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Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive

pulmonary fibrotic disease with unknown etiology and poor outcomes. It

severely affects the quality of life. In this study, we comprehensively

analyzed the expression of N6-methyladenosine (m6A) RNA methylation

regulators using gene expression data from various tissue sources in IPF

patients and healthy volunteers.

Methods: The gene expressionmatrix and clinical characteristics of IPF patients

were retrieved from the Gene Expression Omnibus database. A random forest

model was used to construct diagnosis signature m6A regulators. Regression

analysis and correlation analysis were used to identify prognosis m6A

regulators. Consensus cluster analysis was used to construct different m6A

prognosis risk groups, then functional enrichment, immune infiltration and drug

sensitivity analysis were performed.

Result: Five candidate m6A genes from lung tissue were used to predict the

incidence, and the incidencewas validated using datasets frombronchoalveolar

lavage fluid (BALF) and peripheral blood mononuclear cells. Subsequently, the

BALF dataset containing outcomes data was used for the prognosis analysis of

m6A regulators. METTL14, G3BP2, and ZC3H13 were independent protective
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factors. Using correlation analysis with lung function in the lung tissue-derived

dataset,METTL14was a protective factor in IPF. Based onMETTL14 and G3BP2,

a consensus cluster analysis was applied to distinguish the prognostic m6A

regulation patterns. The low-risk group’s prognosis was significantly better than

the high-risk group. Biological processes regulated by various risk groups

included fibrogenesis and cell adhesion. Analysis of immune cell infiltration

showed upregulation of neutrophils in the m6A high-risk group. Subsequently,

five m6A high-risk group sensitive drugs and one m6A low-risk group sensitive

drug were identified.

Discussion: These findings suggest that m6A regulators are involved in the

diagnosis and prognosis of IPF, and m6A patterns are a method to identify IPF

outcomes.
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1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive

fibrotic lung disease with unknown causes. The incidence of IPF

is rising, and the prognosis are extremely poor, severely affecting

the quality of life (Mei et al., 2021). Cardinal symptoms of IPF

include progressive dyspnea and dry cough (Hochhegger et al.,

2019; Janowiak et al., 2022). Currently, there is no effective

treatment for IPF, and the median survival time is 3 to

5 years. The overall survival is poor, and there are individual

differences. Despite significant progress in understanding its

pathogenesis, it remains difficult reliably to predict the disease

course and individual patient responses to treatment. Serum

biomarkers such as osteonectin, matrix metallopeptidase-7,

intercellular adhesion molecule-1, and periostin are somewhat

predictive for diagnosis, prognosis, and treatment responses

(Drakopanagiotakis et al., 2018; Clynick et al., 2022).

Nevertheless, there remains a need for biomarkers that predict

IPF onset and prognosis.

N6-methyladenosine (m6A) RNA modification involves

methyltransferase catalyzing the methylation of adenine at the

6N position. The methyltransferase complex catalyzes the

formation of m6A (Bokar et al., 1994), including three

modifications. The m6A readers include EIF3A, FMR1,

G3BP1/2, HNRNPA2B1, HNRNPC, HNRNPG, LRPPRC,

IGF2BP1/2/3, PRRC2A, RBMX, YTHDC1/2, YTHDF1/2/3, and

SND1 (Lan et al., 2019; Lan et al., 2021; Zhang et al., 2021; Li et al.,

2022); The m6A writers include CBLL1, KIAA1429, METTL3,

METTL5, METTL14, METTL16, PCIF1, RBM15, RBM15B,

VIRMA, WTAP, ZC3H13, ZCCHC4, and HAKAI (Wang et al.,

2015; Xiao et al., 2016; Wu et al., 2018; Lan et al., 2019; Lan et al.,

2021; Zhang et al., 2021; Li et al., 2022; Qu et al., 2022); m6A

erasers include FTO, ALKBH3 and ALKBH5 (Lan et al., 2019;

Gao et al., 2021; Lan et al., 2021; Li et al., 2022). Writers and

erasers are in the nucleus, where m6A binds a specific nuclear

reader, affecting mRNA shearing and other nuclear processes.

After export to the cytoplasm, m6A binds to a specific

cytoplasmic reader, affecting mRNA stability, translation, and

localization (Zaccara et al., 2019; Jiang et al., 2021).

Regulators of m6A RNA methylation modify the course of

lung cancer and pneumonia. The m6A regulators that aid the

diagnosis and prognosis of IPF haves not yet been discovered.

Therefore, we performed a preliminary analysis of m6A-

regulated genes based on high-throughput sequencing data of

clinical samples. RNA methylation is the most abundant

modification in eukaryotes; m6A regulators may be involved

in IPF pathogenesis and progression and influence outcomes by

regulating biological processes and immune infiltration. In this

study, we identified the m6A regulators for IPF diagnosis and

outcomes and explored the biological processes regulated by

m6A regulators.

2 Materials and methods

2.1 Collection of clinical information and
data sets

The gene expression matrix and clinical characteristics of IPF

patients were retrieved from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/), and a

total of 505 IPF patients and 147 healthy volunteers were

included. The bronchoalveolar lavage fluid (BALF) came from

the GSE70866 series, including IPF patients (n = 176) and

healthy volunteers (n = 20), which were detected using the

GPL14550 and GPL17077 platforms, respectively (Prasse et al.

, 2019). The lung tissue came from the GSE47460 series,

including interstitial lung disease patients (n = 254) and

healthy volunteers (n = 108), which were tested using the

GPL6480 and GPL14550 platforms, respectively (Kim et al.,

2015; Peng et al., 2016; Anathy et al., 2018). The source of

peripheral blood mononuclear cells (PBMCs) was the
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GSE28221 series, including IPF patients (n = 75) and healthy

volunteers (n = 19), which were detected using the

GPL6480 platform (Herazo-Maya et al., 2013; Huang et al.,

2015). Due to the different detecting platforms of samples, the

batch effect detected by the platforms was eliminated using the

ComBat method in the “SVA” R package for data from the same

histologic origin. Principal component analysis (PCA) was used

to determine the goodness of batch correction.

2.2 m6A identification

Based on previous studies, 36 m6A regulators were

considered, including 19 readers, 14 writers, and three erasers.

The m6A regulators described above were extracted using the

“limma” package in R software. The Wilcoxon test was used to

determine whether there were significant changes between IPF

patients and healthy volunteers. The “ggpubr” package was

employed to draw expression boxplots, and the “pheatmap”

package was used to draw a visual m6A expression heatmap.

2.3 Random forest (RF) and support vector
machine (SVM) model testing and
development of nomogram models

We constructed machine learning classifiers of RF and SVM

to predict the reliability of IPF occurrence (Noble, 2006; Altmann

et al., 2010). A hyperplane was identified to distinguish IPF

patients from healthy volunteers. Then, we established a

nomogram to predict the occurrence of IPF in different GEO

series based on five selected m6A regulators. Statistical analysis

was performed using the R packages “rms” and “rmda.” To assess

model accuracy and validity, plot calibration curves, decision

curve analysis (DCA), and receiver operating characteristic

(ROC) curves. Finally, the nomogram formula of the

GSE47460 series was brought into GSE70866 and

GSE28221 series for verification. ROC curves were drawn to

calculate the area under the curve (AUC) and 95% confidence

interval (CI).

2.4 Cox proportional hazards regression
model, least absolute shrinkage and
selection operator (LASSO) regression
model

The 31 m6A-related genes of the BALF-derived

GSE70866 series were analyzed using univariate Cox

regression analysis. Multi-variables faced the risk of over-

fitting. LASSO regression was applied to analyze the influence

of the survival status of these three variables, and the

parameter λ was used to adjust the model complexity to

obtain a less variable and more representative combination.

Prognostic high-risk and low-risk clusters were obtained

according to the risk score using LASSO regression. The

33 m6A-related genes of the PBMC-derived

GSE28221 series were analyzed using univariate Cox

regression analysis.

The risk score of IPF patients can be used as an independent

prognostic factor. Among the clinical data, age, gender, and

global alignment and proportion (GAP) score were included

as independent variables in univariate and multivariate Cox

regression analyses to clarify independent prognostic factors

for IPF patients. To balance the statistical data, we used

1000× risk scores. To perform these analyses, we used the

“forestplot,” “survival,” and “glmnet” packages.

2.5 Spearman correlation analysis

Spearman correlation analysis was performed on the lung

function using the diffusing capacity of the lungs for carbon

monoxide (DLCO) and m6A regulators (|R| > 0.2, p < 0.001) in

the GSE47460 series using the “limma” package. Spearman

correlation analysis was performed on METTL14, G3BP2, and

ZC3H13 with other m6A regulators (|R| > 0.4, p < 0.001) in the

GSE70866 series. The “ggplot2,” “ggpubr,” and “ggExtra”

packages were used for visual scatter plot drawing.

2.6 Consensus cluster analysis, PCA and
survival analysis

To determine whether the outcomes-related m6A regulators

METTL14, G3BP2, and ZC3H13 are associated with IPF, series

from GSE70866 were divided into groups according to the

consensus levels of m6A regulators using the

“ConsensusClusterPlus” package. Outputs included consensus

cumulative distribution function (CDF) plots, the relative change

in area under the CDF curve, and the consensus matrix. PCA was

used to determine the fitness of classification. Kaplan-Meier

survival analysis was used to evaluate the difference in overall

survival between different m6A types using the “survival”

package.

2.7 Differentially expressed genes (DEGs)
analysis and Gene Ontology (GO)
functional annotation and kyoto
encyclopedia of genes and genomes
(KEGG) pathway analysis of m6A
regulators

The “limma” package and the “VennDiagram” package were

used to identify DEGs associated with different m6A
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FIGURE 1
GSE47460 series profile and RF and SVM model construction of m6A regulators in IPF and healthy volunteers (Con) (A) Histogram of 28 m6A
regulators between IPF and Con. (B) Heatmap of differential expression of 12 m6A regulators. (C) AUC of the RF and SVMmodel, SVM is 0.917, RF is
1.000. (D) Correlation between the error and number of trees of Con, IPF, and both. (E) The importance scores of 12 m6A modulators were
calculated based on the RF model. (*p < 0.05, **p < 0.01, ***p < 0.001).
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modifications. Adjusted p-values <0.05 and |log2FC| > 1 were

considered as DEGs, and volcano plots were drawn for all genes.

The “clusterProfiler” package was used to analyze GO functional

annotation, including the biological process (BP), celluar

component (CC), molecular function (MF) terms, and KEGG

pathway analysis. The significance criterion was set at

p-value <0.05. The results were plotted using a bioinformatics

tool (https://www.bioinformatics.com.cn) based on the R

language (version 4.03) (Ashburner et al., 2000; Kanehisa and

Goto, 2000; Gene Ontology, 2021).

2.8 Immune infiltration assay

Initially, we used single-sample gene set enrichment analysis

(ssGSEA) to quantify the relative abundance of 23 immune cell

types in the immune microenvironment across different m6A

clusters. Panels of specific functional genes are used to mark each

immune cell type. The relative abundance of each immune cell

type was calculated from the enrichment fraction of gene set

expression in transcriptome sequencing in ssGSEA analysis and

normalized to a uniform distribution. Next, based on the results

of the immune-related analysis, a boxplot of differentially

expressed immune cells of different m6A clusters was drawn,

and an association heatmap was drawn by using m6A regulators

and immune cell expression abundance for correlation analysis.

2.9 Potential target drug analysis of
different m6A clusters

The “pRRophetic” package was used to predict potential

drugs sensitive to IPF patients with different m6A risk groups.

Drug susceptibility was assessed by the half-maximal inhibitory

concentration.

3 Results

3.1 Identification of signature m6A
regulators genes in the diagnosis of IPF

To investigate the differentially expressed m6A gene

between IPF patients and healthy people, according to the

detection ratio of the groups, we selected the

GSE47460 series derived from lung tissue for differentially

expressed m6A gene analysis. After batch correction, the two

data sets with the same sample source were merged, and the

m6A genes were extracted (Supplementary Figures S1A–H).

Due to the small number of healthy volunteers, only

differentially expressed m6A genes with opposite expression

trends in the GSE70866 and GSE47460 series were excluded.

We extracted 21 differentially expressed m6A genes from the

GSE47460 series, eight DEGs with the opposite expression

trend, and one undetected m6A gene of GSE47460 was

removed (Figure 1A). We obtained 12 reliable and

significantly differentially expressed m6A regulators,

including six writers and six readers, and presented the

heatmap of differentially expressed m6A regulators (Figure 1B).

Modeling of IPF disease-associated m6A regulators was

performed using differentially expressed m6A regulators.

Simultaneous RF and SVM models were established in the

GSE47460 series to identify m6A regulators characterized by

IPF. “ROC curve,” “residual box plot,” and “residual reverse

cumulative distribution” suggested that the RF model was more

suitable than the SVMmodel for constructing m6A genes related

to pathogenesis (Figure 1C and Supplementary Figures S1I,J).

The point with the smallest cross-validation error constructed by

RF trees was used as the best model, and the importance scores of

12 m6A regulators were calculated (Figure 1D). The top five m6A

regulators (PCIF1, RBM15B, CBLL1, SND1, and FMR1) were

used to build a nomogram to predict prevalence in healthy

volunteers and IPF patients (Figure 1E).

The calibration curve can be seen that the “apparent” dotted

line corresponding to the entire cohort and the bootstrap

corrected solid line are close to the “Ideal” dotted line,

indicating that the model has predictive performance

(Figure 2A). The DCA method was used to draw a “decision

curve” to evaluate the relationship between the nomogram and

the gene score to predict the benefits and risks of various cut

points in the IPF prevalence model. Figure 2B shows that the

selected m6A genes have better benefits at various threshold

probabilities.

An m6A gene-associated nomogram of the

GSE47460 derived from lung tissue series was then drawn

(Figure 2C). The ROC curve indicated the sensitivity and

specificity of the diagnosis. The AUC of the SE47460 series

was 89.5% (95% CI: 86.19%–92.89%), suggesting a high

prediction accuracy (Figure 2D). Then we brought the five

m6A regulators into the GSE70866 and GSE28221 to establish

the diagnosis-related nomogram construction. The AUC value of

the ROC curve was 78.5% (Supplementary Figures S1K,L) and

80.8% (Supplementary Figures S1M,N).

To validate the nomogram constructed based on the lung

tissue-derived GSE47460 series (Figure 2C), we used 196 patients

from the BALF-derived GSE70866 series and 94 patients from

the PBMC-derived GSE28221 series to perform IPF incidence

prediction validation and draw ROC curves. The AUCs for the

GSE70866 and GSE28221 series were 69.8% and 68.9%,

respectively (Figures 2E,F). The source of BALF is lung tissue,

and the predictive accuracy was better. There were few samples in

the GSE70866 and GSE28221 series; a larger sample size is

needed. These findings suggest that PCIF1, RBM15B, CBLL1,

SND1, and FMR1 can be used as the characteristic m6A

regulators of IPF, and they have diagnostic significance in

lung tissue and PBMC.
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3.2 Identification of signature genes for
m6A regulators on outcomes in IPF

To clarify the impact of m6A-related genes on the outcomes

of IPF, the clinical information provided by the BALF-derived

GSE70866 series was used to perform univariate Cox regression

analysis on the 31 m6A regulators extracted from the data set

(Figure 3A). Three protective m6A regulators (p < 0.05)

(METTL14, G3BP2, and ZC3H13) were identified. LASSO

regression was employed to identify these regulators, and risk

scores were calculated (Figures 3B,C). We used univariate Cox

regression models to compare the effects of age, gender, GAP,

FIGURE 2
Nomogram to build the prevalence model of IPF (A) The calibration curve of the nomogram. (B) DCA of the nomogram. (C) Nomogram of
predicted prevalence according to gene score of GSE47460 series. (D) Nomogram predicting the ROC of prevalence in the GSE47460 series. (E)
Nomogram predicting the ROC of prevalence in the GSE70866 series. (F) Nomogram predicting the ROC of prevalence in the GSE28221 series.

Frontiers in Genetics frontiersin.org06

Zhang et al. 10.3389/fgene.2022.1102422

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1102422


FIGURE 3
Identification of characteristic genes related to IPF outcomes (A) Forest plot of threem6A regulators with p < 0.05 by univariate Cox regression.
(B) Selection of the optimal parameter (lambda) in the LASSO regression model. (C) LASSO coefficient profiles of the three m6A regulators in the
GSE70866 series. (D) Forest plot of m6A risk score and three clinical factors by univariate Cox regression. (E) Forest plot of m6A risk score and three
clinical factors by multivariate Cox regression. (F) Correlation betweenMETTL14 and DLCO (|R| > 0.2 and p < 0.001). (G) Correlation analysis of
METTL14 with ZC3H13. (H) Correlation analysis of METTL14 with G3BP2 (|R| > 0.4 and p < 0.001).
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and m6A regulator risk score on patient survival. Figure 3D

shows that GAP (HR 1.395, 95% CI: 1.237–1.574, p < 0.001) and

the m6A regulator risk score (HR 1.430, 95% CI: 1.181–1.732, p <
0.001) predict IPF prognosis.

Multivariate Cox regression analysis was performed to

control for the influence of confounding factors and to

analyze the influencing factors with independent effects.

Figure 3E shows that the GAP score (HR 1.474, 95% CI:

1.287–1.687, p < 0.001) and m6A regulator risk score (HR

1.420, 95% CI: 1.180–1.709, p < 0.001) remained IPF

predictors. The BALF-derived GSE28221 series was used to

perform univariate Cox regression analysis on the 33 m6A

regulators extracted from the data set (Supplementary Figures

S2A). YTHDC1 was a protective m6A regulator (p = 0.048).

Considering the different sources of PBMC and BALF, PBMC

may be affected by several organs and tissues through blood

circulation, and the sample size of GSE28221 is small. The

evidence for identifying IPF outcomes related m6A regulators

in PBMC is insufficient, and more clinical data support is needed.

To identify the optimal IPF prognosis-related m6A

modulators, we used lung function data from the

GSE47460 series. Lower DLCO indicates worse lung function

and is associated with poor outcomes. Spearman correlation

analysis was used to analyze the correlation between DLCO

and m6A regulators (|R| > 0.2, p < 0.01), and we found six

genes in the GSE47460 series that were weakly correlated with

DLCO. KIAA1429, FMR1, PCIF1, YTHDC1, andMETTL14 were

positively correlated with DLCO and considered potential

protective factors for prognosis. YTHCF1 negatively correlated

with DLCO and was a potential risk factor for poor prognosis

(Supplementary Figures S3A–E). The expression of METTL14

was positively correlated with DLCO (R = 0.23) (Figure 3F) and

was identified as a critical variable for outcomes in the

GSE70866 and GSE47460 series. The expression of YTHDC1

was positively correlated with DLCO, consistent with the PMBC-

derived GSE28221 series.

We determined whether METTL14, G3BP2, and ZC3H13

levels correlate with other m6A genes. METTL14, G3BP2, and

ZC3H13 are protective factors for prognosis, and METTL14 is

positive correlations with ZC3H13 and G3BP2 (Figures 3G,H).

Besides, five m6A genes were moderately correlated with the

METTL14 expression level, including three readers (IGF2BP3,

LRPPRC, and YTHDC2) and the two writers (KIAA1429 and

WTAP) (Supplementary Figures S3F–J). G3BP2 found correlated

with LRPPRC, YTHDC2, YTHDF2, YTHDF3, KIAA1429, and

WTAP by Spearman correlation analysis (|R| > 0.4, p < 0.001)

(Supplementary Figures S3K–P). In summary, for the three

outcomes-related m6A regulators, we believe that METTL14

has the strongest regulation on outcomes, including the

regulation of lung function, and positively correlates with

m6A writers and readers to promote RNA methylation,

followed by G3BP2, which is also positively correlated to m6A

writers and readers.

3.3 Two m6A patterns identified by
prognosis-related m6A regulators

We applied the “consensus clustering method” to explore the

impact of different m6A patterns on prognosis based on three m6A

prognostic regulators. Comparedwith clusters 1 to 9, the growth rate

in cluster two was flat in the CDF plot (Supplementary Figure S4A).

Kaplan-Meier survival analysis of IPF patients with two different

m6A clusters showed that the prognosis of clusters A and Bwere not

significant (p = 0.123) (Supplementary Figure S4B). We believe that

this m6A model does not correlate well with IPF outcomes.

According to these conclusions, we selected METTL14 and

G3BP2 with strong prognostic correlations as variables to

distinguish m6A patterns. Compared with clusters 1 to 9, the

growth rate in cluster three was flat in the CDF plot (Figure 4A).

Figure 4B shows that the relative change in area under the CDF

curve increased insignificantly for cluster 3. In the consistency

matrix of cluster 3, the intra-group correlation was higher, and

the inter-group correlation was low (Figure 4C and Supplementary

Figures S4D–J). In summary, we identified three m6A patterns.

Kaplan-Meier survival analysis of IPF patients showed significant

differences in outcomes among the three clusters (p = 0.005)

(Figure 4D). Clusters B (89 cases) and C (17 cases) had poor

prognosis; therefore, we believe that cluster A (70 cases) is the

m6A low-risk group (containing 70 cases); clusters B and C are the

m6A high-risk group (containing 106 cases) for Kaplan-Meier

survival analysis. The low-risk group had significantly better

outcomes than the high-risk group (p = 0.008) (Figure 4E). The

PCA scatter diagram was obtained for visualization, which

distinguished between m6A low-risk and high-risk (Figure 4F).

Boxplots and heatmaps of m6A-related genes were drawn based

on different m6A risk groups to demonstrate the differential

expression levels of 31 m6A regulators (Figures 4G,H); 18 m6A

regulators were significantly differentially expressed.

3.4 Identification of DEGs and enrichment
of molecular mechanisms and biological
functions in different m6A risk groups

A clinical heatmap was drawn for the five prognostic m6A

genes, gender, age (older than 65 years old), survival status, and

GAP score data of patients in the m6A high- and low-risk groups

(Figure 5A). The chi-square test was performed on the clinical

information, and there was no significant difference in gender

and age among patients between risk groups, while the survival

status (p < 0.001) and GAP scores (p < 0.05) were significantly

different. Using the “limma” package to analyze the DEGs of the

m6A high-risk versus low-risk group, 195 DEGs were obtained

(Supplementary Table S1), including 27 downregulated genes

and 168 upregulated genes. Supplementary Figure S4K is a

volcano plot of various m6A clusters, and Figure 5B is an

enhanced volcano plot of various m6A risk groups, showing
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FIGURE 4
Consensus clustering of prognosis-related m6A modulators in IPF. (A) The CDF plot. (B) The relative change in area under the CDF curve. (C)
Consensus matrixes of the two significant m6A regulators (METTL14 and G3BP2) for k = 3. (D) Kaplan-Meier plot of overall survival in different m6A
clusters. (E) Kaplan-Meier plot of overall survival in m6A low-risk (cluster A) and m6A high-risk (cluster B and C). (F) PCA for m6A low-risk and high-
risk. (G) Histogram of 31 m6A regulators in m6A low-risk and m6A high-risk. (H) Expression heatmap of 18 differentially expressed m6A
regulators in m6A low-risk and high-risk.
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FIGURE 5
Biological characteristics of different m6A risk groups. (A) Heatmap of m6A risk groups with clinical information. (*p < 0.05; ***p < 0.001). (B)
The enhanced volcano plot of DEGs between different m6A clusters. (C) KEGG pathway analysis of different m6A clusters. (D) Bar graph of
transcription factor prediction using TRRUST. (E) GO annotation enrichment, including BP, CC, and MF analysis of various m6A clusters.
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the primary DEGs andmarking the genes related to cell adhesion.

The KEGG pathway analysis enriched adherens junction and cell

adhesion molecules (Figure 5C). YES1, ITGB8, SORBS1, CLDN3,

LRRC4, NRXN3, and PARD3 were DEGs related to adherens

junction and cell adhesion molecules. Three downregulated

genes and four upregulated genes in the high-risk group are

shown in Figure 5B. Functions related to cell adhesion were

observed in the GO annotation. Regulation of cell junction

assembly was the affected BP (Figure 5E). These findings

suggest that cell adhesion and junction functions might be

regulated by m6A regulators, mediating IPF progression.

Using TRRUST prediction, SMAD4 and SMAD3 were the

main transcription factors of the TGF-β/SMAD pathway and

are considered the essential pathway for IPF progression

(Figure 5D). Myofibril and microtubule cytoskeleton were the

affected CCs associated with fibroblasts.

FIGURE 6
Single-sample gene set enrichment analysis. (A) Twenty-three immune cell infiltration differences among various m6A risks (*p < 0.05, **p <
0.01, ***p < 0.001). (B) Correlations between infiltrating immune cells and 31 m6A regulators.
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3.5 Immune infiltration analysis of
different m6A patterns

To explore the influence of immune cells on IPF patients with

different m6A types, we applied ssGSEA to visualize the abundance

of immune cells in IPF samples. We found that neutrophils in the

high-risk group were significantly upregulated compared with the

low-risk group. Clinical study also showed that the upregulation of

neutrophils signals poor IPF outcomes (Jegal, 2022). The high-risk

group was markedly enriched in activated CD56dim natural killer

FIGURE 7
Drug sensitivity analysis of IPF patients in different m6A risk group. (A) Erlotinib (B) XAV939 (C) WZ-1-84 (D) 681640 (E) A-770041 (F) KIN001-
135. The comparison of the drug sensitivity between m6A low- and high-risk groups. Lower IC50 indicates more sensitivity.

FIGURE 8
The flow chart of the contents of the project.
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cells, myeloid-derived suppressor cells, and type 2 T helper cells

(Figure 6A). We applied Spearman correlation analysis to assess the

relationships between m6A regulators and immune cell infiltration

(Figure 6B). We evaluated the correlation between three m6A

regulators regulating immune cells and found that G3BP2 and

METTL14 were m6A regulators with negative correlations with

neutrophil expression. We also explored differential immune cell

infiltration between patients with high and lowG3BP2 orMETTL14

expression (Supplementary Figures S5A,B). WTAP is an m6A

methyltransferase, and various immune cells positively correlate

withWTAP.WTAP upregulates T cells, including activated CD4 T

cell, regulatory T cell, T follicular helper cell, and type 2 T helper cell

(Supplementary Figures S5C).

3.6 Potential drug targets for m6A clusters

The “pRRophetic” package is a computational model that

predicts chemotherapy responses based on tumor gene

expression data (Altmann et al., 2010). IPF drugs are

associated with the development of anti-tumor drugs such as

nintedanib, an oral small molecule tyrosine kinase inhibitor

initially developed for lung cancer and approved for the

treatment of IPF. Pirfenidone has a sensitizing effect on the

combination of paclitaxel and carboplatin used in clinical

practice (Branco et al., 2022). We believe that the

identification of related anti-tumor drugs has potential

significance for IPF treatment. We obtained six drugs

potentially associated with m6A based on a two-sided

p-value <0.01. Drugs sensitive to the m6A high-risk group

included erlotinib, XAV939, WZ-1-84, 681640, and A-770041

(Figures 7A–E). KIN001-135 was more sensitive to the m6A low-

risk group (Figures 7F). The m6A low-risk group had better

prognosis, while the m6A high-risk group was associated with

more potentially sensitive drugs.

4 Discussion

We explored the significance of m6A regulators in IPF

diagnosis and prognosis. First, we explored the models by

which different m6A modification patterns are associated with

IPF diagnosis and identified five diagnostic m6A regulators from

a lung tissue-derived dataset, including PCIF1, RBM15B, CBLL1,

SND1, and FMR1. The diagnostic accuracy was subsequently

validated on BALF and PBMC-derived datasets. We believe that

the five diagnostical m6A regulators have diagnostic significance,

and it is possible to collect PBMCs from whole blood for

diagnosis; nevertheless, more clinical samples are needed for

verification.

We then explored the m6A regulators associated with IPF

outcomes and identified METTL14, G3BP2, and ZC3H13 as

m6A-associated prognostic protective factors. The risk score

calculated by the LASSO regression model and the GAP score

were identified as independent m6A prognostic factors. Next, to

predict the regulatory patterns of prognosis-related m6A, we

performed consistent clustering usingMETTL14 and G3BP2 and

identified three subgroups with significantly different prognosis,

among which subgroups B and C had poor outcomes; therefore,

we considered subgroup A as the m6A low-risk group, and

subgroups B and C as the m6A high-risk groups.

Fibrogenesis aggravates pulmonary fibrosis, and TGF-β/
SMAD is a critical pathway for fibrosis (Chanda et al., 2019;

Kadota et al., 2021). SMAD3 and SMAD4 were predicted to be

significant differential transcription factors across risk groups.

Enhanced tight junction function can maintain the integrity and

plasticity of alveolar epithelial cells (Varma et al., 2014). Tight

junction and adherens junction proteins are upregulated in

regenerated alveolar epithelial cells after pulmonary fibrosis,

suggesting that enhanced cell adhesion function is beneficial

to the prognosis of fibrosis (Lappi-Blanco et al., 2013). Tight

junctions provide a physical barrier to epithelial cells and regulate

the flow between cells (Zou et al., 2020). METTL14 is an m6A

methyltransferase complex that stabilizes the structure and

recognizes target RNA (Liu et al., 2018). We speculate that

the upregulation of cell adhesion-related proteins in the low-

risk group is related to the stabilization of cell adhesion-related

RNA by METTL14.

We then analyzed the expression of immune cells in different

m6A risk groups and found that neutrophils were significantly

upregulated in the high-risk group. Studies linked neutrophils to

pulmonary fibrosis disease. Clinical studies showed that blood

neutrophil levels positively correlated with IPF progression

(Achaiah et al., 2021; Nathan et al., 2021), and the ratio of

neutrophils in the blood of IPF patients was inversely

proportional to forced vital capacity and forced expiratory

volume in one second (Nathan et al., 2021; D’Alessandro

et al., 2022). A cohort study of 156 IPF patients identified a

high proportion of neutrophils in BALF as an independent

predictor of early death (Jegal, 2022). Therefore, the

upregulation of neutrophils can be considered a reliable

prognostic risk factor in IPF patients, associated with

shortened overall survival (Chen et al., 2022). A flowchart

outlines the contents of the project (Figure 8).

5 Conclusion

We assessed m6Amodification patterns in 505 IPF patients and

147 healthy volunteers based onm6Amodulators and identified five

diagnostic m6A modulators. Based on clinical data, we identified

prognosis-related m6A regulators in IPF. METTL14 and G3BP2

were the critical m6A regulators for prognosis that divided IPF

patients into m6A types with different risks and revealed the

biological mechanisms behind different m6A modification

patterns. m6A modification may play a role in stabilizing tight
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junction-associated mRNA. There was upregulation of neutrophil

expression in the m6A high-risk group, which indicated poor

outcomes. Finally, we tested the drug sensitivity of various risk

types. These findings provide a basis for the study of IPF-related

m6A regulation.
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