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Introduction: Hepatocellular carcinoma (HCC) is the most common type of primary
liver cancer with low 5-year survival rate. Cellular senescence, characterized by
permanent and irreversible cell proliferation arrest, plays an important role in
tumorigenesis and development. This study aims to develop a cellular
senescence-based stratified model, and a multivariable-based nomogram for
guiding clinical therapy for HCC.

Materials and methods: The mRNAs expression data of HCC patients and cellular
senescence-related genes were obtained from TCGA and CellAge database,
respectively. Through multiple analysis, a four cellular senescence-related genes-
based prognostic stratified model was constructed and its predictive performance
was validated through various methods. Then, a nomogram based on the model was
constructed and HCC patients stratified by the model were analyzed for tumor
mutation burden, tumor microenvironment, immune infiltration, drug sensitivity and
immune checkpoint. Functional enrichment analysis was performed to explore
potential biological pathways. Finally, we verified this model by siRNA
transfection, scratch assay and Transwell Assay.

Results: We established an cellular senescence-related genes-based stratified
model, and a multivariable-based nomogram, which could accurately predict the
prognosis of HCC patients in the ICGC database. The low and high risk score HCC
patients stratified by the model showed different tumor mutation burden, tumor
microenvironment, immune infiltration, drug sensitivity and immune checkpoint
expressions. Functional enrichment analysis suggested several biological
pathways related to the process and prognosis of HCC. Scratch assay and
transwell assay indicated the promotion effects of the four cellular senescence-
related genes (EZH2, G6PD, CBX8, and NDRG1) on the migraiton and invasion
of HCC.

Conclusion: We established a cellular senescence-based stratified model, and a
multivariable-based nomogram, which could predict the survival of HCC patients
and guide clinical treatment.
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1 Introduction

Hepatocellular carcinoma (HCC) is the most common type of
primary liver cancer, accounting for about 75%–80% of liver cancer. In
2018, the number of new cases of liver cancer worldwide reached
840,000, ranking seventh among all malignant tumors (Bray et al.,
2018). At present, the clinical treatment of HCC is mainly surgery,
combined with interventional therapy, radiotherapy, and
chemotherapy, targeted drugs and other treatment methods
(Glantzounis et al., 2022). Despite immunotherapy for HCC
patients has made great progress (Hu et al., 2022; Zhu et al., 2022),
HCC patients still have a high recurrence and metastasis rate and low
5-year survival rate (Miyata et al., 2022; Reveron-Thornton et al.,
2022). Thus, establishment of a precise classification method for HCC
based on the clinical characteristics, immune infiltration, and
sensitivity of chemotherapeutic drugs may provide reference for
precision medication in the clinic and improve the clinical outcomes.

Cellular senescence is characterized by permanent and irreversible cell
proliferation arrest, which occurs in response to some endogenous or
exogenous stimuli including telomere dysfunction, oncogene activation
(Leal et al., 2008). Cellular senescence plays an important role in
tumorigenesis and development (Schmitt et al., 2022). On one hand,
cellular senescence ensures tissue homeostasis and prevents tumorigenesis
and proliferation in situations where senescent cells enter permanent cell
cycle arrest (Nardella et al., 2011). On the other hand, senescent cells
release senescence-associated secretory phenotype (SASP), including
interleukin-6 (IL-6), IL-8, and matrix metalloproteases (MMPs), which
promotes tumor development (Coppé et al., 2008; Okamura et al., 2022).
Recent studies report that induction of senescence in liver cancer cells is a
potential therapeutic approach (Wang et al., 2022). Thus, clarifying the
role of cellular senescence in HCC development is beneficial for precision
medication.

In this study, we analyzed the differentially expressed genes
(DEGs) involved in celluar senescence between normal and HCC
specimens and constructed the prognostic risk score signature of cell
senescence. This signature could predict the malignant degree and
prognosis of HCC patients and effectively guide clinical
chemotherapy. The results of this study may provide a new
strategy for exploring the treatment of HCC.

2 Materials and methods

2.1 Data collection

RNA-seq data from HCC patients, including 369 tumors and
50 normal samples, were collected from the Cancer Genome Atlas
(TCGA) database (http://portal.gdc.cancer.gov/). Based on patient’s
ID, patients’ clinical data were compared with their transcriptome
data, which were screened using the following inclusion criteria: 1)
histological diagnosis of HCC, 2) available expression profile, and 3)
available suvival data. Data that met inclusion criteria were extracted
from the TCGA-LIHC dataset (344 patients) for subsequent analyses.
The validation set included 332 HCC patients from the International
Cancer Genome Consortium (ICGC) -LIRI-JP data set (https://dcc.

icgc.org/releases/current/Projects/LIRI-JP). Cellular senescence-
related genes were obtained from CellAge data set (https://
genomics.senescence.info/cells/).

2.2 Identification of cellular senescence-
related DEGs (CSGs)

The “DESeq2” package (Love et al., 2014) was used to identify
differentially expressed genes in 369 tumors and 50 adjacent normal
samples by analyzing the count data of mrna expression and the
intersection of DEG and cellular senescence-related genes was took to
get CSGs. Adj. p-value < .05 and | log2 FoldChange (FC) | > 1 was set
as cut-off value. The “ggplot2” package was used to map the venn
diagrams for differentially expressed genes and celluar senescence-
related genes. The “ggpubr” package was used for visualization of
differentially expressed genes.

2.3 Construction of a prognostic model for
CSGs

TCGA dataset (n = 344) were used as the training set. Then,
univariate Cox regression was used to screen CSGs (associated with
the overall survival) (p-value < .05) in the training set. Subsequently, a
prognostic risk model was established in HCC through the minimum
absolute shrinkage and selection operator (LASSO) regression. Risk
score = Ʃ (βi*Expi), where βi represented the corresponding regression
coefficients of each candidate prognostic gene, and Expi was the candidate
gene’s expression value. We divided the training set into two groups: high
risk group and low risk group based on the median riskscore of the
trainingset. ICGC dataset was used as a validation set. To assess the
predictive capacity, Kaplan-Meier (K-M) survival curves were examined
using the “survival” and “survminer” packages, and receiver operating
characteristic (ROC) curves were created using the “timeROC” package.
In addition, the R package “RMS” was used to construct nomogram
models linking characteristic risk scores. Clinical factors, and calibration
curves were used to evaluate the models. The University of ALabama at
Birmingham CANcer data analysis Portal (UALCAN) (http://ualcan.
path.uab.edu/) was uesed to analyze the mrna and protein expression
levels of four CSG in tumor and normal samples. Gene Expression
Profiling Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn/) was
uesed to analyze with the overall survival curves of according four CSGs
expression. Human Protein Atlas (HPA) (https://www.proteinatlas.org/)
obtain the immunohistochemistry of four genes in bothHCC and normal
samples.

2.4 Analysis of tumor microenvironment and
immune checkpoints

Single-sample Gene Set Enrichment Analysis (ssGSEA) was used
to calculate the scores for 28 immune cell types by the “GSVA”
package (Hänzelmann et al., 2013). The ImmuneScore, StromalScore,
and ESTIMATEScore were calculated using the ESTIMATE algorithm
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through “ESTIMATE” R package (Yoshihara et al., 2013). The
immune checkpoint activation between high- and low-risk groups
was also examined by the “ggpubr” package. The “pRRophetic” was
used to estimate drug sensitivity. Fifty percent of cellular growth
inhibition (IC50) was used as an indicator of drug sensitivity.

2.5 Functional enrichment analysis

The “DEseq2” package was used to identify differential genes in high-
risk and low-risk groups by analyzing count data of mRNA expression.
Adj. p-value < .05 and | log2 FoldChange (FC) | > 1 was set as cut-off
value. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis of the significantly upregulated and
downregulated DEGs were analyzed by the “clusterProfiler” package
(Yu et al., 2012), which were used to compare biological subject
among gene clusters. The GO and KEGG analyses associated with
adjusted p-value <.05 were considered to be statistically significant.

2.6 Identification of hub genes in regulation
network

STRING (https://string-db.org/) is a biological network database
of protein interactions. The protein-protein interaction (PPI) of
DEGs-encoded proteins was demonstrated by STRING (version 11.
0), and a score >.4 with high confidence interaction was as significant
value, and the unconnected nodes in the network were hidden. PPI
network construction was conducted by Cytoscape (version 3.8.2).
Plug-in CytoHubba was used to identify hub genes and sub-networks
from complex interaction group.

2.7 Cell culture

The cell lines present in this study were obtained from the Procell
Life Science & Technology Co., Ltd (Wuhan, China). Hepatocellular
carcinoma line SMMC-7721 cells were cultured in high glucose-
containing DMEM supplemented with 10% fetal bovine serum in
95% humidified air and 5% CO2 at 37°C. Small interfering RNA
against EZH2 (si-EZH2, GAA UGC CCU UGG UCA AUA U), G6PD
(si-G6PD, GCU CUG ACC GGC UGU CCA A), CBX8 (si-CBX8,
ACG GAC GUG ACC UCA AAC UUU) and NDRG1 (si-NDRG1,
GCC UAC AUC CUA ACU CGA UUU) and their negative control
(scramble, UUC UCCGAA CGUGUC ACGU) were purchased from
RiboBio Co., Ltd (Guangzhou, China).

2.8 Scratch wound healing assay

SMMC-7721 cells were evenly planted in a 24-well plate with 4 ×
105 cells per well. The plate was vertically scratched with a 200 μL
sterile pipette tip when the cells covered 90% of the plate bottom area.
After that, the culture medium in the plate was discarded and gently
washed with PBS for three times, and the cell debris residue was rinsed
off to make sure the visual field clear during photographing. The
culture medium containing 1% FBS was added to the 24-well plate. A
3 mm wound was introduced across the diameter of each plate. Cell
migration was observed by microscopy at 24 h.

2.9 Transwell assay

Cells in logarithmic growth phase were seeded at the upper
transwell chamber insert at a density of 3 × 104 cells per well. The
chamber was placed in a 24-well plate in which the upper chamber
contained serum-free cell culture medium and the lower chamber
contained 20% FBS complete medium. The culture was continued for
24 h. The medium was discarded, and stained with a crystal violet
solution to observe the number of migrated cells.

2.10 Statistical analysis

All statistical analyses were conducted using R software (version
R-4.1.0) and GraphPad Prism 8.0.2. The Wilcoxon test was used for
statistical analysis between two groups, and the Kruskal—Wallis test
was selected flexibly when there were three or more groups. Spearman
correlation analysis was used for bivariate correlation analysis. The
significance level is denoted as follows: *p < .05, **p < .01, ***p < .001.

3 Results

3.1 Identification of differentially expressed
cellular senescence-related genes in HCC

Through analyzing the DEG profiles of 369 HCC samples and
50 adjacent cancer samples from the TCGA database,
3,352 upregulated DEGs and 1,190 downregulated DEGs were
obtained (Supplementary Table S1), which are shown in Figures
1A, B. Then, by intersecting the above 4,542 DEGs with
279 cellular senescence-related genes, 70 CSGs were identified
(Figure 1C), which are shown in Figure 1D.

3.2 Construction of a prognostic model based
on cellular senescence-related genes

Next, through univariate cox analysis of the above 70 CSGs,
25 genes were identified to be associated with HCC prognosis (p <
.05) (Figure 2A) (Supplementary Table S2). Then, to avoid excessive
variables which may result in overfitting, we performed the least
absolute shrinkage and selection operator (LASSO) Cox regression
analysis to narrow down the above 25 genes, and identified a total of
four genes (EZH2, G6PD, CBX8, NDRG1) (Figures 2B, C).
Furthermore, to explore the significance of the four genes, we
analyzed the mRNA and protein levels in HCC specimens through
UALCAN analysis, and found all the four genes were highly expressed
in the HCC specimens, compared to those in normal specimens (p <
.01) (Figure 3A). Consistently, IHC analysis also confirmed the high
expression of the four proteins in HCC tissues analyzed by the Human
Protein Atlas database (https://www.proteinatlas.org/) HPA dataset
(Figure 3B). Moreover, survival curve analysis found that HCC
patients with highly expressions of EZH2, G6PD, CBX8, or
NDRG1 has shorter survival period (Figure 3C). Finally, we
constructed a prognostic risk signature with the above four genes
through LASSO algorithm, and the formula is as: risk score =
(.0266358*expression of EZH2) + (.0043178*expression of G6PD)
+ (.0352105*expression of CBX8) + (.0019414*expression of NDRG1).
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3.3 Evaluation of the prognostic stratified
model

To further access the prognostic risk signature, HCC patients from
the TCGA dataset were stratified into two groups based on the median
risk score (.2204) (Figure 4A). In ascending order of riskscore, the
patient’s survival status was shown in Figure 4B. Survival probability
analysis showed that HCC patients in the high-risk group have a poor
prognosis, compared to the low-risk group (Figure 4C). Moreover, we
used ROC curve to estimate the predictive value of our model, and found
that the AUC was .708 at 1 year, .683 at 3 years, and .687 at 5 years,
indicating well predictive value (Figure 4D). In addition, we analyzed the
correlation between risk score and clinicopathological characteristics of
HCC patients, and found that the risk scores of HCC patients in the
T2 and T3 stage were significantly higher than those in the T1 stage
(Figure 4E). Similarly, the risk scores of HCC patients in the stageⅡand
stage Ⅲ were significantly higher than those in the stageⅠ(Figure 4F).

Subsequently, to further validate the accuracy of the prognostic
stratified model, we used the model in the HCC samples of the ICGC

dataset which was used as a validation set. Consistently with the results
of Figure 4C, the survival probability of the high-risk group with HCC
was lower (Figure 4G). In addition, the AUC of HCC patients was
.84 at 1 year, .72 at 3 years, and .756 at 5 years (Figure 4H). Overall,
these results suggest the good prognostic performance of our model.

3.4 Establishment of the nomogram for the
prediction of the HCC patients’ survival
probability

Subsequently, the univariable analysis and multivariable analysis
based on the age, the pathologic stage and the risk score showed the
riskscore could be as an independent prognostic factor (Figures 5A, B).
Furthermore, to make it easier for clinicians to predict the survival
probability of HCC patients, a nomogram was constructed based on
the risk score, age, pathologic stage, and survival rate (Figure 5C). The
total point is calculated by adding the risk score, age and stage scores, from
which the probability of survival of 1, 2, 3, and 5 years is intuitively

FIGURE 1
Scanning differentially expressed celluar senescence-related DEGs(CSGs). (A) Differentially expressed genes in TCGA dataset. |LogFC|>1 and adj.
p-value <.05 were set to screen. (B)Heatmap of the differentially expressed genes in TCGA dataset. (C) Venn diagram representing the intersection of DEGs
and celluar senescence-related genes. (D) Heatmap of the CSGs in TCGA dataset.
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predicted.Moreover, calibration plots showed good consistencies between
the predicted survival and the actual survival at 1, 2, 3, and 5 years in the
training set (Figure 5D) and in the validation set (Figure 5E).

3.5 Analysis of the correlation between the
risk signature and genetic mutations

We further investigated the differences in somatic mutation
distribution between low and high risk scores in the TCGA set. As
shown in the waterfall plot (Figures 6A, B), tumor mutational burden
(TMB) differences exist in two subtypes, and the mutation frequency
of TP53, MUC16, and PCLO in the high risk group was significantly
higher than those the low risk group.

3.6 Analysis of the risk signature and immune
characteristics

Emerging studies report immune dysfunction is significantly
associated with HCC development (Mizukoshi and Kaneko, 2019),
and cellular senescence acts essential roles in immune dysfunction
(Castelo-Branco and Soveral, 2014). To further analyze the immune
characteristics of the risk signature in HCC, we investigated the
associations between immune cells and risk scores. As shown in
Figure 7A, there was no statistical difference of the immune score
between the high risk score group and the low risk score
group. However, the high risk score group had lower stromal
score and higher tumor purity, compared to the low risk score
group (Figures 7B, C). Furthermore, ssGSEA analysis showed that

FIGURE 2
Developing a prognostic signature. (A) Forest plot of 25 cellular senescence-related genes associated with HCC prognosis. (B) The coefficients in the
LASSO regression model for CSGs. (C) Aminimum value of λwas chosen as optimal. The red linerepresents those 25 features that were reduced to four non-
zero coefficient features by LASSO.
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the abundance of activated CD4 T cells, effector memory
CD4 T cells, and type 2 T helper cells in the high-risk group
was significantly higher (Figure 7D). While the abundance of
effector memory CD8 T cells, eosinophil, neutrophil, and type
1 T helper cells in the high-risk group was evidently decreased
(Figure 7D). Overall, these results suggest that the tumor

microenvironment and immune infiltration between the two
groups are significantly different.

3.7 Analysis of drug sensitivity and immune
checkpoint

To investigate the sensitivity of HCC patients to traditional anti-
tumor drugs, we analyzed the IC50 of anti-tumor drugs in the high

FIGURE 3
Expression of Key CSGs in HCC. (A)UALCAN analysis of 4 CSGs.(B)
IHC of 4 CSGs between liver cancer specimens and normal specimens in
HPA dataset. (C) Overall survival (OS) curves of 4 CSGs in HCC patients.

FIGURE 4
Risk score signature predicted prognosis for HCC patients. (A,B)
The distribution of risk score, patients’ survival and status for HCC. The
black dotted line divided patients into high risk group and low risk
group. (C) Kaplan-Meier survival analysis of patients stratified by the
median risk score in TCGA dataset. (D) The ROC curve was applied to
assess the predictive 1-year, 2-year, 3-year performance of riskscore in
TCGA dataset. (E,F)Box plot of the difference in risk score for patients
with different T-stages (tumor size) and stages. (G) Kaplan-Meier survival
analysis of patients stratified by themedian risk score in ICGCdataset. (H)
The ROC curve was applied to assess the predictive 1-year, 2-year, 3-
year performance of riskscore in ICGC dataset.
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and low risk score group. As shown in Figure 8A, the IC50 of docetaxel
in the high-risk group was significantly higher (Figure 8A), while the
IC50 of doxorubicin, gemcitabine, and bleomycin in the high-risk
group were evidently lower, compared to those in the low-risk group
(Figures 8B–D).

Given that immune checkpoint inhibitors have been more and
more widly used for cancer therapy in clinical (Cheng et al., 2020; de
Miguel and Calvo, 2020), we further investigated the expressions of
immune checkpoints in the high and low risk score group. As shown
in Figure 8E, the expressions of TIM-3, HVEM, PD-1, PD-2, TIGHT,

FIGURE 5
Developing a nomogram for predicting survival. (A) Univariate cox regression forest plot of risk score and clinical information. (B) Multivariate cox
regression forest plot of risk score and clinical information. (C)Nomogram for the prediction of the HCC patients’ survival probability at 1, 2, 3, and 5 years. (D)
Calibration curves of TCGA dataset. (E) Calibration curves of ICGC dataset.
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CTLA4, CD47, LAG-3, and SIRPA were significantly higher in the
high-risk group.

3.8 Functional enrichment analysis and PPI
network construction

Next, we performed GO annotation and KEGG pathway
enrichment analysis to explore the potential biological functions of
the DEGs between the high and low-risk groups of TCGA which were
shown in Supplementary Table S3. The enriched GO annotation
included cell division, chemical synaptic transmission, and mitotic
cell cycle in the biological process (BP) category is active in high risk
group, and xenobiotic metabolic process, steroid metabolic process

and epoxygenase P450 pathway is inactive (Figure 9A). KEGG
pathway enrichment analysis showed that these upregulated DEGs
were mainly enriched in the neuroactive ligand-receptor interaction,
cell cycle, and glutamatergic synapse and downregulated DEGs were
mainly enriched in metabolic pathways, Metabolism of xenobiotics by
cytochrome P450 and retinol metabolism (Figure 9A). Then, the
protein-protein interaction (PPI) network of the DEGs between the
high and low-risk groups was analyzed by the STRING database
(Figure 9B). Furthermore, 10 hub genes (AFP, CDH10, CDH17,
CDH18, CDH9, CDX2, CHGA, PCSK1, and SLC30A8SST) were
identified by Cytoscape plugin cytoHubba (Figure 9C). Moreover,
survival analysis revealed HCC patients with high expression of CDX2
(DNA-binding transcription factor activity and transcription
corepressor activity) or CHGA (autocrine or paracrine negative

FIGURE 6
Correlation analysis between risk score and TMB . (A) The top 20 driver genes with the highest alteration in the high-risk group. (B) The top 20 driver
genes with the highest alteration in the low-risk group.
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modulators of the neuroendocrine system) had lower survial
proability (Figure 9D).

3.9 CSGs promotes HCC cell migration and
invasion

In order to verify the roles of 4 CSGs on HCC cell migration and
invasion, these expressions were knockdown by transfection with
specific siRNAs in SMMC-7721 cells. As shown in Figures 10A, B,
downregulationof EZH2, G6PD, CBX8, or NDRG1 significantly
inhibited the migration and invasion of SMMC7721 cells,
respectively (Figures 10A, B).

4 Discussion

Cellular senescence is characterized by functional decline and
hypometabolism, such as cell cycle arrest, loss of the ability of cells to
replicate, and permanent cessation of cell division (Shih et al., 2017).
In the early stages of tumors, cellular senescence is activated by
oncogenes and participates in suppressing tumor development
(Zeng et al., 2018). However, with the tumor progression, senescent
cancer cells continue to increase, which transforms to promote tumor
progression (Prieto and Baker, 2019). Therefore, cellular senescence is
emerging as a novel potential anti-tumor strategy (Prasanna et al.,
2021). In this study, we established an cellular senescence-related
DEGs-based, accurate stratified model, and a nomogram based on

FIGURE 7
Correlation analysis between risk score and Immune infiltration in HCC. (A–C) Box plot of differences in immuneScore, StromalScore TumorPurity
between high- and low-risk groups. (D) Box plot of differences in immune cell infiltration in high- and low-risk groups. *p < .05. **p < .01. ***p < .001.
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multivariable analysis, whihc have potentially important roles in
guiding clinical therapy for HCC.

In the present study, we used four genes (EZH2, G6PD, CBX8, and
NDRG1) to construct the risk prognostic score signature in HCC.
EZH2 is reported to inhibit gene transcription by methylates Lys9 and
Lys27 on histone H3, and suppress cellular senescence phenotypes by

inactivating p16 and p21 (Bracken et al., 2003; Fan et al., 2011; Tzatsos
et al., 2011). Besides, EZH2 is highly expressed in a variety of tumors,
promote tumor development by regulating cell cycle, and is related to
the degree of tumor malignancy (Duan et al., 2020). Recently,
EZH2 has also been reported to promote the proliferation and
metastasis of HCC (Lei and Wang, 2022). Similarly, our study

FIGURE 8
Correlation of risk score with immunotherapy. (A–D) Box plot of the differences in IC50 of docetaxel, doxorubicin, gemcitabine, and bleomycin between
high- and low-risk groups. (E) Box plot of the differences in immune checkpoint between high- and low-risk groups. *p < .05. **p < .01. ***p < .001.
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finds HCC patients with EZH2 high expression have low survival rates.
G6PD is a rate-limiting enzyme in the pentose phosphate pathway,
and its deficiency accelerates cellular senescence (Ho et al., 2000).
Whereas, high expression of G6PD promotes tumor growth by
generating ribo-5-phosphate and NAPDH (Stanton, 2012). G6PD
is reported to induce epithelial-mesenchymal transition, thereby
promoting HCC cell invasion (Lu et al., 2018). In addition, G6PD

promotes HCC development by inhibiting ferroptosis through
targeting cytochrome P450 oxidoreductase (Cao et al., 2021).
Consistently, our study showed knockdown of G6PD evidently
suppressed HCC cell migration and invasion. CBX8 inhibits stress-

FIGURE 9
Analysis of differences between high and low risk groups. (A)
Enrichment analysis between high and low risk groups. (B) PPI network
of the differential expressed genes of high and low risk groups.(C) Hug
genes of PPI network between high and low risk groups (D) Survival
curve of hub genes.

FIGURE 10
CSGs inhibits SMMC-7721 cells migration, and invasion in vitro. (A)
Silencing 4CSGs attenuatedwound closure corroborated in SMMC-7721
(n = 3). (B) Silencing 4 CSGs attenuated wound closure corroborated in
SMMC-7721. The error bars indicate the mean ± SD, and each
experiment was repeated at least three times. *p < .05, **p < .01,
***p < .001.
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induced premature senescence in K562 leukemia cells by regulating
AKT-RB-E2F1 pathway (Lee et al., 2016). Recent study reported
CBX8 interact with YBX1 to regulate cell cycle and promote the
growth of HCC cells (Xiao et al., 2019). NDRG1, a hypoxia-inducible
protein, is identified as a tumor suppressor in gliomas and
glioblastomas (Nakahara et al., 2022). However, NDRG1 is found
to be highly expressed in HCC, and promotes hepatocellular
carcinoma proliferation and metastasis (Liu et al., 2019; Dang
et al., 2020). Inhibition of NDRG1 triggers senescence of HCC cells
through activating glycogen synthase kinase-3β-p53 pathway (Lu
et al., 2014). Knockdown of NDRG1 promotes the pro-poptotic
protein BAX expression and mitochondria division in HCC cells,
thereby inhibiting HCC progression (Dang et al., 2020). Consistently,
Knockdown of NDRG1 notably suppressed HCC cell migration and
invasion. Given the higher expression levels of EZH2, G6PD, CBX8,
NDRG1 in the high risk score scroe group of HCC patients, we
speculate that targeting cellular senescence to treat HCC may have a
better therapeutic effects for such patients.

Nowadays, although chemotherapy has been widely used for HCC
therapy in clinical, the clinical chemotherapy outcomes were not satisfied,
owing to chemotherapy resistance (Lohitesh et al., 2018). Therefore, it is
particularly important to screen out patients who are sensitive to
chemotherapeutic drugs and then carry out individualized treatment
(Zhang and Chen, 2020). Recent studies report that the aberrant
expression of phosphatidylinositol 3-kinase (PI3K)/AKT signaling in
HCC contributes to highly resistant to treatment with docetaxel
(Wang et al., 2021). EZH2 is identified to promote the progression of
osteosarcoma through activatingAKT (Wan et al., 2022). In this study, we
investigated sensitivity differences to chemotherapeutic agents in high-
and low-risk groups ofHCCpatients, and foundHCCpatients in the low-
risk group were more susceptible to Docetaxel. This is consistent with the
lower EZH2 expression in the low-risk groups of HCC patients.
Interestingly, the high-risk groups of HCC patients were more
sensetive to doxorubicin, gemcitabine, and bleomycin, which provides
a benificial guide for precise treatment in clinical. However, the
underlying mechanism needs further investigation. Immunotherapy,
particularly immune checkpoint inhibitors, has achieved initial success
in the treatment of various cancers, including HCC (Wen et al., 2022).
Commonly, the efficacy of immunotherapy largely depends on the tumor
immune microenvironment (Miao and Nan, 2022). In our stratified
model, higher infiltration levels of effector memory CD8 T cells and NK
cells, lower infiltration levels of type 2 helper T cells were identified in the
low-risk group of HCC, compared to those in the high-risk group of
HCC. Meanwhile most of the immune checkpoints in high-risk patients
with HCC were upregulated, including CD8 (+) T-cell immune
checkpoints (PD-1, CTLA-4, and TIGIT) and NK cell immune
checkpoints (PD-1, LAG-3, and TIM-3) (Zhou et al., 2019).
These findings suggest that HCC patients with high risk prognostic
scores may be more suitable for thearpy with immune checkpoint
inhibitors.

KEGG analysis showed the differential genes between the high and
low risk group of HCC were mainly enriched in the neuroactiveligand-
receptor interaction pathway. Recently, high expressions of genes
involved in the neuroactive ligand-recepotr interaction pathway is
found to be associated with poor prognosis in papillary renal cell
carcinoma (Li et al., 2022). Similarly, in our study, HCC patients in
the high risk score group with shorter survival rates also have higher
expressions of the neuroactive ligand-recepotr interaction pathway-
related genes. Furthermore, PPI network analysis showed ten hub genes

(AFP, CDH10, CDH17, CDH18, CDH9, CDX2, CHGA, PCSK1,
SLC30A8, and SST), and HCC patients with high expression of
CDX2 and CHGA had poor prognosis. CDX2, known as a nuclear
transcription factor, plays important roles in regulating the epithelial to
mesenchymal transition, and acts as a prognostic factor and emerging
biomarker in colon cancer (Grainger et al., 2010; Dalerba et al., 2016). A
pathological staining survey found that poorly differentiated HCC had
more CDX2 expression (Zhou et al., 2019), which also indicated that
patients in the high-risk group had poorly differentiated HCC. CHGA,
known as Chromogranin A (CgA), a protein stored in the secretory
granules of many neuroendocrine cells and neurons, could be detected
in the blood of patients with neuroendocrine tumors or heart failure
(Seregni et al., 2001; Ferrero et al., 2004) CHGA could also be detected in
the serum of some HCC patients (Leone et al., 2002). However, the
detailed role of CHGA in HCC development needs further investigation
in the following studies.

5 Conclusion

In conclusion, the prognostic signature based on cell senescence
constructed in this study are helpful to predict the survival of HCC and
guide clinical treatment. It is found that patients in high-risk group are
more tolerant to chemotherapy drugs, but more suitable for
immunotherapy. However, more experiments and clinical cases are
needed to validate these findings.
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