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Over the past decade, with the development of high-throughput single-cell

sequencing technology, single-cell omics has been emerged as a powerful

tool to understand the molecular basis of cellular mechanisms and refine our

knowledge of diverse cell states. They can reveal the heterogeneity at different

genetic layers and elucidate their associations bymultipleomics analysis, providing

amore comprehensivegeneticmapof biological regulatory networks. In the post-

GWAS era, the molecular biological mechanisms influencing human diseases will

be further elucidated by single-cell omics. This review mainly summarizes the

development and trend of single-cell omics. This involves single-cell omics

technologies, single-cell multi-omics technologies, multiple omics data

integration methods, applications in various human organs and diseases, classic

laboratory cell lines, and animal disease models. The review will reveal some

perspectives for elucidating human diseases and constructing animal models.
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1 Introduction

1.1 The introduction of single-cell omics

Cells are the structural and functional units of organisms. Traditional biological research

is mostly at the population level, focusing on the average of the tissue/cell population but

ignoring the characteristics of individual cells. Cells are heterogeneous, not only are there

differences in cell phenotypes but also in their biological functions, such as transcriptional
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regulation, gene expression, and signal transduction (Wen and

Tang, 2018a; Chappell et al., 2018). For example, the heterogeneity

among malignant tumor cells is of great significance for analyzing

the mutation mode, regional differences, evolutionary laws, and

drug resistance mechanisms (Figure 1). Following the considerable

development of single cell isolation and next-generation

sequencing (NGS) (Mardis, 2011), single-cell transcriptome

(Tang et al., 2009), genome (Navin et al., 2011), and

methylation sequencing (Guo et al., 2013) have emerged. A

state of the cell is determined by the dynamic states of its

three-dimensional (3D) chromatin conformation, chromatin

remodeling, regulatory element interaction, epigenetic

modification, transcriptional regulation, gene expression,

proteome, and metabolome (Chappell et al., 2018). These have

also become the basis for single-cell research, revealing the

diversity of cell types and subsets (Figure 2). Simultaneously, a

series of single-cell mono-omic sequencing technologies were

developed for the purpose.

These technologies reveal the heterogeneity of single cells on

different levels. But each cell can only be used to reveal one kind

of omic information. The main challenge in current single-cell

omics is determining how to stimunously reveal various omic

features within an individual cell. Until recently, single-cell

multi-omics has been an effective solution. On the one hand,

single-cell multi-omic intergrating analysis can combine many

single-cell mono-omic sequencing data to elucidate life activities.

On the other hand, they are able to obtain two or more types of

omic data from one cell at the same time.

1.2 Development of single-cell omics

Single-cell transcriptomics can intuitively reflect

heterogeneity and functional differences in expression levels

and is often used as a referenceable single-cell omics

technique (Efremova and Teichmann, 2020). In addition,

molecular cellular identity is a product of the interplay

between various modalities. It is essential to make coordinated

measurements linking different regulatory layers to

comprehensively understand how individual cells can

demonstrate heterogeneity (Ogbeide et al., 2022). Parallel to

the rapid and widespread adoption of transcriptomics, other

single-cell omics technologies have been developed and evolved

in a variety aspects within cells, including the genome (Gawad

et al., 2016; Lan et al., 2017), methylome (Guo et al., 2013; Guo

et al., 2014; Guo et al., 2015; Schwartzman and Tanay, 2015),

histone modification (Park, 2009; Rotem et al., 2015), chromatin

accessibility (Buenrostro et al., 2015a; Chen et al., 2018),

chromatin conformation (Nagano et al., 2013; Nagano et al.,

2015; Nagano et al., 2017), proteome (Shahi et al., 2017),

nucleosome localization (Chereji et al., 2019), spatial

transcriptome (Ståhl et al., 2016), metagenomic (Yilmaz and

Singh, 2012) and even microbiome (Lloréns-Rico et al., 2022).

Absorbingly, the development of single-cell omics has laid the

foundation for capturing multiple omics in a single cell.

In addition to the multi-omics joint analysis of single cell

omics, single-cell multi-omics has also developed into some high-

order techniques such as single-cell two-omics and single-cell

triomics in recent years. Single-cell multi-omics (≥2)
technologies sequence and analyze multiple omics for single

cells. In 2015, G&T-seq (genome and transcriptome

sequencing) and DR-seq (gDNA-mRNA sequencing) have been

developed for parallel measuring genomic and transcriptomic

data, but the throughput is low (Dey et al., 2015; Macaulay

et al., 2015). Excitingly, with the advent of 10×Genomics

strategy in 2016, single-cell multi-omics technology is

advancing rapidly. Following single-cell sequencing technology,

which was named Nature’s 2013 Technology of the Year (Nature

Methods, 2013), single-cell multi-omics became the Technology of

the Year in 2019 (Nature Methods, 2019).

1.3 Studying single-cell omics for function
genetic research in human and animal
model

Over the past decade, genome-wide association studies

(GWAS) have uncovered thousands of genes and genetic

variants (SNPs) associated with human disease (Boyle et al.,

2017). However, the biological mechanisms and functional

features behind these associations have not yet been adequately

mined (Klein et al., 2005; Gallagher and Chen-Plotkin, 2018).Most

SNP loci are found in non-coding regions of the genome by whole

genome sequencing and resequencing, which complicates

understanding the pathogenic mechanisms of SNPs.

Additionally, the transcriptome, metabolome, proteome, and

phenome also provide rich information about phenotypic

variation. Integrating GWAS data and phenotypic variation is

an important step in studying pathogenesis. Generally, a large

number of SNPs play roles at the tissue or cell-specific level. Due to

the cellular heterogeneity of the focal organs, single cell resolution

research is needed. Using the single-cell omic methodology,

scientists could map disease-associated SNPs or genes to cell

types at the single-cell level, reveal the heterogeneity among

cells at multiple omic levels and elucidate their different omic

associations or variations, which would provide new directions for

functional genetic research in human diseases and animal models

(Timshel et al., 2020; Tomaszewski et al., 2022).

Although there are many excellent reviews about single-cell

sequencing (Nawy, 2014; Schwartzman and Tanay, 2015; Wang

and Navin, 2015; Bian et al., 2018; Wen and Tang, 2018b; Kang

et al., 2018; Tang et al., 2019; Zhu C. et al., 2020; He et al., 2020;

Lee et al., 2020; Lloréns-Rico et al., 2022), we review the

methodological progress and application of single-cell omics

and single-cell multiomics, computational methods and tools

for single-cell omics analysis, and the future research trend for
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analyzing the pathogenesis of human diseases and animal models

in the post-GWAS era. The review tries to reveal some new ideas

in analyzing disease mechanisms and constructing animal

models of human diseases.

2 The methodological progress of
single-cell omics and single-cell
multi-omics

2.1 Single cell isolation

Efficient isolation of single cells is a prerequisite for single-

cell omics and multi-omics techniques. The quality of separation

technology is mainly determined by its integrity, purity, quality,

sensitivity, and throughput (Gross et al., 2015). Based on these

requirements, a variety of different isolation methods have been

developed, such as manual cell picking, limiting dilution, laser

cell manipulation (LCM), microfluidics, fluorescence-activated

cell sorting (FACS), and magnetic-activated cell sorting (MACS).

They are illuminated in Figure 3.

Particularly, the application of cell barcoding with

combinatorial indexing has gradually emerged in recent

years. Cell barcoding is a single-cell tracking strategy, that

is, capable of sequencing libraries from multiple cells

(Cusanovich et al., 2015). FACS can use the combined

index strategy to classify the cells in the plates using a

unique barcode marker, so that each cell has a unique

barcode to achieve the purpose of single cell separation.

But combinatorial indexing methods can lead to the loss

of many cells (Chappell et al., 2018). Except for the methods

mentioned in Figure 3, other single-cell isolation techniques

are comprehensively summarized in Supplementary

Table S1.

Due to the technical limitations of preparing suspensions

directly from fresh tissue to isolate intact single cells, it is

challenging for researchers to analyze gene expression at the

single-cell level. Interestingly, single-nucleus library construction

sequencing technology was invented. For instance, sNuc-seq is

capable of isolating a single nucleus, using it as the raw material,

and resolving different cell types and dynamic changes

(Grindberg et al., 2013).

2.2 Single-cell omics technologies

Here we briefly introduce the use and methodological

development of multiplex single-cell mono-omics sequencing

technologies.

2.2.1 Single-cell genomics
The research of single-cell genetic information dates back to

the 1970s in the field of cell and immunology, where cytologists

used karyotyping, fluorescence in situ hybridization (FISH) and

Giemsa staining to study genome rearrangement at the single-cell

level. With the advent of PCR technology in the 1980s, scientists

were able to directly amplify and sequence single-cell genomic

DNA, but with limited coverage of the genome. The isolation of

Phi29 (Φ29) and Bst polymerase brought single-cell genome

research into the era of whole genome amplification (WGA)

(Navin and Hicks, 2011). WGA combined with the probe-based

array-based Comparative Genomic Hybridization (aCGH)

FIGURE 1
Cellular heterogeneity in an organ or tissue in health or cancer. Muscle cells take on different forms in the skeletal muscle. There is also
heterogeneity between cells in the lung cancer tissue.
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method could detect single-cell genome copy number variation,

but with low resolution and reproducibility, even high noise

(Fiegler et al., 2007; Navin et al., 2011). Differs from aCGH

technology, the NGS detects whole genome DNA in a

continuous, long, non-targeted manner with the improved

throughput and lower costs, has become a priority choice

(Navin and Hicks, 2011). Combining WGA and NGS, single-

cell whole genome sequencing (scWGS) can effectively reveal

genetic variation in the genome of a single cell, such as copy

number variation (CNV), single-nucleotide variants (SNV), and

other structural variants (Navin et al., 2011). A variety of single-

cell genome sequencing technologies have become powerful tools

for detecting cellular heterogeneity, such as single-cell genomic

sequencing (SIC-seq), single-cell combinatorial marker

sequencing (SCI-seq), and topographic single cell sequencing

(TSCS) (Navin et al., 2011; Vitak et al., 2017; Casasent et al.,

2018). However, due to the short read limit of the second-

generation sequencing platform, these methods cannot

exhaustively detect genomic structural variation (including

insertion, deletion, repetition, translocation, etc.) (Futreal

et al., 2004). Interestingly, cytogenetic profiles are also of

importance as the karyotype alterations (both structural and

numerical) change the system information by creating new

karyotype coding (Ye et al., 2019). Recently genome chaos,

including chromothripsis, polyploidy giant cancer cells

(PGCCs), and micronuclei clusters, has become a hot topic

(Stephens et al., 2011; Liu et al., 2014; Niu et al., 2016), as

they are essential for genome instability-mediated somatic

evolution. Single-cell omics are needed to characterize these

reorganized karyotypes. Methods are also required to convert

the sequence data into cytogenetic data (Zhang and Kschischo,

2022). Tang et al. recently developed a single-cell genome

sequencing method based on the third-generation sequencing

(TGS) platform, called SMOOTH-seq (single-molecule real-time

sequencing of long fragments amplified through transposon

insertion). This method is a new breakthrough in scWGS by

optimizing reaction conditions and linker sequences to obtain

reliable and efficient single-cell SVs and ecDNAs with longer

genomic readings (Fan et al., 2021). With the advantages of TGS

platforms, this method has a wide range of application potential

in the field of single-cell genomics. Moreover, we summarized as

many single-cell genome sequencing techniques as possible in

SupplementaryTable S2.

2.2.2 Single-cell transcriptome sequencing
Initially, Tang et al. used poly (T) primers to reverse single-

cell mRNA to obtain single-stranded cDNA, then added poly(A)

to its end to obtain double-stranded cDNA, and finally used the

Applied Biosystem sequencing platform SOLiD system to

complete the first true single-cell transcriptome sequencing in

2009 (Tang et al., 2009). Subsequently, a large number of

methods are built based on this principle (Supplementary

Table S3) (Sasagawa et al., 2013; Fan et al., 2015; Nakamura

et al., 2015; Sheng et al., 2017). Generally, single-cell RNA

sequencing (scRNA seq) consists of four steps: 1) single cell

isolation and lysis, 2) reversal to cDNA, 3) cDNA amplification,

4) library construction and sequencing.

Single-cell isolation for single-cell transcriptome sequencing

has evolved from a single centrifuge tube, 96/384-well plates, or

water droplets in oil. By adding cell identification code barcodes

to the inverted primer or template switch oligo (TSO) primer to a

mount of cells, improving the sequencing throughput and

reproducibility. SCRB-seq (single-cell RNA barcoding

sequencing) and mcSCRB-seq using this strategy of enriching

3′ ends with Barcode and UMI for high-throughput

transcriptome sequencing based on higher-throughput 96/384-

well plates (Soumillon et al., 2014; Bagnoli et al., 2018). But it is

difficult to achieve a tens of thousands of cell count. Drop-seq is

high-throughput method and isolates cells in oil-coated water

droplets, using special magnetic beads with Barcode and UMI to

grasp the polyA tail of mRNA, each primer on the beads grabs the

mRNA of a single independent cell, and then collects these beads

for inversion, template replacement, and amplification to

constuct a library. But the equipment cost of additional

droplet pump systems is higher (Macosko et al., 2015).

Among 13 single-cell RNA sequencing methods, CEL-seq2,

Quartz-seq2 and Smart-seq2 were found to have low-

throughput, but the 10 x Chromium performing well in high-

throughput (Mereu et al., 2020). At present, the 10x Genomics

platform based on water-in-oil droplets combined with high-

throughput single-cell sequencing is widely used. But the

problem of probabilistic collision affecting the capture

efficiency in 10x can’t be avoided. In 2018, Han et al.

established the Microwell-seq method to capture mRNA in

nanopores using magnetic beads (Han X. et al., 2018). Ensure

that each microwell contains a cell and a magnetic bead by

gradient dilution, and then grasp the mRNA after lysis of the cells

in the microwell. Nevertheless, the beads used in the Indrop,

Drop-seq, and Microwell-seq methods are synthesized using the

split-and-pool principle, which has been commercially produced

but is still expensive. Different from the above methods, in

SPLiT-seq, each cell is labeled with a specific barcode

combination label, increasing the throughput and reducing the

cost (Rosenberg et al., 2018).

Next,for reversal to cDNA, the single-cell transcriptome

library building method is developed according to the

switching mechanism at the 5’ end of RNA template-based

PCR (SMART). These include STRT-seq (Islam et al., 2012),

Smart-seq (Ramsköld et al., 2012), Smart-seq2 (Picelli et al.,

2014), Patch-seq and so on. SMART-seq2 technology is based on

STRT-seq, but adds betaine to the reaction system to improve the

thermal stability and reversal efficiency of the enzyme, while

adding Mg2+ to combine betaine carboxylate anions to form an

ionic pair that becomes a DNA instabilitizer. Then, using

additional thermal cycling (50°C for 2 min; 42°C for 2 min) to

unlock the secondary structure of RNA, improve the specificity of
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hybridization, and promote template conversion. At present,

SMART-seq2, which has been optimized to achieve high

sensitivity and high gene coverage, has become the gold

standard for single-cell transcriptome sequencing and has

been widely used in biological research.

However, because of the non-linear amplification caused by

PCR, PCR-dependent transcriptome studies had a significant

bias for quantitative analysis of RNA expression. In vitro

transcription (IVT)-based linear amplification has been

preferred in recent years, which can greatly reduce

amplification bias. Such methods include CEL-seq

(Hashimshony et al., 2012), CEL-seq2 (Hashimshony et al.,

2016), MARS-seq (Jaitin et al., 2014), inDrops (Klein et al.,

2015), etc.

Traditionally, scRNA-seq is limited to fresh and frozen

samples, which could lose cell types and lead to inadequate

dissociation or transcriptional stress responses due to

digestion restrictions on the tissue. single-nucleus RNA

sequencing (snRNA-seq) isolates individual nuclei then

generates transcriptome information from isolated nuclei,

which can avoid these problems to some extent,is suitable for

cryopreserved or difficult-to-isolate tissues (Lake et al., 2016;

Kim et al., 2018; Wu et al., 2019; Cui et al., 2020; Koenitzer

et al., 2020; Slyper et al., 2020; Zhou et al., 2020; Richter et al.,

2021). However, snRNA-seq requires lysing cells, which

impedes further molecular or functional analyses of the

same cells. Recently, Chen’s team developed a technology

termed “live cell transcriptome sequencing technology”

(Live-seq), which has achieved the survival and function

of cells after single-cell transcriptome sequencing, so that the

dynamic changes of cells can be tracked by minimally

invasive extraction of cytoplasm in living cells and the

expansion of extremely trace amounts of cytoplasmic

RNA. This technology, which realizes the continuous

observation of whole genome expression in living cells for

the first time, provides a new research strategy for single-cell

transcriptome sequencing (Chen et al., 2022).

2.2.3 Single-cell epigenome
Single-cell epigenomes have the potential to provide a deeper

understanding of cell type-specific gene regulatory procedures

and how they change during development in response to

environmental cues and disease pathogenesis. The current

experimental single-cell platforms for analyzing different

epigenomic features focus on DNA modification, histone

modification, DNA-protein interaction, chromatin

accessibility, and 3D chromatin conformation (Kong et al.,

2020a; Preissl et al., 2022).

2.2.3.1 DNA modification

The identity and function of different cell types are

determined by the epigenome of the cell—a collection of

covalent modifications of DNA and histones. The epigenome

plays an important role in growth, development, and disease

onset (Wen and Tang, 2018b).

For DNA methylation modification research, Guo et al.

(2013) describe a methylation group analysis technique

capable of performing single-cell and single-base resolution

DNA methylation, named single-cell reduced-representation

bisulfite sequencing (scRRBS). The technology is highly

sensitive and can detect the methylation status of up to

1.5 million CpG sites in the genome of a single mouse

embryonic stem cell (mESC). scRRBS can cover on average

70% of the CpG islands of the genome, which is characterized

by small sequencing depth, low cost, and wide coverage. The

single-cell bisulfite sequencing (scBS-seq) undergoes 5’ pre-

amplifications to cover 3.7 million CpG sites, making it

suitable for obtaining as many methylation sites as possible

from single cells (Smallwood et al., 2014; Clark et al., 2017).

However, the throughput of the above method is not high. The

single-nucleus methylcytosine sequencing (snmC-seq) combines

FACS and plate-based bisulfite treatment for increasing

throughput (Luo et al., 2017). Mulqueen et al. (2017) describe

a single-cell combinatorial indexing strategy (sci-MET) for

methylation analysis that also significantly improves

throughput (Mulqueen et al., 2017).

The process of demethylation produces a series of

intermediate products, such as 5-hydroxylmethylcytosine

(5 hmC), 5-formylcytosine (5 fC) and 5-carboxylcytosine

(5caC). Identifying and studying these intermediates provides

clues to DNA modifications, but the number of these oxidative

derivatives is so small that traditional bisulfite sequencing cannot

be distinguished, so special sequencing methods need to be

developed. Mooijman et al. (2016) developed the scAba-seq

method to locate 5 hmC The method is based on a special

restriction enzyme, AbaSI, which recognizes glycosylated

5 hmC sites and produces double-strand breaks of double

nucleotides 11–13 bp downstream of the 5 hmC sites. Similar

to CEL-seq, scAba-seq introduces T7 promoter joints to conduct

in vitro transcription. The library construction of ScAba-seq is

based on barcode technology, which has significantly increased

the throughput for single-cell analysis. By using it,

44,000 different 5 hmC sites have been identified in mouse

ESCs. In 2017, Zhu et al. established chemical labeling-

enabled C-to-T conversion sequencing (CLEVER-seq) for the

analysis of 5 fC in single cells (Zhu et al., 2017). This method

utilizes selective 1,3-indandione-mediated Friedländer labeling,

similar to the bisulfite-free detection method (fC-CET), to induce

5 fC in PCR amplification and sequencing. Using this method,

3500 5 fCpG loci have been detected in mouse ESCs. Wu et al.

(2017) report single-cell methylase-assisted bisulfite sequencing

(scMAB-seq) for analyzing 5fC/5caC. CpG methyltransferase M.

SssI was added before bisulfite conversion. M. SssI treatment

converts unmodified cytosine in the CpG environment, followed

by sequencing of 5 fC and 5caC sites read as T, and C/5mC/

5 hmC sites read as C. Combining single-cell RRBS or Post
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Bisulfite Adapter Tagging (PBAT), the MAB-seq method is

suitable for single-cell analysis of 5fC/5caC.

2.2.3.2 Histone modification and DNA-protein

interaction pattern

Genome-wide histone modifications are often positioned by

chromatin immunoprecipitation and high-throughput

sequencing techniques (ChIP-seq), which can enrich target

chromatin fragments carrying specific histone modifications

(Kong et al., 2022). ChIP-seq is also commonly used to

analyze transcription factor binding sites and other protein-

DNA interactions (Wen and Tang, 2018b). For example,

Rotem et al. (2015) established the DropChIP method, which

combines drop-based microfluidics and DNA barcoding to pool

thousands of single cells prior to antibody immunoprecipitation,

overcoming antibody limitations and increasing throughput,

allowing nearly 1,000 modified sites to be detected at once.

2.2.3.3 Open accessibility of chromatin

Gene regulation is affected by open chromatin accessibility. Open

chromatin conformations are generally considered to bindmore easily

to in vitro enzymes. Buenrostro et al. (2015b) established a

programmable microfluidic platform that can detect about

5,000 DNaseI hypersensitive sites (DHSs) at a time, with greater

efficiency but a throughput of only 96. Meanwhile, the single-cell

DNase-seq method developed by Jin et al. (2015) makes it possible to

recover approximately 38,000 DHSs from single cells. The single-cell

combinatorial indexed ATAC-seq (sciATAC-seq) is a strategy that

uses combinatorial tags and Tn5 fragmentation, and was successfully

used to study the genome-wide chromatin accessibility landscape for

each of more than 15,000 single cells (Cusanovich et al., 2015). In

2018, Zhang’s team developed scTHS-seq technology to study

epigenetic traits (Lake et al., 2018). This technique has some

advantages, such as linear transcriptional amplification in vitro and

the modified supermutant Tn5 transposase, which is more sensitive

than scATAC-seq and improves the coverage of cell-specific distal

enhancers.

Different from Dnase-seq and ATAC-Seq analysis,

Nucleosome Occupancy and Methylome Sequencing (NOMe-

seq) can provide more epigenetic information, because of its high

resolution (25 bp). NOMe-seq could detect the chromatin status

and DNA methylation at the same time. Scientists have

developed a single-cell NOMe-seq technology called scNOMe-

seq (Pott, 2017), as well as a few multi-omics methods, such as

single-cell chromatin overall omic-scale land-scape sequencing

(scCOOL-seq) (Guo et al., 2017) and single-cell nucleosome,

methylation and transcription sequencing (scNMT-seq) (Clark

et al., 2018).

2.2.3.4 3D genomic conformation

Hi-C is the most widely used technique for deciphering gene

regulation and cell function from the genomic 3D interactome.

Single-cell Hi-C data can also be used to reconfigure the 3D

genomic structure of individual cells, including A/B

compartments, topologically associating domains (TADs),

DNA-loops, etc. (Kong and Zhang, 2019; Kong et al., 2020b).

In 2013, Nagano et al. used an intranuclear Hi-C strategy for

single-cell Hi-C sequencing, performing chromatin crosslinking,

restriction endonuclease cleavage, biotin filling, and ligation in

permeated nuclei. It was able to detect 40,000–120,000 contacts

in single cells (Nagano et al., 2013; Wen and Tang, 2018b). In

2017, Flyamer further simplified single-cell Hi-C to generate a

snHi-C (single-nucleus Hi-C), which uses Phi29 whole genome

amplification after chromatin crosslinking, DpnII digestion, and

proximal ligation, while omitting biotin-related steps, enabling

the detection of 400,000 contacts in single cells (Flyamer et al.,

2017). For enhancing the throughput, Ramani et al. established a

high-throughput single-cell combinatorial indexed Hi-C (sciHi-

C) detection method using a combination labeling strategy

(Ramani et al., 2017). The method is similar to sciATAC-seq

and sci-MET, first combining the first round of barcodes with

proximity ligation, and then combining the second round of

barcodes through joint Y-adapter connections. The number of

contacts detected can reach 9 times that of the original Hi-C.

However, to achieve high resolution of Hi-C analysis at the

loop level, it is typically required to perform ultra-high-depth

sequencing reads. However, it is easy to reach sequencing

saturation, and the signals of interaction matrices are still

sparse. Thus, Zhang’s team developed the DeepLoop tool on

the basis of HiCorr to solve the problems of data sparsity and the

sequencing bottleneck at kb resolution (Zhang et al., 2022).

DeepLoop can identify high-resolution 3D genomic

interactions from Hi-C data at very low sequencing depths,

greatly reduces the required sample size and sequencing costs,

realizing the low cost of high-resolution Hi-C analysis, and

expands the Hi-C application in dynamic and single-cell 3D

genome research.

Finally, single-cell epigenomic sequencing technologies are

comprehensively described in Supplementary Table S4.

2.2.4 Single-cell proteome
Because the protein content of a single cell is generally

less than 200 pg and the complexity is high, the single-cell

omics development of protein levels is very limited. The

advent of Single Cell ProtEomics by Mass Spectrometry

(SCoPE-MS) technology is particularly important for

addressing the challenges faced by single-cell proteomes.

SCoPE-MS delivers the proteome to the mass

spectrometer with minimal protein loss, as well as

simultaneously identifying and quantifying peptides in

individual cells. This technique can detect more than

1,000 proteins in a single cell (Budnik et al., 2018). There

is also another method for detecting cellular proteins, that

uses antibodies that bind to DNA barcodes, measuring along

with the transcriptomes of individual cells in the modified

scRNA-seq method (He et al., 2020).
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2.2.5 Single cell metabolome
Single-cell metabolomics techniques are still in their infancy,

and current methods have very limited sensitivity and

considerable technical noise. Current extensions and

improvements based on mass spectrometry methods have

been able to detect small amounts of metabolites present in

single cells (Comi et al., 2017; Zhang and Vertes, 2018; Zhu et al.,

2018; Duncan et al., 2019).

2.2.6 Single-cell microbiome
Individual microbial cells are highly heterogeneous, making

it impossible for traditional omic techniques to distinguish the

monas and verify the function of individual microorganisms.

Some low-abundance communities are always ignored. The

intergated use of both single-cell genomics and bulk

metagenomics would efficiently obtain comprehensive and

accurate genome-wide information from complex microbial

communities. In recent years, some flagship technologies have

been published to construct the single-cell microbiome.

2.2.6.1 Microbial single-cell genome

The SiC-seq was developed and improved from single-cell

genomics, is widely used for sequencing single-cell

microorganisms in marine microbial samples (Lan et al., 2017).

This method encapsulates individual cells in molten agarose

droplets, polymerizes them to provide a semi-permeable matrix

to fix bacterial cells, and then processes these microgels in a

microfluidic device to generate a single-cell genome library for

sequencing. Further, the researchers developed the SAG-gel

method, which replaced the microfluidic processing step with

sorting agarose droplets in microplates by flow cytometry sorting.

For individual cells on microplates, genomic amplification is

conducted. This technique has been applied to study the

intestinal microbiome of mice, and 356 single amplified genomes

(SAGs) have been successfully obtained (Chijiiwa et al., 2020). It is

also widely used to obtain bacteria from the human mouth or

intestine (SAGs). Excitingly, the recently developed Microbe-seq

technique packages individual bacteria in water-in-oil droplets

containing lysate. The droplets are genetically amplified after a

series of mergers with other reagents in a microfluidic system

(Zheng et al., 2017). This method has been used to analyze

human stool samples, which could generate thousands of SAGs

per sample. Microbial single-cell genome sequencing improves

metagenomic genome assembly, resulting a greater biodiveristy of

single microorganism genomes.

2.2.6.2 Microbial single-cell transcriptome

scRNA-seq has been widely used to analyze cell types and

states in eukaryotes, but existing methods are not applicable to

microbes. To address this issue, Kuchina et al. (2021) developed

microSPLiT (Microbial split-pool ligation transcriptomics), a

low-cost, high-throughput method tailored to microbes. This

technique enables comprehensive analysis of the transcriptome

of thousands of cells, identifying rare or new subpopulations. It

can be used to map dynamic gene expression changes in Bacillus

subtilis at different growth stages.

2.3 Techniques for single-cell multi-omics

2.3.1 Dual-omics in single cells
Different from single-cell monomic methods to obtain one-

time omics data, single-cell multi-omics sequencing technology

can simultaneously obtain multiple omics data from one single

cell, which better reflects the association among different omics

in a specific state and reveals a more “real” molecular regulatory

network. For example, “single-cell dual-omics” refers to a single-

cell library construction experiment achieving two omics

sequencing at the same time (Macaulay et al., 2015).

Single-cell dual-omics sequencing techniques that combine

single-cell transcriptomes and genomes were first used. These

methods can analyze not only genomic differences and gene

expression heterogeneity among cells, but also the relationship

between genomic sequence differences, copy number variations,

and transcriptome heterogeneity. TARGET-seq (Rodriguez-

Meira et al., 2019), DR-seq (Dey et al., 2015), G&T-seq

(Macaulay et al., 2015), SCGT (Li et al., 2015) and SIDR (Han

K. Y. et al., 2018) are examples of such technologies.

Subsequently, dual-omics sequencing techniques for

simultaneous measurement of the transcriptome and

epigenome in the same single cell have emerged to explore

the epigenetic regulation of gene expression. For exploring the

relationship between the transcriptome and DNA methylation,

the methods include scMT-seq (Hu et al., 2016), scM&T-seq

(Angermueller et al., 2016) and sc-GEM (Cheow et al., 2016). For

combining transcriptome and chromatin accessibility, there are

sci-CAR-seq (Cao et al., 2018), SNARE-seq (Chen et al., 2019),

scCAT-seq (Liu L. et al., 2019), ATAC- RNA-seq (Hendrickson

et al., 2018) and Paired-seq (Zhu et al., 2019). In detail, Liu et al.

used scCAT-seq technology to study the regulatory relationship

between cis regulatory elements and target gene expression, and

assist in the diagnosis of embryonic quality before implantation

in human embryos and cancer targets. There are also some

technologies that combine transcriptomes with cell surface

protein assays to identify relationships between different cell

types and their cell functions, such as CITE-seq (Stoeckius et al.,

2017), REAP-seq (Peterson et al., 2017), PLAYR (Frei et al., 2016)

and PEA/STA (Genshaft et al., 2016). In complex tissues, cell

spatial location and microenvironment also have important

implications for cell function. Technologies such as Slide-seq

(Rodriques et al., 2019), MERFISH (Moffitt and Zhuang, 2016;

Travaglini et al., 2020), seqFISH+ (Eng et al., 2019), ST-RNA-seq

(Giacomello et al., 2017), STAR-map (Wang X. et al., 2018), and

osmFISH (Codeluppi et al., 2018) are capable of preserving cell

spatial information while performing transcriptome sequencing

to link cell function to the microenvironment. For instance,
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SeqFISH+ is based on the spatial multimodal approach for

exploring nuclear tissue and cellular states applied to different

biological systems (Takei et al., 2021). Moreover, Methyl-HiC (Li

et al., 2019) and sn-m3C-seq (Lee et al., 2019) can simultaneously

analyze DNA methylation and chromatin conformation,

resolving the heterogeneity at these two aspects among

different cells.

In addition to molecular detection between multiple omics

layers, the combination of the gene editing technology CRISPR

and single-cell sequencing to perform cell phenotype assays while

exploring the effects of perturbation on gene regulatory networks

deeply explores the causal relationship between gene expression

regulation, cell function, and destiny (Jaitin et al., 2016;

Eisenstein, 2020). In 2016, Jaitin et al. (2016) first used

CRISP-seq to reconstruct the core molecular regulatory

networks during differentiation and their stress response to

pathogen infestation in blood medullary cells. Additionally,

Perturb-seq (Adamson et al., 2016), CROP-seq (Datlinger

et al., 2017), and Mosaic-seq (Xie et al., 2017) are examples of

dual-omics sequencing techniques capable of detecting

transcriptome and DNA perturbation simultaneously. In

detail, the CROP-seq (CRISPR droplet sequencing) method

optimizes CRISPR screening for analyzing thousands of gene

editing events in single cells with high throughput and achieving

a more detailed gene regulation analysis. In addition, Perturb-

ATAC used the CRISPR library to detect chromatin accessibility,

meanwhile, it removed trans regulators to study the effects of

them on different cell regulatory networks (Rubin et al., 2019).

Therefore, this technique could be used to identify the effects of

transcription factors (TFs), chromatin-modifying factors, and

non-coding RNAs (ncRNAs) on cell function maintenance and

fate (Rubin et al., 2019).

2.3.2 Triple-omics andmulti-omics in single cells
Dual-omics sequencing technologies are also developing in

the direction of more omics (for example, triple, quadruple,

quintuple, and multi-omics). In detail, single-cell triple omics

technology refers to a single-cell library building experiment to

achieve three kinds of omics sequencing (Hou et al., 2016).

These multi-omics technologies include, for example, 1)

Transcriptome + DNA copy number + DNA methylation

triple-omics, scTrio-seq (Hou et al., 2016) and scTrio-seq2

(Bian et al., 2018), which have been used to study cancer

occurrence and development mechanism. 2) The triple-omics

of transcriptome + DNA methylation + chromatin accessibility,

which includes scNMT-seq (Clark et al., 2018) and scCharM-seq

(Yan et al., 2021). 3) Transcriptome + surface protein + CRISPR

perturbation + TCR (T-cell receptor) cloning detection

quadruple-omics: ECCITE-seq has been used to identify

immune cell types (Mimitou et al., 2019; Overall et al., 2020).

4) Transcriptome + DNA copy number + DNA methylation +

chromatin accessibility + chromosomal ploidy quintuple-omics:

There are scCOOL-seq (Guo et al., 2017), iscCOOL-seq and

scCOOL-seq2 (Gu et al., 2019). Tang et al. used the scCOOL-seq

method to analyze the reprogramming of chromatin status and

DNA methylation in mouse preimplantation embryos (Guo

et al., 2017). These single-cell quintuple omics data can now

be obtained from a single cell. With these, single-cell chromatin

accessibility and DNA methylation can be investigated at single-

base resolution, which greatly advances the ability to analyze the

complex relationships among different genetic and epigenetic

layers. Finally, multi-omics single-cell methods are

comprehensively described in Supplementary Table S5.

2.4 Single-cell omics computational tools

Due to the development of single-cell omics techniques, how

to integrate a large amount of different types of omics

information is becoming a key problem, so the demand for

single-cell omics computational analysis methods and tools is

increasing (Hao et al., 2021). Efremova and Teichmann

summarized computational methods for analyzing and

integrating single-cell omics data across different patterns and

discussed their applications, challenges, and future directions

(Efremova and Teichmann, 2020). “Awesome Single Cell”

(go.nature.com/2rmb1hp) on GitHub lists more than 70 tools

and resources with a user-friendly interface for analyzing and

integrating various single-cell sequencing data. Some methods

and tools used to analyze single-cell omes have also been

reviewed elsewhere (Stuart and Satija, 2019; Ma et al., 2020; Li

et al., 2021; Miao et al., 2021).

Multi-omics data, including measurements on the same

cell (matched data) and different cells (unmatched data). The

matched multi-modal technology is the joining of different

omics data by one sequencing technology on the same cell,

such as sci-CAR, SNARE-seq, paired-seq, CITE-seq and

REAP-seq. Many methods have been built for integrating

matched multi-model data based on the three following

approaches. A simple approach is to transform the data in

such a way that all the measured attributes have homogeneous

statistical characteristics. Traditionally, each feature is

measured by the variation between samples. A more

reasonable approach would be to give a probability score

for each value of a feature, possibly using a different model

for the feature set, so that the values can have a consistent

probabilistic interpretation. Another more model-based

theoretical method, is that which considers each omics-data

as a “view” of the underlying relationship between cells. Tools

using this approach include single cell Aggregation and

Integration (scAI) (Jin et al., 2020), totalVI (Gayoso et al.,

2021), multi-omics Factor Analysis (MOFA) and its later

version, MOFA+ (Argelaguet et al., 2020). Unlike inferring

a common representation space from multiple omics datasets,

a type of late integration approach integrates data into the

level of the inferred model, such as affinity in each modality.
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Unmatched data is measured on a different cell and faces one

challenge: mapping the measurements from one modality to another.

One integration approach is to match groups of cells between the

modalities. For example, correlating clusters in each modality

manually correspond to known cell types and other features with

biological information, such as proximity of open chromatin to

expressed genes. Second, match features based on their common

molecular basis. For example, the STvEA tool, uses protein abundance

as a common factor to match (Govek et al., 2021). Clonealign

(Campbell et al., 2019) and Seurat 3.0 (Stuart et al., 2019) are

based on some biologically motivated statistical models. When

achieving a shared feature set through mapping among modalities

was challenging or impractical, modeling the entire “space” of data by

considering each mode and mapping these spaces to each other was

an approach. This type of tool includes MATCHER (Welch et al.,

2017), MMD-MA (Liu J. et al., 2019), UnionCom (Cao K et al., 2020)

and SCOT (Demetci et al., 2020). Many integrative algorithms and

analytical tools for scMulti-omics data are summarized in

Supplementary Tables S6, S7; Figure 4.

3 The application of single-cell omics

3.1 Application and discovery in human
organ/tissue development and disease

For organ/tissue development, the construction of the

human cell map is fundamental to understanding the

function of organs (Li et al., 2018; Wagner and Klein,

2020). The “International Human Cell Atlas” was planned

to sequence the (about 37 trillion) cells in the human body, to

dissect the composition, cell trajectory, function, and disease

of human organs at the single-cell level (Regev et al., 2017).

Petropoulos et al. isolated 1529 single cells from 88 pre-

implantation embryos and mapped a complete

transcriptional map for ascertaining the pre-implantation

development of human embryos, revealing an intermediate

state of cells in lineage-specific gene co-expression

(Petropoulos et al., 2016). Using single-cell transcriptome

sequencing technology, researchers from multiple

institutions have analyzed the molecular mechanisms of

human brain development and the association between

genes and neurological diseases, such as autism,

schizophrenia, and bipolar disorder (Wang D. et al.,

2018). In addition to normal tissues and organs,

transcriptome techniques can also be used to map organ

disease states and cancerous cells. For example, Ordovas-

Montanes et al. conducted a transcriptome profile analysis of

respiratory epithelial cells, immune cells, stromal cells and

their subsets in human type II inflammatory diseases by

sequencing large-scale parallel single-cell RNA from samples

of primary chronic sinusitis (Ordovas-Montanes et al.,

2018). Lambrechts et al. measured transcriptome

information from 52,698 cells in the human lung cancer

microenvironment to identify 52 stromal cell subtypes and

depict a complete lung cancer cell map (Lambrechts et al.,

2018).

The single-cell omics platform provides a more

comprehensive and clear picture of aging-related research

(He et al., 2020). Multiple risk genes associated with

Parkinson’s disease, amyotrophic lateral sclerosis, and

schizophrenia have been identified through transcriptomics

analysis (Olah et al., 2018). Both the single-cell genome and

scRNA-seq demonstrate that somatic mutations accumulate

with age and disease (Lodato et al., 2018; Zhang et al., 2019).

Chromatin modification analysis also discovered that as

people and cells aged, the variation of chromatin markers

increased, resulting in a loss of transcriptional regulation

(Cheung et al., 2018).

Single-cell omics has some applications in pre-implantation

development, brain science, cancer tumor heterogeneity, tumor

immunology, tumor resistance, and drug development (Liu J. et al.,

2021; Nam et al., 2021). There are some examples of genetic

disorders or genetic essentialities in discussions of human disease,

there are some examples. Primary central nervous system

lymphoma (PCNSL) is a rare form of central nervous system

lymphoma. Limited material from CNS biopsies prevent a

thorough characterization of PCNSL. By using single-cell RNA

sequencing, B-cell receptor sequencing of rare PCNSL cells, and

spatial transcriptomics of biopsy samples, results found that

malignant B-cell in PCNSL exhibit transcriptional and spatial

intratumor heterogeneity. T-cell exhaustion is common in the

PCNSL microenvironment, where it co-localizes with malignant

cells, highlighting the potential for personalized treatments

(Heming et al., 2022). For molecular driver evolution,

researchers decipher the intra-tumor and inter-lesion diversity

of CTCL patients and propose a multi-step tumor evolutionmodel

using single-cell RNA analysis and bulk whole-exome sequencing

on 19 skin lesions from 15 CTCL patients. They also establish a

subtyping scheme based on the molecular features of malignant

T-cell and their pro-tumorigenic microenvironments. These

findings lay a strong foundation for comprehending the

characteristics of CTCL and open the door to future precision

medicine for patients (Liu et al., 2022). In the future, it will be more

widely used in human growth, development, and tumor research,

with the development of reproductive biology, developmental

biology, and precision medicine.

3.2 Application in normal or disease cell
lines

In biological and medical research, cell lines are often used as

readily available materials or model cells. They are widely used

and play important roles. The famous cell lines include K562

(lymphoblast cells isolated from the human bone marrow),
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HG002 (NA24385 human cell line), ESC (embryonic stem cells),

C2C12 (murine premyoblast cell line) and HEK293T (human

embryonic kidney cells). In this part, these cell lines are listed as

examples to show the application. Genome assembly benefits

from long-read sequencing technology with greater accuracy and

continuity. However, because cellular heterogeneity can seriously

affect haplotype assembly results, most current human genome

assembly requires a large amount of DNA from homogeneous

cell lines without maintaining cellular heterogeneity. Recently,

the Tang team sequenced K562 and HG002 cells and assembled

the de novo human genome on the PacBio HiFi and Oxford

Nanopore Technologies (ONT) platforms using SMOOTH-seq

(Xie et al., 2022). The study pioneered the assembly of the human

genome with high continuity at the single-cell level (using

95 individual K562 cells, N50 is about 2 Mb) and explored the

effects of different assemblers and sequencing strategies on

genome assembly. With sequencing data from diploid

HG002 cells with relatively high genomic coverage (average

coverage ~41.7%) on the ONT platform, the N50 can reach

more than 1.3 Mb. In addition, using assembled genomes from

the K562 single-cell dataset, more complete and accurate sets of

insertion events and complex structural variants can be

identified. The study opens a new chapter in the de novo

assembly of single-cell genomes.

Measuring variability between two half-cellular materials

uniformly separated from the same single cell can determine

whether these variations are caused by true biological

heterogeneity or technical noise in single-cell sequencing.

Scientists use half-cells from the same cancer cell line, K562,

to carry out single-cell microRNA sequencing. By correlating

miRNA levels with the expression of predicted target mRNAs in

19 single cells with the same phenotype, it was found that the

FIGURE 2
Traditional biological research is carried out frombulk cell levels, and the experimental results are often the averaged gene expression of the cell
population, or only represent the life activity information of the dominant cell in the number and cannot accurately reflect a lot of information about
cell heterogeneity in the sample. It ignores the differences in gene expression regulation between different population and single cells. Single-cell
sequencing, which is sequenced at the individual cell level, solves the heterogeneity of genetic variation between different cells.
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predicted target is significantly inversely correlated with a large

number of miRNA changes, suggesting that microRNA

expression variability alone may lead to non-hereditary

intercellular heterogeneity (Wang et al., 2019). Using single-

cell chromatin accessibility and RNA-seq data from K562 cells,

Litzenburger et al. identified the coordination of the cell surface

marker CD24 with GATA transcription factor-related chromatin

accessibility changes in single cells. GATA/CD24hi cells were

found to have the ability to rapidly reestablish heterogeneity

within the entire initiating population (Litzenburger et al., 2017).

ESC cells can produce functional cell types by gradually

exposing themselves to specific factors to use lineage-specific

gene expression procedures. Khateb et al. used RNA-seq, ATAC-

seq, Hi-C, etc. to perform single/bulk cell gene expression,

histone modification, chromatin conformation, and

accessibility transition analysis of ESC pluripotency,

acquisition of anterior presomitic mesoderm (aPSM) fate, and

further myogenic and neurogenic differentiation, revealing the

genomic and transcriptional characteristics and identifying

regulatory regions that guide initial Pax7 expression and

activation of myogenic and neurogenic procedures (Khateb

et al., 2022).

3.3 The application to human disease and
large animal models

As the most closely related species to humans, primates are

the classic animal models for the study of human diseases and

can show developmental and important pathological

characteristics that are consistent with humans. To better

understand the physiological and genetic characteristics of

primates, Qu et al. combined single-cell chromatin

accessibility and RNA sequencing data from Macaca

fascicularis to plot a “Monkey Atlas” containing 40 distinct

cells from 16 representative organs (Qu et al., 2022). They

inferred cell trajectories and intercellular communication,

revealed the key molecular features, identified various cell-

specific cis-regulatory elements, and constructed organ-specific

gene regulatory networks at the single-cell level. In addition, it

was found that cynomolgus monkeys had a higher degree of

similarity in immune-related gene expression patterns with

humans compared to mice. The research provides a valuable

resource for animal model research involving non-human

primates. Zhang et al. (2020) conducted single-cell

transcriptomics involving the aorta and coronary arteries of

young and elderly cynomolgus monkeys. The molecular

characteristics of specific arteries and eight markers

distinguishing the aorta and coronary vascular systems were

identified. The analysis found that FOXO3a (a longevity-

related transcription factor) was inactivated in the arteries of

elderly monkeys. It confirmed that FOXO3a deletion is a key

driver of arterial endothelial aging. Arterial aging studies are an

important topic in the study of cardiovascular disease. The study

provides important clues for how aging affects the cellular and

molecular components of the vasculature and causes

cardiovascular disease. Both examples show good cases for

primate model research and related treatments for human

diseases.

Except for non-human primates, pig is a specie that is,

closely related to human. Pigs have the advantages of a short

growth period, large litter size, a cheap price, and easy editing

of genomes (Lunney et al., 2021). They are often used in

clinical research and are thought to be the best host species for

producing human organs. The complete single-cell landscape

of early embryonic development in pigs is constructed. The

similarities and differences between pigs and monkeys are

analyzed at the single-cell level, which provides new insights

for mammalian development and “artificial organs” (Liu T.

et al., 2021). Based on single-cell transcriptome sequencing, a

cell transcriptome atlas of pigs containing several important

tissues/organs was constructed for the first time. It also

provided key scientific research resources and a scientific

basis for promoting the application of model pigs in the

field of biomedicine and xenotransplantation (Wang et al.,

2022). The brain tissue of domestic pigs has a multiple brain

gyrus structure similar to that of the human brain, which has a

high reference value. Zhu et al. (2021) analyzed the single-

nucleus transcriptomic data of the domestic pig brain region,

and plotted a single-cell transcriptome profiling landscape.

This study provided important reference information and

effective ideas for using domestic pigs for human

neurological disease research or as genetically modified

animal models. In addition, there are also many

applications in some other organs, such as the eyes

(Gautam et al., 2021).

3.4 Application and findings in COVID-19
and related animal models

COVID-19 is caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). It is a single-stranded RNA β-
coronavirus that infects human host cells via ACE2 and

NRP2 receptors. The virus has caused millions of deaths since

2019. A detailed understanding of the dynamics of SARS-CoV-

2 infection is important to uncover the viral and host

mechanisms that contribute to the pathogenesis of

coronavirus disease. Since the outbreak, researchers have

analyzed the pathogenesis of SARS-CoV-2 and the immune

response of the human body for further vaccine and

therapeutic drug development.

The human nasal cavity and alveoli are two parts that are

easily accessible to respiratory viruses. Hou (Hou et al., 2021)

examined the biomarker spectrum of SARS-CoV-2 serum

inflammation in the nasal cavity, bronchoalveolar lavage fluid
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(BALF), and peripheral blood mononuclear cells (PBMCs) by

performing single-cell RNA sequencing. In severe male patients,

cell interaction network analysis was conducted to reveal elevated

mononuclear cell expression of Toll-like receptor 7 (TLR7) and

Bruton tyrosine kinase (BTK). COVID-19 underlying epithelial

cell-immune cell interaction and immune vulnerability with

increased disease severity and mortality. This study found a

high risk for men at different stages of infection, which is sex-

biased and susceptible to viral infections. When patients were

concurrently infected with the two viruses COVID-19 and

influenza A (IAV), single-cell RNA sequencing of peripheral

monocytes found that the two viruses synergistically increased

pro-inflammatory cytokines and interferons (IFN), and revealed

different immune responses after infection with the two viruses

(Zhu L. et al., 2020).

There is no specific drug for the SARS-CoV-2 virus, and

neutralizing antibodies have the potential to become a

specific drug. Thus, Xie and Qin’s rapid identification of

SARS-CoV-2 neutralizing antibodies by high-throughput

single-cell RNA and VDJ sequencing of antigen-enriched

B-cell from 60 convalescent patients (Cao Y et al., 2020).

Then, combining with the escape map and the structural

analysis, representative antibodies of each epitope of the

omicron BA.1 strain were successfully analyzed at the level of

a single antibody. The research provided data support for the

development of subsequent antibody drugs and broad-

spectrum vaccines. Moreover, analysis of human blood

immune cells responding to SARS-CoV-2 virus infection

would provide insights into the COVID-19 pathological

mechanism. Stephenson et al. used CITE-seq to perform

single-cell assays on more than 780,000 peripheral blood

mononuclear cells from 130 patients with varying degrees of

COVID-19. Non-classical monocytes expressing

“complement transcripts (CD16 + C1QA/B/C +)” were

FIGURE 3
Single-cell isolation techniques. The principles of each technique are described in the text. Abbreviation: LCM, laser capture microdissection;
FACS, fluorescence-activated cell sorting; MACS, magnetic-activated cell sorting (Gross et al., 2015; Hu et al., 2016).
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found to replenish the alveolar macrophage pool in COVID-

19. The study highlighted the coordinated immune response

of COVID-19 and revealed some discrete cellular

components that could be targeted for treatment

(Stephenson et al., 2021). Similarly, Unterman et al. also

used CITE-seq to detect single-cell transcriptome and cell

surface proteins in immunopathologic studies associated

with SARS-CoV-2 (Unterman et al., 2022). They explore

the dynamic immune response in hospitalized patients with

a stable or progressive course of COVID-19. Coordination

analysis of gene expression and cell lineage protein markers

showed that S100Ahi/HLA-DRlo classic monocytes and

activated LAG-3hi T-cell were markers of disease

development and revealed the hetero-synchronism of

innate and adaptive immune interactions in infection with

COVID-19.

During the coronavirus outbreak, animal models have

played an important role, and single-cell sequencing has

also been used to study the mechanism of virus infection in

animal models, which provide an important reference for the

treatment of human diseases. Non-human primates are good

material when studying COVID-19. Speranza et al. (2021)

used single-cell RNA sequencing to demonstrate that SARS-

CoV-2 replicates in the lungs of African green monkeys and

the population of immune cells in the lungs changes during

infection. Sequencing data showed that lung cells are the sites

of viral replication and that infiltrative macrophages are

responsible for clearing infected cells and cell debris early

in infection. The study further deepens our understanding of

the dynamics of SARS-CoV-2 infection and the immune

response in the host. Similarly, Han et al. used single-cell

RNA sequencing techniques to generate single-cell

transcriptome profiles of nine monkeys infected with

SARS-CoV-2 (Han et al., 2020). It was found that ACE2+

TMPRSS2+ epithelial cells of the lung, kidney, and liver are

the targets of SARS-CoV-2. The correlation analysis of the

ACE2 receptor found that IDO2 and ANPEP may be potential

therapeutic targets, and also revealed the relationships

between IL6 and STAT transcription factors.

4 The emerging trend of single-cell
omics

4.1 Trends and challenges for single-cell
omics

Studying single-cell multi-omics more comprehensively and

systematically will remain as a challenge. On one hand, improve

and diversify single-cell sequencing technologies, including

increasing the sensitivity and accuracy of scRNA-seq, scDNA-

seq and scATAC-seq, lowering the threshold for the detection of

FIGURE 4
Choice and workflow of integrating single-cell multi-omics data. (A)Matched data means multi-omics data was measured from the same cell.
(B) Unmatched data means multi-omics data was measured from different cells. For unmatched data, analyses can be performed with matched
clusters if manual annotations of cell types are available. If manual annotations are not available or a higher resolution of integration is needed, two
different strategies are available depending on whether feature conversion is possible. For data with a common feature set or converted
features, tools developed formatchingwith converted features can be used. For data without common features or feature conversion, integration by
aligning common spaces can be applied (Miao et al., 2021).
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mRNA molecules, developing single-cell proteome, single-cell

metabolome sequencing techniques, etc. (Svensson et al., 2017).

On the other hand, more single-cell omics layers in one cell could

be achieved. In the future, four- or five-layer omics data with the

whole-transcriptome, spatial transcriptomics, live-cell imaging,

chromatin 3D structure, and even expanding to whole omics

(capturing all molecules in cells) will be possible (Chappell et al.,

2018). Thus, the multi-omic sequencing and functional

validation are effective for revealing novel molecular

mechanisms, network modules, disease occurrence, and

development.

The development of single-cell omics sequencing

development has also brought opportunities and challenges

to bioinformatics analysis. The first challenge is the ability to

process large amounts of different omics data. The increasing

demand for data integration in single-cell multi-omics has place

addtional computational strain on the available computing

resources. It is particularly important to allocate resources

and process available data (Ma et al., 2020). Secondly, the

comprehensive analysis and processing of multi-omics data

is needed, which includes elucidating the statistical and

biological characteristics of different omics data, eliminating

mixed factors such as batch effects among samples, and also

adopting sapiential computational strategies for integrated

calculation (2019). Thirdly, it is becoming increasingly

important to establish stable benchmarking pipelines for

evaluating and testing single-cell multiple omics analysis (Ma

et al., 2020). Lastly, online databases will be valuable mining

resources for research.

4.2 Perspectives for elucidating the
pathogenesis of human diseases and
related animal models

Causal variations of potential disease risk usually play a role by

disturbing the expression of normal genes, and these expressions

may be cell type-specific. To date, GWAS has identified millions of

genetic variants that affect complex traits and disease risk. Using

single-cell omics and multi-omics techniques to depict them would

be the main content of human disease research in the post-GWAS

era (Gallagher and Chen-Plotkin, 2018). 93% of disease loci

associated with human diseases are in intergenic regions or gene

deserts, resulting in gene regulatory annotation challenges (Boix

et al., 2021). Combining single-cell omic and multi-omics data and

machine learning to map and annotate trait variation sites would be

effective for studying complex traits and disease pathogenesis. It

would be promising when focusing on the genetic essentialities and

mocular drivers based on single cell omics data.

With spatial transcriptomes occuring in the technology

of the year in 2020 (Nature Methods, 2020), exploring spatial

multiomics and spatial dynamics to directly measure as

many features as possible in the same cell with spatial

resolution (e.g., RNA, DNA, chromatin, protein, and

epigenetic modification), as well as examining the tumor

microenvironment using spatially sensing single-cell

techniques, would be new perspectives for analyzing the

pathogenesis of diseases and animal models of diseases in

the post-GWAS era (McGuire et al., 2020; Nam et al., 2021).

In the COVID-19 period, developing metagenomics would

promote our understanding of SARS-CoV-2 pathogenic

microorganisms, and with the development of single-cell

technology, single-cell microbiome technology will also be

an important perspective in the future.
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