neural network (DNN) model is introduced to serve
as the prediction model. By stacking multiple layers, the DNN can
learn an extremely intricate non-linear function mapping from the
input to the output target, indeed, working best when the task is
inherently non-linear, as indicated in this SL prediction task (Lecun

FIGURE 1
Overall model architecture. There are two types of input data: cell-specific multi-omics data as node features and five biological networks. After two
layers of Graph convolutional networks and max pooling operation, the generated embeddings are used as input to a deep neural network for predicting SL.

TABLE 1 Performance comparison between population-based methods and a
random model. The evaluation is under leave-gene-combination-out setting in
K562 cell line. The random model uses randomly generated network and
randomly generated gene features as inputs.

Precision Recall F-max

DAISY 0.541 0.003 0.005

Population 0.554 0.938 0.693

Random 0.633 0.832 0.692
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et al., 2015). Because this is a binary classification task, the binary
cross-entropy is used as the cost function:

L � − 1
M

∑M

j�1yj · log p yj( )( ) + 1 − yj( )log 1 − p yj( )( ) (4)

where M is the number of training samples, yj is the true label of the
jth sample (0 or 1), p(yj) is the predicted probability of being SL by
our model for the jth sample. The stochastic gradient descent (SGD)
algorithm is applied to perform the optimization.

2.7 Comparison methods and evaluation
metrics

We compared our MVGCN-iSL model with four state-of-the-art
GNN-based models, DDGCN (Cai et al., 2020), GCATSL (Long et al.,
2021), KG4SL (Wang et al., 2021) and PiLSL (Liu et al., 2022). DDGCN
proposes a novel dual-dropout mechanism to solve the overfitting
problem. It employs known SL gene pairs to construct an SL
interaction network in which each gene is a node and SL interactions
form edges. The dual dropout consists of dropouts of a coarse-grained
node and a fine-grained edge. The node dropout involves the random
dropping of some gene nodes in each training iteration, which forces the
GNNmodel to learn more robust representations without overfitting. In
the edge dropout, the random removal of some edges during the training
enables further fine-tuning of the dropout at the edge level. However, the
lack of external features limits the ability of DDGCN to generalize to
novel genes without any known SL information.

GCATSL incorporates various biological data sources and utilizes
a graph attention network (GAT). Compared to basic GNN models,
GAT assigns different weight values to different neighbors to
distinguish and preserve the difference among neighbors

(Veličković et al., 2017). In GCATSL, three feature matrices are
first constructed from biological processes (BP) and cellular
components (CC) from Gene Ontology (GO) as well as the PPI
network from the BioGRID database as input features. Then a
dual-attention, i.e., node- and feature-level attention, mechanism is
designed to learn node representations from multiple feature graphs.
Specifically, node-level attention is used with GAT to learn
preliminary representations for each input feature graph, and
feature-level attention is implemented to integrate the
representations learned from these three feature matrices to learn
the importance of different feature inputs and generate the final
representation for each gene node.

Both KG4SL and PiLSL incorporate knowledge graph as the input
feature for predicting SL, considering that shared biological factors in
knowledge graph might imply the dependency among SL gene pairs
latently. KG4SL simply employs attention mechanism to learn
different weights for different types of nodes and edges in each
GNN layer, while PiLSL first constructs local enclosing subgraph of
each gene pair and then utilize attention mechanism to learn latent
embeddings for the gene pair in the subgraph. Besides, PiLSL
integrates multi-omics data to further obtain powerful
representations for more robust predictions.

We consider three evaluation metrics to compare SL prediction
performance. The first two metrics, area under the receiver operating
characteristic curve (ROC-AUC) and area under the precision-recall
curve (AUPR), are threshold-free. The third metric, Precision@k,
reflects the proportion of true positive samples in the top k%
predictions to demonstrate our model’s ability to prioritize the top
SL pairs. When comparing performance among population-based
approaches, we consider the fourth metric, F-max, indicating the
highest harmonic mean of precision and recall (F-measure) over all
possible thresholds.

FIGURE 2
Model performance comparison across different types of input molecular networks under leave-gene-combination-out setting in K562 cell line.
Performance is compared among five different input molecular networks, a random model and our final model, MVGCN-iSL, in terms of three evaluation
metrics: ROC-AUC, AUPR and Precision@5. “Random” is a model using randomly generated network as the input.
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3 Results

3.1 Experimental setup

Our MVGCN-iSL model culminates with 128 and 64 neurons in
the two graph convolutional layers and 64, 32, and 16 neurons in the
three-layer deep neural network. The model is optimized by the Adam
optimizer with the learning rate of 0.0001 (Kingma and Ba, 2014).
Early stopping technique is utilized to reduce over-fitting. MVGCN-
iSL is implemented using the PyTorch Geometric library in Python
and takes advantage of the powerful computing capacity of multiple
graphic processing units (GPUs) (Fey and Lenssen, 2019). We carried
out all experiments on the Pitzer cluster provided by the Ohio
Supercomputer Center (OSC) with central processing units (CPU)
of 48 cores and 192 GB RAM. The GPUs used were two NVIDIA®
Tesla V100 GPUs with 32 GB RAM. The implementation ofMVGCN-
iSL is available at https://github.com/kunjiefan/MVGCNiSL.

We conduct experiments on two cancer cell-lines (K562 and
Jurkat) individually. For the K562 cell line, 1,523 of
100,128 samples (1.5%) are SL gene pairs, whereas only 373 of
74,691 samples (0.5%) in the Jurkat cell line are SL gene pairs. We
consider Precision@5 metric for K562 cell line while use Precision@
10 for Jurkat cell line given limited positive samples. We split the
dataset into an 80% training set and a 20% test set, performed five-fold
cross-validation on the training set to determine hyper-parameters,
and evaluated model performance based on the test set. During the
training, at each epoch we randomly sampled some of the negative
samples to ensure a balanced training set.

We consider two evaluation settings: leave-gene-combination-out
and leave-gene-out. Under leave-gene-combination-out setting,
training and test data are completely randomly sampled, where
both genes of a pair in the test set might be present in the training
set. As for leave-gene-out setting, we first randomly split genes into
training and test, and use gene pairs within as training and test set,
respectively. The leave-gene-combination-out setting evaluates a
model’s ability to complete missing SL data within a set of selected
genes of interest when only part of the interactions is known, while
leave-gene-out measures the ability of the model to generalize to SL
gene pairs of novel genes with no available data.

3.2 Population-based SL prediction
approaches cannot predict cell-specific SL
gene pairs

We compared prediction performance between two population-
based methods, DAISY and a second population-based model denoted
as “Population” and a randommodel, examining precision, recall, and
f-max to determine the suitability of these methods for cell-specific SL
prediction under leave-gene-combination-out evaluation setting in
K562 cell line (Table 1). We extracted predictions of DAISY, a
statistical-inference method that uses multi-omics data from a
collection of cancer cell lines without considering cell-specific
features (Jerby-Arnon et al., 2014), from SynLethDB (Guo et al.,
2016) and calculated precision, recall, and f-max based on the
overlapping of data with that of Horlbeck’s mapping (Horlbeck
et al., 2018). For the “Population” model, which uses the co-
expression network as the input graph and gene expression profiles
from CCLE as node features, we utilized principal component analysis

(PCA) to reduce the dimensionality of CCLE gene expression profiles
to four to be consistent with our cell-specific model. Our random
model utilized a randomly generated network and randomly generated
node features as input features.

As shown in Table 1, neither of our two population-based models
performed better than the random model. DAISY performed
extremely poorly, indicating that an unsupervised population-based
model is not suitable for cell-specific SL prediction, and though our
“Population” model yielded recall of 0.93, its precision of only
0.55 resulted in an F-max of 0.69. All these results highlight
drawbacks of using population-based SL prediction models for cell-
specific SL prediction and the importance of developing cell-specific
prediction models.

3.3 Integration of multiple molecular
networks improves prediction performance

Our MVGCN-iSL model employed five molecular network graphs
and gene node features to predict SL gene pairs (Figure 2). Though
cell-independent network features are not informative for predicting
cell-specific SL pairs, the information they imply about common
synthetic lethality across cells might serve to complement cell-
specific network features and improve prediction when integrated
with cell-specific features. In addition, we designed a random model
that utilized a randomly generated network as the input graph in
combination with cell-specific node features, which served as a base
model. All experiments in this section were conducted under leave-
gene-combination-out setting in K562 cell line.

As illustrated in Figure 2, none of the three metrics reflected better
performance of the co-expression network than the random model,
while co-essentiality, physical PPI network, genetic PPI network and
SL graph all showed all-around improvement over the base model.
Among these five molecular network features, SL graph and genetic
PPI network demonstrate the best performance. The Co-essentiality
network feature also shows promising results, especially in terms of
Precision@5 with a value of 0.906. Taken together, our model,
MVGCN-iSL, that combines all five graphs, yielded a ROC-AUC of
0.852, AUPR of 0.837, and Precision@5 of 0.968, indicating that the
integration of multiple molecular networks improves prediction
performance. When comparing the failed cases with correctly
predicted cases of our MVGCN-iSL model, we found that genes in
those failed cases have a higher chance of missing in one or more input
graphs. Especially, when one or both genes in the pair are missing in
the genetic interaction network or co-essentiality network that have
been proved to be important for SL prediction, this pair is more likely
to be incorrectly predicted. This analysis verified the importance of
incorporating multiple sources of biological networks, since remaining
networks can still contribute to the prediction when genes are missing
in some input networks.

3.4 MVGCN-iSL outperforms existing GNN
methods

We compared prediction performance of our MVGCN-iSL model
with that of four existing GNN methods, DDGCN (Cai et al., 2020),
GCATSL (Long et al., 2021), KG4SL (Wang et al., 2021) and PiLSL
(Liu et al., 2022), which have been demonstrated to achieve state-of-
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the-art performance in predicting population-based SL gene pairs
using the SynLethDB database. We made comparisons under two
evaluation settings (leave-gene-combination-out and leave-gene-out)
in two cell-specific datasets (K562 and Jurkat). Although these
approaches were initially designed for predicting population-based
SL interactions, they were adapted to predict cell-specific SL gene
pairs.

Under leave-gene-combination-out setting, as shown in Table 2,
we can see that DDGCN performs the worst in both two cell lines,
indicating that external features are required for the prediction.
KG4SL is not achieving promising results as well, which might
demonstrate that the use of knowledge graph is not suitable for
cell-specific SL prediction. All evaluation metrics depict the
superior prediction performance of MVGCN-iSL to that of
GCATSL. The primary difference between MVGCN-iSL and
GCATSL is how the model uses multiple graph features. MVGCN-
iSL utilizes graph structure information directly and integrates their
data through a max pooling operation. In contrast, GCATSL
transforms graph information into feature maps by calculating
pairwise similarity and integrates multiple feature maps together as
the input node features in the GNN model. Thus, it seems that the
direct use of graph structures yields better results than the derivation
of node features from the graph. Compared to PiLSL, MVGCN-iSL
achieves better performance across all metrics in K562 cell line and
gets comparable results in terms of AUPR and Precision@10 in Jurkat
cell line. Though PiLSL demonstrates promising results, it typically
takes 20x more computing time to train the model than MVGCN-iSL,
which greatly limits its applicability in practice.

As for leave-gene-out setting (Table 3), which evaluates the ability
of the model to generalize to SL gene pairs of novel genes with no

available data, the comparison results display similar patterns as the
leave-gene-combination-out setting. Notably, DDGCN is not able to
predict SL for genes without known SL information, since it only relies
on SL network constructed from existing data. Both GCATSL and
KG4SL show poor results in terms of all metrics, indicating inability to
generalize to novel genes. Compared to PiLSL, MVGCN-iSL obtains
higher performance across all metrics in K562 cell line and higher
AUPR in Jurkat cell line, with slightly lower ROC-AUC and
Precision@10 in Jurkat cell line. Taken together, MVGCN-iSL has
achieved state-of-the-art performance under both leave-gene-
combination-out and leave-gene-out settings.

3.5 MVGCN-iSL is robust under small sample
sizes

When compared with population-based prediction, the lack of SL
training data in a specific cell line presents a primary challenge in the
prediction of cell-specific SL gene pairs. Practically speaking, an ideal
model could achieve promising results even with a relatively small
training sample size. With this in mind, we conducted a series of
experiments to evaluate the performance of our model using different
numbers of training samples (10%, 30%, 50%, 70% of total samples)
under leave-gene-combination-out setting in K562 cell line as shown
in Table 4. The process of splitting data into training and test set is
completely random, no matter the proportion.

We expected the model’s performance to improve in all metrics as
the number of training samples increased. The results for Precision@
5 show that prediction performance of all four models exceeded 0.9,
which is a very promising result. More specifically, when we only

TABLE 2 Comparison with four GNN methods in two cell-specific datasets under leave-gene-combination-out evaluation setting.

Model K562 Jurkat

ROC-AUC AUPR Precision@5 ROC-AUC AUPR Precision@10

DDGCN 0.631 0.669 0.954 0.536 0.597 0.781

GCATSL 0.812 0.803 0.912 0.752 0.771 0.867

KG4SL 0.734 0.723 0.923 0.695 0.684 0.723

PiLSL 0.831 0.763 0.839 0.807 0.820 0.972

MVGCN-iSL 0.852 0.837 0.968 0.825 0.819 0.967

TABLE 3 Comparison with four GNN methods in two cell-specific datasets under leave-gene-out evaluation setting.

Model K562 Jurkat

ROC-AUC AUPR Precision@5 ROC-AUC AUPR Precision@10

DDGCN - - - - - -

GCATSL 0.523 0.516 0.528 0.508 0.552 0.521

KG4SL 0.508 0.508 0.515 0.501 0.505 0.318

PiLSL 0.627 0.616 0.611 0.629 0.608 0.667

MVGCN-iSL 0.642 0.623 0.632 0.596 0.643 0.598
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consider 10% of the total samples in the training set (~150 SL gene
pairs), out of the top 5% predictions with the highest confidence,
90.3% of predicted gene pairs are true SL gene pairs. This data shows
significant applicability in the prioritization of SL gene pairs for
biologists.

4 Discussion and conclusion

MVGCN-iSL is a multi-view GNN model that incorporates five
distinct biological graphs and cell-specific multi-omics data to predict
cell-specific SL gene pairs. The powerful representation capability of
the GNN and integration of multiple informative features allow our
model to consistently outperform existing state-of-the-art models.
Notably, high Precision@5 score of our model even with a limited
number of training samples demonstrates its applicability for the
prioritization of experiments for cell-specific SL validation.

Among the five input graph features, the co-expression and co-
essentiality networks make totally different contributions though they
are generated in a similar way (Figure 2), and essentiality features seem
much more informative than expression features. To investigate any
associations between synthetic lethality and expression or essentiality,
we calculated Spearman’s rank correlation between the median of SL
values and essentiality scores or expression values separately and
observed negative correlation between SL and essentiality (−0.19,
P < 1e-4) and no correlation between SL and expression (0.03, p =
0.537). This explains why essentiality is more helpful than expression
for predicting SL. This negative correlation implies the reduced
likelihood that a gene with greater essentiality will be synthetic
lethal with other genes, which is consistent with the definition of
synthetic lethality.

One limitation of our current model is the lack of more cell-
specific input graph features. Currently, we only include a cell-specific
SL graph that we have shown to be the most informative. In the future,
we will try to incorporate more cell-specific graphs, for example,
building a cell-specific co-expression network based on perturbation
data in the Library of Integrated Network-based Cellular Signatures
(LINCS) database (Subramanian et al., 2017). Another future direction

is to build a model that can directly predict SL on a novel cell line
without first training on that cell line. Assuming the existence of some
common underlying mechanisms of SL among different cell lines, it is
possible that we can train a model based on one cell line and then use
the trained model to predict SL directly on another cell line via transfer
learning. This type of model can aid biologists in accelerating the
process of selecting genes for experimental validation in a novel
unexplored cell line.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://github.com/kunjiefan/
MVGCNiSL.

Author contributions

LL and LC conceived the project. KF developed computational
models. ST and BG performed analysis. KF and LL drafted the
manuscript. All authors read and approved the final manuscript.

Funding

This research was funded by the National Institutes of Health
[P30CA016058].

Acknowledgments

The authors would like to thank the Ohio Supercomputer Center
(OSC) for providing computing resources.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Alvarez, M. J., Shen, Y., Giorgi, F. M., Lachmann, A., Ding, B. B., Hilda Ye, B., et al.
(2016). Functional characterization of somatic mutations in cancer using network-based
inference of protein activity. Nat. Genet. 48, 838–847. doi:10.1038/ng.3593

Benstead-Hume, G., Chen, X., Hopkins, S. R., Lane, K. A., Downs, J. A., and Pearl, F. M.
G. (2019). Predicting synthetic lethal interactions using conserved patterns in protein

interaction networks. PLoS Comput. Biol. 15, 10068888–e1006925. doi:10.1371/journal.
pcbi.1006888

Boettcher, M., Tian, R., Blau, J. A., Markegard, E., Wagner, R. T., Wu, D., et al. (2018).
Dual gene activation and knockout screen reveals directional dependencies in genetic
networks. Nat. Biotechnol. 36, 170–178. doi:10.1038/nbt.4062

TABLE 4 Performance comparison with different training sample sizes. The
evaluation is under leave-gene-combination-out setting in K562 cell line dataset.
The proportion column indicates the proportion of total samples used as training
samples.

Proportion ROC-AUC AUPR Precision@5

0.1 0.745 0.747 0.903

0.3 0.785 0.774 0.914

0.5 0.820 0.807 0.935

0.7 0.844 0.832 0.957

Frontiers in Genetics frontiersin.org08

Fan et al. 10.3389/fgene.2022.1103092

https://github.com/kunjiefan/MVGCNiSL
https://github.com/kunjiefan/MVGCNiSL
https://doi.org/10.1038/ng.3593
https://doi.org/10.1371/journal.pcbi.1006888
https://doi.org/10.1371/journal.pcbi.1006888
https://doi.org/10.1038/nbt.4062
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1103092


Cai, R., Chen, X., Fang, Y., Wu, M., and Hao, Y. (2020). Dual-dropout graph
convolutional network for predicting synthetic lethality in human cancers.
Bioinformatics 36, 4458–4465. doi:10.1093/bioinformatics/btaa211

Chan, D. A., and Giaccia, A. J. (2011). Harnessing synthetic lethal interactions in
anticancer drug discovery. Nat. Rev. Drug Discov. 10, 351–364. doi:10.1038/nrd3374

Cho, H., Berger, B., and Peng, J. (2016). Compact integration of multi-network topology
for functional analysis of genes. Cell Syst. 3, 540–548.e5. doi:10.1016/j.cels.2016.10.017

Das, S., Deng, X., Camphausen, K., Shankavaram, U., and Schwartz, R. (2019).
DiscoverSL: An R package for multi-omic data driven prediction of synthetic lethality
in cancers. Bioinformatics 35, 701–702. doi:10.1093/bioinformatics/bty673

Du, D., Roguev, A., Gordon, D. E., Chen, M., Chen, S.-H., Shales, M., et al. (2017).
Genetic interaction mapping in mammalian cells using CRISPR interference. Nat.
Methods 14, 577–580. doi:10.1038/nmeth.4286

Fey, M., and Lenssen, J. E. (2019). “Fast graph representation learning with PyTorch
Geometric,” in ICLR 2019, New Orleans.

Ghandi, M., Huang, F. W., Jané-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E. R.,
et al. (2019). Next-generation characterization of the cancer cell line Encyclopedia. Nature
569, 503–508. doi:10.1038/s41586-019-1186-3

Grimm, D., and Kay, M. A. (2007). Combinatorial RNAi: A winning strategy for the race
against evolving targets? Mol. Ther. 15, 878–888. doi:10.1038/sj.mt.6300116

Guo, J., Liu, H., and Zheng, J. (2016). SynLethDB: Synthetic lethality database toward
discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res. 44,
D1011–D1017. doi:10.1093/NAR/GKV1108

Hall, F. J. (2010). The adjacency matrix, standard Laplacian, and normalized Laplacian,
and some eigenvalue interlacing results, 16. Atlanta: Department of Mathematics and
Statistics at Georgia State University.

Han, K., Jeng, E. E., Hess, G. T., Morgens, D. W., Li, A., and Bassik, M. C. (2017).
Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise
genetic interactions. Nat. Biotechnol. 35, 463–474. doi:10.1038/nbt.3834

Horlbeck, M. A., Xu, A., Wang, M., Bennett, N. K., Park, C. Y., Bogdanoff, D., et al.
(2018). Mapping the genetic landscape of human cells. Cell 174, 953–967.e22. doi:10.1016/
J.CELL.2018.06.010

Hu, Y., Chen, C. H., Ding, Y. Y., Wen, X., Wang, B., Gao, L., et al. (2019). Optimal
control nodes in disease-perturbed networks as targets for combination therapy. Nat.
Commun. 10, 2180. doi:10.1038/s41467-019-10215-y

Huang, J., Wu, M., Lu, F., Ou-Yang, L., and Zhu, Z. (2019). Predicting synthetic lethal
interactions in human cancers using graph regularized self-representative matrix
factorization. BMC Bioinforma. 20, 657–658. doi:10.1186/s12859-019-3197-3

Jerby-Arnon, L., Pfetzer, N., Waldman, Y. Y., McGarry, L., James, D., Shanks, E., et al.
(2014). Predicting cancer-specific vulnerability via data-driven detection of synthetic
lethality. Cell 158, 1199–1209. doi:10.1016/j.cell.2014.07.027

Kingma, D. P., and Ba, J. (2014). “Adam: A method for stochastic optimization”, in
Proceedings of the 3rd International Conference on Learning Representations (ICLR
2015), San Diego.

Kipf, T. N., and Welling, M. (2016). “Semi-supervised classification with graph
convolutional networks”, in ICLR 2017, Toulon, France.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105.

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi:10.1038/nature14539

Lee, J. S., Das, A., Jerby-Arnon, L., Arafeh, R., Auslander, N., Davidson, M., et al. (2018).
Harnessing synthetic lethality to predict the response to cancer treatment. Nat. Commun.
9, 2546–2612. doi:10.1038/s41467-018-04647-1

Li, Q., Han, Z., and Wu, X.-M. (2018). “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Thirty-Second AAAI conference on artificial
intelligence, New Orleans.

Li, J. R., Lu, L., Zhang, Y. H., Liu, M., Chen, L., Huang, T., et al. (2019). Identification of
synthetic lethality based on a functional network by using machine learning algorithms.
J. Cell. Biochem. 120, 405–416. doi:10.1002/jcb.27395

Liany, H., Jeyasekharan, A., and Rajan, V. (2020a). ASTER: A method to predict clinically
actionable synthetic lethal interactions. Association for Computing Machinery. Available

at: https://www.biorxiv.org/content/10.1101/2020.10.27.356717v1.abstract?%
3Fcollection=.

Liany, H., Jeyasekharan, A., and Rajan, V. (2020b). Predicting synthetic lethal
interactions using heterogeneous data sources. Bioinformatics 36, 2209–2216. doi:10.
1093/bioinformatics/btz893

Liu, Y., Wu, M., Liu, C., Li, X. L., and Zheng, J. (2020). SL2MF: Predicting synthetic
lethality in human cancers via logistic matrix factorization. IEEE/ACM Trans. Comput.
Biol. Bioinforma. 17, 748–757. doi:10.1109/TCBB.2019.2909908

Liu, X., Yu, J., Tao, S., Yang, B., Wang, S., Wang, L., et al. (2022). PiLSL: pairwise
interaction learning-based graph neural network for synthetic lethality prediction
in human cancers. Bioinformatics 38, 106–112. doi:10.1093/bioinformatics/
btac476

Long, Y., Wu, M., Liu, Y., Zheng, J., Kwoh, C. K., Luo, J., et al. (2021). Graph
contextualized attention network for predicting synthetic lethality in human cancers.
Bioinformatics 37, 2432–2440. doi:10.1093/bioinformatics/btab110

Lu, X., Megchelenbrink, W., Notebaart, R. A., and Huynen, M. A. (2015). Predicting
human genetic interactions from cancer genome evolution. PLoS One 10,
01257955–e125815. doi:10.1371/journal.pone.0125795

Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., et al.
(2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with
the ras oncogene. Cell 137, 835–848. doi:10.1016/J.CELL.2009.05.006

Meyers, R. M., Bryan, J. G., McFarland, J. M., Weir, B. A., Sizemore, A. E., Xu, H., et al.
(2017). Computational correction of copy number effect improves specificity of
CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784. doi:10.
1038/ng.3984

Najm, F. J., Strand, C., Donovan, K. F., Hegde, M., Sanson, K. R., Vaimberg, E. W., et al.
(2018). Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nat.
Biotechnol. 36, 179–189. doi:10.1038/nbt.4048

Oughtred, R., Stark, C., Breitkreutz, B. J., Rust, J., Boucher, L., Chang, C., et al. (2019).
The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47, D529–D541.
doi:10.1093/NAR/GKY1079

Pandey, G., Zhang, B., Chang, A. N., Myers, C. L., Zhu, J., Kumar, V., et al. (2010). An
integrative multi-network and multi-classifier approach to predict genetic interactions.
PLoS Comput. Biol. 6, e1000928. doi:10.1371/journal.pcbi.1000928

Simons, A. H., Dafni, N., Dotan, I., Oron, Y., and Canaani, D. (2001). Genetic synthetic
lethality screen at the single gene level in cultured human cells. Nucleic Acids Res. 29, e100.
doi:10.1093/nar/29.20.e100

Sinha, S., Thomas, D., Chan, S., Gao, Y., Brunen, D., Torabi, D., et al. (2017). Systematic
discovery of mutation-specific synthetic lethals by mining pan-cancer human primary
tumor data. Nat. Commun. 8, 15580–15613. doi:10.1038/ncomms15580

Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X., et al.
(2017). A next generation connectivity map: L1000 platform and the first 1, 000,
000 profiles. Cell 171, 1437–1452.e17. doi:10.1016/j.cell.2017.10.049

Tang, S., Gokbag, B., Fan, K., Shao, S., Huo, Y., Wu, X., et al. (2022). Synthetic lethal gene
pairs: Experimental approaches and predictive models. Front. Genet. 3347, 961611. doi:10.
3389/fgene.2022.961611

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2017).
Graph attention networks. arXiv Prepr. arXiv1710.10903.

Vidigal, J. A., and Ventura, A. (2015). Rapid and efficient one-step generation of
paired gRNA CRISPR-Cas9 libraries. Nat. Commun. 6, 8083–8087. doi:10.1038/
ncomms9083

Wang, S., Xu, F., Li, Y., Wang, J., Zhang, K., Liu, Y., et al. (2021). KG4SL: Knowledge
graph neural network for synthetic lethality prediction in human cancers. Bioinformatics
37, I418–I425. doi:10.1093/bioinformatics/btab271

Wu, M., Li, X., Zhang, F., Li, X., Kwoh, C. K., and Zheng, J. (2014). In silico prediction of
synthetic lethality by meta-analysis of genetic interactions, functions, and pathways in
yeast and human cancer. Cancer Inf. 13, 71–80. doi:10.4137/CIN.S14026

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). “How powerful are graph neural
networks?,” in ICLR 2019, New Orleans.

Zhou, P., Chan, B. K. C., Wan, Y. K., Yuen, C. T. L., Choi, G. C. G., Li, X., et al. (2020). A
three-way combinatorial CRISPR screen for analyzing interactions among druggable
targets. Cell Rep. 32, 108020. doi:10.1016/j.celrep.2020.108020

Frontiers in Genetics frontiersin.org09

Fan et al. 10.3389/fgene.2022.1103092

https://doi.org/10.1093/bioinformatics/btaa211
https://doi.org/10.1038/nrd3374
https://doi.org/10.1016/j.cels.2016.10.017
https://doi.org/10.1093/bioinformatics/bty673
https://doi.org/10.1038/nmeth.4286
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1038/sj.mt.6300116
https://doi.org/10.1093/NAR/GKV1108
https://doi.org/10.1038/nbt.3834
https://doi.org/10.1016/J.CELL.2018.06.010
https://doi.org/10.1016/J.CELL.2018.06.010
https://doi.org/10.1038/s41467-019-10215-y
https://doi.org/10.1186/s12859-019-3197-3
https://doi.org/10.1016/j.cell.2014.07.027
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s41467-018-04647-1
https://doi.org/10.1002/jcb.27395
https://www.biorxiv.org/content/10.1101/2020.10.27.356717v1.abstract?%3Fcollection=
https://www.biorxiv.org/content/10.1101/2020.10.27.356717v1.abstract?%3Fcollection=
https://doi.org/10.1093/bioinformatics/btz893
https://doi.org/10.1093/bioinformatics/btz893
https://doi.org/10.1109/TCBB.2019.2909908
https://doi.org/10.1093/bioinformatics/btac476
https://doi.org/10.1093/bioinformatics/btac476
https://doi.org/10.1093/bioinformatics/btab110
https://doi.org/10.1371/journal.pone.0125795
https://doi.org/10.1016/J.CELL.2009.05.006
https://doi.org/10.1038/ng.3984
https://doi.org/10.1038/ng.3984
https://doi.org/10.1038/nbt.4048
https://doi.org/10.1093/NAR/GKY1079
https://doi.org/10.1371/journal.pcbi.1000928
https://doi.org/10.1093/nar/29.20.e100
https://doi.org/10.1038/ncomms15580
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.3389/fgene.2022.961611
https://doi.org/10.3389/fgene.2022.961611
https://doi.org/10.1038/ncomms9083
https://doi.org/10.1038/ncomms9083
https://doi.org/10.1093/bioinformatics/btab271
https://doi.org/10.4137/CIN.S14026
https://doi.org/10.1016/j.celrep.2020.108020
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1103092

	Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction
	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 Input features
	2.2.1 Cell-specific networks
	2.2.2 Cell-independent networks
	2.2.3 Gene node features

	2.3 Model speculation
	2.4 Graph convolution
	2.5 Integration of multiple graph features: Max pooling
	2.6 Prediction module and optimization
	2.7 Comparison methods and evaluation metrics

	3 Results
	3.1 Experimental setup
	3.2 Population-based SL prediction approaches cannot predict cell-specific SL gene pairs
	3.3 Integration of multiple molecular networks improves prediction performance
	3.4 MVGCN-iSL outperforms existing GNN methods
	3.5 MVGCN-iSL is robust under small sample sizes

	4 Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


