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Bladder cancer (BLCA) is featured with high incidence and mortality. Whether

the IFN-γ signaling could be used as an immunotherapy determinant for BLCA

has not been fully confirmed. In this study, the transcriptome data and clinical

information of BLCA samples were collected from The Cancer Genome Atlas

(TCGA). Besides, four immunotherapy cohorts including IMvigor210 cohort,

Gide cohort, Van Allen cohort, and Lauss cohort were collected. The Xiangya

real-world cohort was used for independent validation. An IFN-γ-related
signature was developed and validated in BLCA for predicting prognosis,

mutation, tumor microenvironment status, and immunotherapy response.

This is the first study focusing on the comprehensive evaluation of predictive

values on the IFN-γ-related signature in BLCA. The potential clinical application

of the IFN-γ-related signature was expected to be further validated with more

prospective clinical cohorts.
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Introduction

Bladder cancer (BLCA) is recognized as one of the most common and

heterogeneous urinary carcinomas worldwide (Antoni et al., 2017; Sung et al.,

2021). Clinical data ceaselessly confirmed a high incidence and mortality in BLCA

patients (Martinez Rodriguez et al., 2017). Thus, for decades, urologists have explored

the mysteries of bladder cancer in hope of getting optimal solutions for precision

BLCA treatments. Despite surgeries, radiotherapy, neoadjuvant or adjuvant

chemotherapy and targeted therapy, BLCA patients still suffer (Antoni et al., 2017;

Lenis et al., 2020). Most suffering patients are not sensitive to the current and

mainstream treatment methods according to poor clinical outcomes (Lenis et al.,
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2020; Patel et al., 2020). Therefore, inventing new medical

tools and treatment modalities for BLCA patients are urgently

needed.

Cancer immunotherapy is a relatively burgeoning section

in the field of cancer treatment, providing opportunities for

alleviating, even curing BLCA patients (Pettenati and

Ingersoll, 2018; Lenis et al., 2020). The immune checkpoint

blockade (ICB), considered as the main direction of

immunotherapy development, has been observed effective

survival benefits in solid cancers, including BLCA

(Rosenberg et al., 2016). Further from the cellular and

molecular level, the ICB response rate mainly depends on

the BLCA tumor microenvironment (TME) (Petitprez et al.,

2020; Cao et al., 2021; Marin-Acevedo et al., 2021). TME is

chiefly composed of cancer cells and immune cells, with other

cell subsets and extracellular matrix as well (Hinshaw and

Shevde, 2019). However, a malignant BLCA TME generally

leads ICB moving towards failure. Potential mechanisms

influencing ICB could be including the exhaustion and

senescence of CD8 T cells in TME (Lian et al., 2020; Zhang

et al., 2021); the huge secretion immunosuppressive factors

(Metelli et al., 2018; Lecker et al., 2021). Besides, high tumor

mutation burden (TMB), which could represent a high level of

neoantigen, is a prominent characteristic of BLCA indicating a

potential immunogenic microenvironment (Kandoth et al.,

2013). Even though the response of patients with high TMB to

ICB is considered heterogeneous, in BLCA, TMB is

acknowleged to be a potential indicator reflecting ICB

response efficiency (Chan et al., 2019; Liu et al., 2019).

However, only a minor patients received ICB therapy

achieved ideal outcomes. Therefore, exploring novel

biomarkers for distinguishing specific groups of BLCA

patients with an inflamed TME is necessary for increasing

the ICB response rates.

IFN-γ signaling has been well-recognized as a critical

mediator of tumor cell immunogenicity, which could help

promote recognize and eliminate tumor cells (Dighe et al.,

1994). IFN-γ expression has been proven to potentially

predict clinical outcomes for multiple cancer types (Fridman

et al., 2012), and is associated with mortality and disease risk of

BLCA as well (Gillezeau et al., 2022). Besides, IFN-γ-induced was
reported to up-regulate PD-ECGF/TP and enhance the

cytotoxicity of 5-fluorouracil and 5′-deoxy-5-fluorouridine in

BLCA (Li et al., 2002). Notably, IFN-γ-induced cytotoxicity has

been revealed as a biomarker of resistance in BLCA (Green et al.,

2021). However, whether the IFN-γ signaling could be used as an
immunotherapy determinant for BLCA has not been fully

confirmed.

In this study, an IFN-γ-related signature was developed in

BLCA for predicting prognosis, mutation, tumor

microenvironment, and immunotherapy. To date, we come

first to comprehensively evaluate the predictive values of IFN-

γ-related signature in BLCA.

Materials and methods

Data collection and procession

The transcriptome data and clinical information of BLCA

samples were collected from The Cancer Genome Atlas (TCGA).

The FPKM values of the raw matrix were transformed into TPM

values for follow-up studies. The TCGA BLCA dataset included

403 BLCA samples and 19 normal samples. Four

immunotherapy cohorts were collected, including IMvigor210

(248 samples), Gide (32 samples), Van Allen (42 samples) and

Lauss (25 samples). Besides, the copy number variation (CNV)

data of BLCA samples in the TCGA BLCA dataset, processed

with GISTIC 2.0, were downloaded from the UCSC Xena data

portal (http://xena.ucsc.edu/). Drug information, including

184 common anticancer drugs and the corresponding target

genes were collected from the DrugBank database (www.

drugbank.ca).

The Xiangya real-world cohort

According to our previous studies, the Xiangya real-world

cohort was based on BLCA samples after surgical resections in

the Xiangya Hospital, Central South University. The Xinagya

real-world cohort, already uploaded with the number as

GSE188715, included 57 BLCA samples sequenced by the

BGISEQ-500 platform (BGI-Shenzhen, China) (Liu et al.,

2021a; Hu et al., 2021). The TPM values of the raw matrix

were used for the follow-up analysis.

Development of the IFN-γ-related
signature in TCGA BLCA cohort

IFN-γ related genes have never been systematically

summarized as a list. Originally, we collected IFN-γ-related
genes from previous studies as comprehensively as possible

(Gao et al., 2016; Hu et al., 2020). The least absolute shrinkage

and selector operation (LASSO) regression analysis was first

performed on these genes for dimension reduction. Each gene

can be regarded as a factor, and factors which contribute

relatively less to final outcomes of the analysis were

assigned the value zero. Remaining factors, genes with non-

zero coefficients, were ultimately selected for multivariable

Cox regression analysis and used as variables to construct the

IFN-γ-related signature. The formula is as follows: Risk

score = ∑ IFNi*RNAi, where IFNi is the coefficient of the

genes and RNAi is the expression value of the genes in

multivariable Cox regression analysis. To evaluate the

performance of the IFN-γ-related signature, we

simultaneously perform the time-dependent receiver

operating characteristic (ROC) and calibration curves using
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the R package “timeROC” in the TCGA BLCA cohort, Xiangya

real-world cohort, and IMvigor210 cohort.

Development of a nomogram

The univariate and multivariate Cox regression analyses

were adopted to filtrate independent prognostic factors from

clinicopathologic characteristics and the IFN-γ-related
signature. After analyzing results, prognostic factors in

univariate Cox analysis were screened and integrated to

construct a nomogram. The performance of the

nomogram was evaluated by the time-dependent ROC

and calibration curves using the R package

“timeROC” in the TCGA BLCA dataset and the Xiangya

real-world cohort.

FIGURE 1
The expression pattern of the IFN-γ-related genes in the TCGA BLCA dataset. (A) Heatmap depicting the expression differences of the IFN-γ-
related genes between BLCA samples and normal samples. (B) Volcano plot for the expression differences of the IFN-γ-related genes between BLCA
samples and normal samples. (C) 3D PCA plot depicting the expression differences of the IFN-γ-related genes between BLCA samples and normal
samples. (D) Correlations between the IFN-γ-related genes. The size of the circle, calculated by the log-rank test and ranging from .1 to .0001,
represents the prognosis of each gene. Green dots represent favorable factors, while purple dots represent risk factors. The color of the lines
represents the correlation between the IFN-γ-related genes. Blue represents a negative correlation, and red represents a positive correlation. (E) The
CNV frequency of the IFN-γ-related genes. The column represents the count, and the color represents gains or losses. Red represents gains, and
blue represents losses. (F) The mutation frequency of the IFN-γ-related genes. The upper bar plot represents TMB. The number on the right
represents the mutation frequency in each IFN-γ-related gene. The right bar plot represents the proportion of each variant type.
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The mutation landscape of the IFN-γ-
related signature

The mutation landscape of the IFN-γ-related signature

was visualized based on CNV data using the R package

“maftools.” Somatic mutation data of BLCA samples in the

TCGA BLCA dataset was used to calculate the tumor mutation

burden (TMB).

The immunological characteristics of the
IFN-γ-related signature

In our previous studies, relevant immunological

characteristics and algorithms in the TME were described in

detail (Liu et al., 2021a; Hu et al., 2021). The cancer immunity

cycle is composed of seven key steps: the release and presentation

of cancer cell antigens (Steps 1 and 2), the priming and activation

FIGURE 2
Development of the IFN-γ-related signature in the TCGA BLCA dataset. (A) The partial likelihood deviance of the IFN-γ-related genes in LASSO
regression analysis. (B) The coefficients of the IFN-γ-related genes in LASSO regression analysis. (C) The coefficients of the IFN-γ-related genes in
LASSO regression analysis. (D) The distribution of the IFN-γ-related signature in BLCA samples. (E) The survival curves of the two IFN-γ-related
signature score groups. (F) 1-year, 3-year, and 5-year ROC of the IFN-γ-related signature.
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of the immune system (Step 3), then the trafficking and

infiltration of immune cells into tumors (Steps 4 and 5),

finally recognizing and killing cancer cells by T cells (Steps

6 and 7) (26). The cancer immunity cycle and immune

infiltrating cells involved were quantified using the single-

sample gene-set enrichment analysis (ssGSEA) in BLCA samples.

Drug sensitivity and immunotherapy
response prediction within the IFN-γ-
related signature

We calculated the sensitivity of anticancer drugs using data

downloaded from the DrugBank. The predictive value of the

IFN-γ-related signature for the immunotherapy was validated in

three immunotherapy cohorts, namely the Gide, Van Allen, and

Lauss.

Statistical analysis

Correlation coefficients were determined by the Spearman

and distance correlation analyses. Normally distributed

continuous variables between the two groups were

compared using the t-test, while the non-normally ones

between the two groups were compared using the Mann-

Whitney U test instead. Chi-square or Fisher exact tests

were used for comparison between categorical variables.

The “survcutpoint” function from the R package

“survminer” for the maximum rank statistic was used to

determine the optimal cutoff value of the IFN-γ-related
signature. The survival curves were generated using the

Kaplan-Meier method, while the statistical significance was

determined using the log-rank test. The threshold of

significance was set at p < .05, and all statistical tests were

two-sided. R project (version 3.6.3, http://www.r-project.org)

was used for all analyses.

Results

The expression pattern of the IFN-γ-
related genes in the TCGA BLCA dataset

Differential analysis performed on the IFN-γ-related genes
between BLCA samples and normal samples was shown in

Figures 1A, B. Both sample sets (the BLCA set and normal one)

could be clearly separated by IFN-γ-related genes (Figure 1C).

Correlations between every two IFN-γ-related genes were

shown in Figure 1D, in which 22 IFN-γ-related genes were

favorable factors, while the remaining 11 were risk factors. The

CNV frequency of IFN-γ-related genes was shown in

Figure 1E. Roughly a half of the genes showed CNV loss,

while the other half reversed. The mutation frequency of the

IFN-γ-related genes was shown in Figure 1F, in which

PARP14, OAS2, OAS3, C1S, and TNFAIP3 were the top

five mutated IFN-γ-related genes.

Development of the IFN-γ-related
signature in the TCGA BLCA dataset

We successfully reduced the dimension of IFN-γ-related
genes using LASSO regression analysis (Figure 2A). The

coefficients of the IFN-γ-related genes in LASSO regression

analysis were shown in Figure 2B. TNFAIP2, CXCL10, and

TAP1 were finally included for the multivariable Cox

regression analysis. Figure 2C displayed the coefficients of

these three genes. The distribution of the IFN-γ-related
signature in BLCA samples was shown in Figure 2D. BLCA

patients with high IFN-γ-related signature scores were associated
with decreased survival time (Figure 2E). The accuracy of the

signature in predicting 1-year, 3-year, and 5-year OS was .609,

.614, and .639 respectively (Figure 2F).

Development of a nomogram

Univariate Cox regression analysis was performed on

clinical characters including the IFN-γ-related signature in

the TCGA BLCA cohort. Results revealed that the age, tumor

stage, TN grading system, and the IFN-γ-related signature

were independent prognostic factors (Figure 3A). Multivariate

Cox regression analysis was ultimately performed likewise in

the TCGA BLCA dataset, in which age and the IFN-γ-related
signature were independent prognostic factors (Figure 3B).

Nomogram was constructed based on clinical factors

including the IFN-γ-related signature in the TCGA

BLCA dataset (Figure 3C).1-year, 3-year, and 5-year ROC

of the nomogram in the TCGA BLCA dataset had

respective values of .72, .71, and .74 (Figure 4A). 1-year, 3-

year, and 5-year calibration curves of the nomogram in

the TCGA BLCA dataset were shown in Figure 4B. 1-

year, 3-year, and 5-year ROC of the nomogram in the

Xiangya real-world cohort had values of .82, .87, and .86

(Figure 4C). 1-year, 3-year, and 5-year calibration curves of

the nomogram in the Xiangya real-world cohort were shown

in Figure 4D.

The mutation landscape of the IFN-γ-
related signature in the TCGA BLCA
dataset

TP53, TTN, KMT2D, MUC16, and KDM6A were the top

five mutated genes in the high IFN-γ-related signature score
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group (Figure 5A). TTN, TP53, MUC16, KMT16,

and ARID1A were the top five mutated genes in the low

IFN-γ-related signature score group (Figure 5B). The

high IFN-γ-related signature score group was significantly

associated with a lower TMB level (Figure 5C).

However, there was no significant correlation between

the MANTIS score and the IFN-γ-related signature

(Figure 5D).

FIGURE 3
Development of a nomogram. (A) Univariate Cox regression analysis on the clinical factors including the IFN-γ-related signature in the TCGA
BLCA dataset. (B) Multivariate Cox regression analysis on the clinical factors including the IFN-γ-related signature in the TCGA BLCA dataset. (C)
Nomogram based on clinical factors including the IFN-γ-related signature in the TCGA BLCA dataset.
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The immunological characteristics of the
IFN-γ-related signature in the TCGA BLCA
dataset

As was shown in Figure 6A, low IFN-γ-related signature

scores significantly indicated some cancer immunity cycles

including T cell recruiting, Th 1 cell recruiting, and

macrophage recruiting. Besides, the low IFN-γ-related
signature scores were generally associated with immune

infiltrating cells including activated CD4 cells, activated

CD8 cells, and natural killer T cells (Figure 6B).

Correlations between the IFN-γ-related signature and each

stroma-activated pathway were shown in Figure 6C.

Immunotherapy-predicted pathways were relatively more

active in the low IFN-γ-related signature score group

(Figure 6D). We divided TCGA samples into different

binary groups according to the sex and stage. Results of

validating our IFN-γ signature in female and male groups,

high stage and low stage groups proved the conclusion as

expected (Supplementary Figure S1–S4).

The immunological characteristics of the
IFN-γ-related signature in the Xiangya
real-world cohort

BLCA patients with a high IFN-γ-related signature score

were associated with shorter survival time (Figure 7A). 1-year, 3-

year, and 5-year ROC of the IFN-γ-related signature had values

of .84, .66, and .66, respectively (Figure 7B). The signature also

showed negative correlation with multiple immune checkpoint

molecules, including CD274, LAG3, CTLA4, PDCD1, and

HAVCR2 (Figure 7C). As expected, the signature was

negatively associated with cancer immunity cycles, including

T cell recruiting, Th 1 cell recruiting, and macrophage

recruiting (Figure 7D). The IFN-γ-related signature was

FIGURE 4
The prognostic value of the nomogram. (A) 1-year, 3-year, and 5-year ROC of the nomogram in the TCGA BLCA dataset. (B) 1-year, 3-year, and
5-year calibration curves of the nomogram in the TCGA BLCA dataset. (C) 1-year, 3-year, and 5-year ROCof the nomogram in the Xiangya real-world
cohort. (D) 1-year, 3-year, and 5-year calibration curves of the nomogram in the Xiangya real-world cohort.
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negatively associated with immunotherapy-predicted pathways,

including APM signal, microRNAs in cancer, mismatch repair,

cell cycle, and p53 signaling pathway (Figure 7D). In addition, the

low signature score group was generally significantly associated

with immune infiltrating cells, including activated CD4 cells,

activated CD8 cells, and natural killer T cells (Figure 7E).

The immunological characteristics of the
IFN-γ-related signature in the
IMvigor210 cohort

BLCA patients with high IFN-γ-related signature scores

were associated with decreased survival time (Figure 8A). 1-

year, 3-year, and 5-year ROC of the IFN-γ-related signature

had values of .74, .59, and .6 (Figure 8B). The IFN-γ-related
signature was negatively associated with multiple immune

checkpoint molecules, including CD274, LAG3, CTLA4,

PDCD1, and HAVCR2 (Figure 8C). The IFN-γ-related
signature was negatively associated with cancer immunity

cycles, including T cell recruiting, Th 1 cell recruiting, and

macrophage recruiting (Figure 8D). The IFN-γ-related
signature was negatively associated with immunotherapy-

predicted pathways, including APM signal, microRNAs in

cancer, mismatch repair, cell cycle, and p53 signaling

pathway (Figure 8D). In addition, the low IFN-γ-related
signature scores were generally significantly associated

with immune infiltrating cells, including activated

CD4 cells, activated CD8 cells, and natural killer T cells

(Figure 8E).

FIGURE 5
The mutation landscape of the IFN-γ-related signature in the TCGA BLCA dataset. (A) The top-ranked mutated genes in the high IFN-γ-related
signature score group. (B) The top-ranked mutated genes in the low IFN-γ-related signature score group. (C) The TMB levels in the two IFN-γ-
related signature score groups. (D) The MANTIS score in the two IFN-γ-related signature score groups.
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FIGURE 6
The immunological characteristics of the IFN-γ-related signature in the TCGA BLCA dataset. (A) Cancer immunity cycles between the two IFN-
γ-related signature score groups. (B) Immune infiltrating cells between the two IFN-γ-related signature score groups. (C) Correlations between the
IFN-γ-related signature and stroma-activated pathways. (D) Immunotherapy-predicted pathways between the two IFN-γ-related signature score
groups. The left bar represents log10 p-values, the red bar represents activated pathways, and the blue bar represents inhibited pathways. (ns,
Not Significant; *p < .05; **p < .01; ***p < .001; ****p < .0001).
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FIGURE 7
The immunological characteristics of the IFN-γ-related signature in the Xiangya real-world cohort. (A) The survival curves of the two IFN-γ-
related signature score groups. (B) 1-year, 3-year, and 5-year ROC of the IFN-γ-related signature. (C) Correlations between the IFN-γ-related
signature and immune checkpoint molecules. (D) Correlations between the IFN-γ-related signature and cancer immunity cycles and
immunotherapy-predicted pathways. (E) Correlations between the IFN-γ-related signature and immune infiltrating cells.
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FIGURE 8
The immunological characteristics of the IFN-γ-related signature in the IMvigor210 cohort. (A) The survival curves of the two IFN-γ-related
signature score groups. (B) 1-year, 3-year, and 5-year ROC of the IFN-γ-related signature. (C) Correlations between the IFN-γ-related signature and
immune checkpoint molecules. (D) Correlations between the IFN-γ-related signature and cancer immunity cycles and immunotherapy-predicted
pathways. (E) Correlations between the IFN-γ-related signature and immune infiltrating cells.
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Drug prediction and immunotherapy
response prediction of the IFN-γ-related
signature

We predicted the sensitivity of BLCA patients to common

drugs. Atezolizumab_CD274, Cetuximab_FCGR2A,

Cetuximab_FCGR3A, Cetuximab_C1QC, Cetuximab_C1QB,

Cetuximab_FCGR1A, Cetuximab_G1QA, Trastuzumab_

ERBB2, and Bevacizumab_VEGFA had significantly

lower drug sensitivity in the high IFN-γ-related
signature score group (Figure 9A). Likewise, melanoma

patients with high IFN-γ-related signature scores were

less likely to respond to ICB (Figures 9B–D).

Notably, melanoma patients with high IFN-γ-related
signature scores were associated with decreased survival

time (Figure 9C).

FIGURE 9
Drug prediction and immunotherapy response prediction of the IFN-γ-related signature. (A) The sensitivity of the anticancer drugs in the two
IFN-γ-related signature score groups. The predictive value of the IFN-γ-related signature for the immunotherapy was validated in three
immunotherapy cohorts, including. (B–D) Response ofmelanoma patients with high and low IFN-γ-related signature scores to ICB in Gide, Van Allen
and Lauss respectively.
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Discussion

Increasing evidence constantly confirmed that IFN-γ plays a

critical role in the tumorigenicity and immunogenicity of various

cancers (Jorgovanovic et al., 2020; Stifter et al., 2020). Specially, IFN-

γ is a cytokine that physiologically promotes innate and adaptive

immune responses, while preventing the development of primary

and transplanted tumors (Burke and Young, 2019). However, the

potential roles of IFN-γ in the prognosis and especially in the TME

of BLCA remain unclear. Recently, mining markers precisely

predicting prognosis and survival in cancers based on large-scale

bioinformatic analysis has received much more attention in the big

data era than ever before. Several markers have been proven robust

in predicting survival outcomes and immunotherapy responses

(Zhang et al., 2022a; Zhang et al., 2022b). Thus, we aimed to

explore the predictive value of IFN-γ and its related genes in

BLCA using comprehensive bioinformatics on internal datasets

and external real-world validation cohort.

Our study originally proved that most IFN-γ-related genes

were risk factors in BLCA.

After summarizing IFN-γ-related genes, a corresponding

signature was successfully developed in TCGA BLCA cohort.

The predictive signature consisted of three genes, namely

TNFAIP2, CXCL10, and TAP1. From with, TNFAIP2, a primary

response gene of TNFα, is highly expressed in immune cells and the

urinary bladder cells (Jia et al., 2016;Niwa et al., 2019). TNFAIP2 has

been reported to promote proliferation, angiogenesis, migration, and

invasion of cancer (Jia et al., 2018). CXCL10, CXCL9, CXCL11/

CXCR3 is an important axis for immune activation, which is

necessary for developing novel cancer therapy (Tokunaga et al.,

2018). In addition, a significantly negative correlation between

TAP1 and survival in breast, lung, liver, and ovarian cancer is

revealed (Tabassum et al., 2021).

The IFN-γ-related signature could predict the survival outcomes

of BLCA patients in the TCGA BLCA dataset, Xiangya real-world

cohort and IMvigor210 cohort. Cox regression analysis determined

that the signature was an independent prognostic factor as age,

tumor stage, and TN grading system in the predictive nomogram.

The constructed nomogram performs robustly in predicting the

survival outcomes of BLCA patients. As generally agreed, the TNM

staging system is the most widely accepted and most commonly

used system for BLCA (Adsay et al., 2012). The IFN-γ-related
signature showed sensationally superior performance compared

to the TNM staging system regarding predicting the prognosis of

BLCA patients. TP53 is an important tumor suppressor gene that is

frequently mutated in cancer (Donehower et al., 2019). While

MUC16 and TTN genes mutation were previously reported to

correlate with prognosis, tumor mutation burden, and

immunotherapy efficacy in cancers (Yang et al., 2020). KMT2D

deficiency was found to impair super-enhancers to confer a

glycolytic vulnerability in lung cancer (Alam et al., 2020).

KDM6A-ARHGDIB axis could block metastasis of BLCA by

inhibiting Rac1 (Liu et al., 2021b). In accordance with these

findings, TP53, TTN, KMT2D, MUC16, and KDM6A were the

top five mutated genes in the high IFN-γ-related signature score

group.

The core part of immunotherapy is to help the immune system

recognize and destroy tumor cells through enhancing the reaction of

immune cells to present tumor antigens (Frankel et al., 2017). TME,

composed of cancer cells, non-cancerous cells (mainly immune

infiltrating cells), and secreted cytokines, has emerged as a promising

mediator for immunotherapy (Bejarano et al., 2021). An immune

hot TME, which is infiltrated bymore immune cells, ismore likely to

present a better ICB response (Wang et al., 2022). The IFN-γ-related
signature was negatively associated with cancer immunity cycles,

immunotherapy-predicted pathways, and immune infiltrating cells

in the TCGA BLCA dataset, Xiangya real-world cohort, and

IMvigor210 cohort. As the most important determinant for ICB,

immune checkpoint molecules have been widely studied in the past

few decades. CD274, LAG3, CTLA4, PDCD1, and HAVCR2 have

been the most promising immune checkpoint molecules with

satisfying results in clinical trials (Wang et al., 2022). As

expected, the IFN-γ-related signature was negatively associated

with multiple immune checkpoint molecules, including CD274,

LAG3, CTLA4, PDCD1, and HAVCR2. Besides, the high IFN-γ-
related signature score group was significantly associated with a

lower TMB level. These results indicate potential lower response

rates in BLCApatients with high IFN-γ-related signature scores. The
direct immunotherapy response prediction of the IFN-γ-related
signature in Gide, Van Allen, and Lauss cohorts proved this

finding. Furthermore, IFN-γ-related signature could predict drug

sensitivity of Atezolizumab_CD274, Cetuximab_FCGR2A,

Cetuximab_FCGR3A, Cetuximab_C1QC, Cetuximab_C1QB,

Cetuximab_FCGR1A, Cetuximab_G1QA, Trastuzumab_ERBB2,

and Bevacizumab_VEGFA.

To sum up, an IFN-γ-related signature was developed in

BLCA for predicting prognosis, mutation, tumor

microenvironment, and immunotherapy. The potential clinical

application of the IFN-γ-related signature is expected to be

further validated by more clinical cohorts.
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SUPPLEMENTARY FIGURE S1
Exploring correlations between the IFN-γ score and TME characteristics
in female group. (A) Differences in cancer immune cycle activity
between high-risk and low-risk groups. (B) Correlation between the
score and the infiltration of different immune cells. (C) Relationship
between the TIS and the IFN-γ score. (D) Correlation between the IFN-γ
score and various common ICB response pathways. (E) Correlation
between the IFN-γ score and immune checkpoints.

SUPPLEMENTARY FIGURE S2
Exploring correlations between the IFN-γ score and TME characteristics
in male group.

SUPPLEMENTARY FIGURE S3
Exploring correlations between the IFN-γ score and TME characteristics
in high stage group.

SUPPLEMENTARY FIGURE S4
Exploring correlations between the IFN-γ score and TME characteristics
in low stage group.
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